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Abstract

One of the key indicators used in tracking the evolution of an infectious disease is

the reproduction number. This quantity is usually computed using the reported

number of cases, but ignoring that many more individuals may be infected (e.g.

asymptomatics). We propose a statistical procedure to quantify the impact of un-

detected infectious cases on the determination of the effective reproduction num-

ber. Our approach is stochastic, data-driven and not relying on any compartmental

model. It is applied to the COVID-19 case in eight different countries and all Italian

regions, showing that the effect of undetected cases leads to estimates of the effective

reproduction numbers larger than those obtained only with the reported cases by

factors ranging from two to ten. Our findings urge caution about deciding when and

how to relax containment measures based on the value of the reproduction number.
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1 Introduction

Tracking the evolution of the spread of an infectious disease is of primary importance during

the whole course of any epidemic. An accurate evaluation of the transmission potential of

the disease provides invaluable information to guide the decision-making process of control

interventions, and to assess their effectiveness. One of the key epidemiological variables in this

respect is the effective reproduction number R, defined as the average number of secondary

cases per primary case of infection. In order to stop an epidemic, R needs to be persistently

reduced to a level below 1. The issue of providing reliable estimates of R is particularly severe

now during the on-going COVID-19 pandemic [1], and urgently calls for efforts towards a

comprehensive mathematical modelling of the outbreak.

In this paper we propose a statistical framework for computing the effective reproduction

number R characterized by the following main features.

1. Stochastic. Our approach is stochastic, and not rooted in any deterministic framework of

compartmental models, such as SIR and its extensions. Although compartmental models

can indeed provide very useful outcomes, especially for extrapolating the outbreak evolu-

tion into the near future, they rely on the simultaneous determination of all the coefficients

appearing in the differential equations describing the dynamics of each compartment.
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2. Real-time. The method provides a time series of estimations of R at each time step (e.g.

one day), and not a single a posteriori value when the outbreak is almost over.

3. Bayesian. Within a Bayesian framework the results have a transparent probabilistic

interpretation, the assumptions (priors) are explicit and their role is clearly tracked. A

Bayesian updating procedure also accounts for the real-time evolution of the probabilities.

4. Comprehensive. Our method is explicitly carried out for taking into account the (un-

known) number of undetected cases. However, it can be straightforwardly generalized to

include any additional random variable affecting the reproduction number. Since the re-

production number is a highly complex quantity, affected by a wide variety of factors, such

as biological, environmental and social factors [2], this feature is particularly relevant.

Several methods for estimating the reproduction number have been proposed in the literature

and have one or more of the above characteristics (see e.g. Refs. [3, 4, 5, 6, 7, 8, 9]). But, to the

best of our knowledge, our approach is the first one combining all those components at once.

In particular, in this paper we are interested in assessing the role and impact of the number

of undetected infection cases onto the effective reproduction number. There may be different

reasons why an infected patient is undetected and does not appear in the official reports: indi-

viduals not showing the symptoms of the disease but are able to infect others (asymptomatics),

individuals whose symptoms have not been linked to the disease under consideration (especially

in the early stages of the outbreak), impossibility of a complete population screening, etc.

For COVID-19, the number of undetected cases of infection may indeed be rather large.

According to Ref. [10], in the small Italian town of Vo’ Euganeo 43% of the confirmed infections

were asymptomatic with no statistically different viral load with respect to the symptomatic

cases. Another study performed at the New YorkPresbyterian Allen Hospital and Columbia

University Irving Medical Center in NYC, pointed out that 29 of the 33 patients who were

positive for SARS-CoV-2 (87.9%) had no COVID-19 symptoms [11]. These results justify the

denomination of asymptomatic transmission of SARS-CoV-2 as the “Achilles’ heel” of current

COVID-19 containment strategies [12].
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2 Methodology and Results

We develop a Bayesian statistical formulation of the evolution of the effective reproduction

number, building upon the works of Refs. [4, 5, 6]. Full details about our model and calculations

are provided in Supplementary Material S.1. It is important to remark that our approach is

stochastic and data-driven, not relying on any deterministic compartmental model.

The number of new infected individuals at a given time are modelled as a discrete-time

stochastic process. Among the many variables affecting the effective reproduction number R

[2], we choose as the most relevant ones the time series of disease incidence data up to time

t (I≤t = {I0, I1, . . . , It}), and the serial interval (W ), i.e. the time from symptom onset in a

primary case to symptom onset of his/her secondary cases.

At any time t during an epidemic, the posterior probability density of R, conditioned on the

past incidence data and serial interval, pR|I≤t,W (r|i≤t, w) encodes a great deal of information

about the current state of the outbreak. In particular, the effective reproduction number at

time t (Rt) can be derived from it as the expected value

Rt = E[R|I≤t,W ] =

∫
dr r pR|I≤t,W (r|i≤t, w) , (1)

as well as the 95% central credible intervals (see Fig. 1). As initial prior for R we adopt an

uninformative uniform distribution throughout the paper.

Our mathematical formalism is general and flexible enough to incorporate in a straight-

forward way any other random variable affecting R, in addition to the incidence and serial

interval usually considered. In particular, in this paper we consider the impact on R due to

the unknown number of undetected cases, provided we make assumptions about their prob-

ability distribution. The general posterior probability density of R needed in Eq. (1), given

Poisson-distributed incidence data, serial interval data and the undetected cases is reported in

Eq. (S.11), including the marginalization over all nuisance parameters. Our results allow one to

track the effective reproduction number in real time during an outbreak, including the effects

of undetected cases, under general assumptions.

We also took a further step by assuming a parametric form for the serial interval distribution,

and uniform probabilities for the undetected cases. In this simple case we were able to compute

the posterior density pR|I≤t,W (r|i≤t, w) analytically in close form (see Eq. (S.12)). This is the
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Figure 1: Time evolution of the posterior probability density of the effective reproduction number R

(we used the South Korea data, just for illustration purpose). The day 0 corresponding to a uniform

prior is not shown.

form we are applying to the COVID-19 data, as we now turn to discuss.

We employ COVID-19 daily incidence data for eight different countries (France, Germany,

Italy, South Korea, Spain, Sweden, UK and USA), retrieved from Ref. [13]. In Supplementary

Material S.4 we also analyze the incidence data in the twenty Italian regions.

For the serial interval distribution, we adopt a gamma distribution with the normally-

distributed parameters estimated in Ref. [14] (see Eqs. (S.5) and (S.6)), which is also consistent

with other determinations in several countries (see Ref. [15]). We assume a discrete uniform

distribution for the number of undetected cases, allowing them to be at most a factor of CU times

the number of reported cases at each time. The marginalization of the posterior probability of
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Figure 2: Time evolution of effective reproduction number for COVID-19 in France, Germany, Italy

and South Korea. Black dashed line: result of including only the reported cases of infection. Blue solid

line: mean of the posterior probability marginalized over the undetected cases and the serial interval

parameters. Gray shaded area: 95% central credible interval. The inset shows the results of the past

two weeks in greater detail. The vertical lines refer to the time when containment measures have been

adopted.

R over CU is cutoff at CU = 2. Of course this choice of the prior for CU is subjective, and we

believe it is also rather conservative.

The computation of R starts from the first day reported on the dataset. It is worth men-

tioning that the starting date is not the same for all the countries taken into account. The

results are shown in Fig. 2 and Fig. 3. The figures show the time evolution of R and, wherever
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Figure 3: Time evolution of effective reproduction number for COVID-19 in Spain, Sweden, UK and

USA. Black dashed line: result of including only the reported cases of infection. Blue solid line: mean

of the posterior probability marginalized over the undetected cases and the serial interval parameters.

Gray shaded area: 95% central credible interval. The inset shows the results of the past two weeks in

greater detail. The vertical lines refer to the time when containment measures have been adopted (for

the USA, we show the lock-down date in the state of NY as a reference).

applicable, the dates when contagion containment measures have been enforced. In Table 1 we

report the numerical results for the last day of our analysis.

Our results clearly show that R, after a transitory period, is in a down trend in all the

countries we considered. In all the countries considered, we find values of the mean value

Rt larger than the ones without considering the undetected cases by factors of about 2 – 4.
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Country
R with reported Mean of marginalized

95% CrI
cases only posterior probability

France 1.00 1.47 (0.85, 3.00)

Germany 0.73 1.50 (0.56, 3.22)

Italy 0.71 1.69 (1.01, 3.37)

South Korea 0.69 1.56 (0.86, 3.04)

Spain 0.55 1.58 (1.04, 2.94)

Sweden 0.93 1.95 (1.01, 3.89)

UK 1.10 2.45 (1.49, 5.17)

USA 0.98 2.20 (1.02, 4.91)

Table 1: The values of the effective reproduction number R for COVID-19, on the last day of our

analysis 2020-05-08), for each of the countries we considered. The second column reports the value we

find by including only reported incidence data and mean values of the serial interval distribution. On

the third column we report the mean of the posterior distribution of R, marginalized over the nuisance

parameters describing the serial interval and undetected cases distributions. The corresponding 95%

credible interval is reported on the last column.

This is a somewhat expected consequence of our conservative choice of CU being at most 2.

By allowing more undetected cases, the resulting reproduction numbers would be necessarily

higher. Furthermore, the upper values of the 95% credible intervals are larger than the estimate

with only officially reported cases by factors up to 10, and they are all significantly above 1.

3 Conclusions and Outlook

In this paper we took the first steps towards a comprehensive stochastic modelling of the effec-

tive reproduction number R during an epidemic. We followed a completely general approach,

which enables one to account for any random variable affecting R. In particular, our primary

focus was on assessing the impact on R of the number of undetected infection cases.

We investigated the time evolution of the posterior probability density of R, marginalized

over the parameters of the serial interval and undetected cases distributions. The application of

our method to the COVID-19 outbreak in different countries show that the effective reproduc-
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tion number is largely affected by the undetected cases, and in general it increases by factors

of order 2 to 10.

There are several directions in which further research can be carried out, aiming at expand-

ing the capabilities of the basic framework described in this paper. For instance, it is desirable

to explore a more realistic model of the probability distribution of undetected cases, also in-

cluding time dependence. Furthermore, it is also possible to adopt a fully data-driven approach

by performing non-parametric estimation of the serial interval distribution from transmission

chains data.

The stochastic approach outlined in this paper is not designed to establish or predict any

cause-effect relationship between the Rt trend and the enforcement of the containment mea-

sures. It is nevertheless possible to use our results (especially the credible intervals) to define

some robust criterion for evaluating the effectiveness of the containment measures.

Our findings can be used by public health institutions to take more informed decisions

about designing and gauging the strategies of infection containment. According to our results,

we recommend caution in deciding when and how to relax the containment measures based on

the value of the reproduction number, since it may be much larger than usually estimated.

Acknowledgements M.P. thanks R. De Leone for useful conversations.
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Supplementary Material

S.1 Statistical model

We work in a Bayesian framework in which we treat all observations and parameters as random

variables. The parameter of primary interest in this paper is the effective reproduction number

R, considered as a continuous random variable with prior probability density function pR(r).

We then consider the observed incidence cases (number of new infected individuals at time t) It

and the unknown number of undetected cases Ut as positive integer-valued stochastic processes

with discrete time index t.

We will also consider the stochastic process Tt ≡ It + Ut, describing the total number of

incident cases as a function of time, i.e. the sum of observed (reported) cases and the number

of undetected cases. We ignore the imported cases. Notice that, in general, It and Ut are

dependent, and their dependence is encoded by the conditional variable Ut|It.

The serial interval is described by the discrete random variable W . Its probability mass

function pW (w) provides the probability of a secondary case arising w time steps after a primary

case.

Given a time window of τ time steps, over which R is assumed to be constant, we can split

the times into two intervals: 0 ≤ k ≤ t− τ − 1 and t− τ ≤ k ≤ t. To avoid notational clutter,

we will indicate by I<s the set of random variables before time s

I<s ≡ {I0, I1, . . . Is−1} , (S.1)

and by I[t−τ,t] the set of random variables in the time interval [t− τ, t]

I[t−τ,t] ≡ {It−τ , . . . , It} . (S.2)

In our numerical simulations leading to the results displayed Sections 2 and S.4 we set τ = 7

days.

By Bayes’ theorem, at any given time t > τ , the posterior probability density of R given

the serial interval distribution, the incidence data history and the undetected cases in the time
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window [t− τ, t] is

pR|I<t−τ ,T[t−τ,t],W (r|i<t−τ , (i+ u)[t−τ,t], w)

∝ pR(r) · pI<t−τ ,T[t−τ,t],W |R(i<t−τ , (i+ u)[t−τ,t], w|r)

∝ pR(r) · pW |R(w|r) · pT[t−τ,t]|I<t−τ ,W,R((i+ u)[t−τ,t]|i<t−τ , w, r)

∝ pR(r) · pW (w) ·
t∏

k=t−τ

pTk|I<t−τ ,W,R(ik + uk|i<t−τ , w, r)

= pR(r) · pW (w) ·
t∏

k=t−τ

pTk|I<k,W,R(ik + uk|i<k, w, r) , (S.3)

where we assumed that W and R and independent (a generic dependence between them can be

implemented in a straightforward way). Now, we can use the total law of probability to sum

over the unknown number of undetected cases, assuming that Uk depends only on Ik. This way,

we can get the posterior probability density for R given the serial interval distribution and the

time series of incidence data up to time t

pR|I≤t,W (r|i≤t, w)

∝ pR(r) · pW (w)
t∏

k=t−τ

[∑
uk≥0

pTk,Uk|I<k,W,R(ik + uk, uk|i<k, w, r)

]

= pR(r) · pW (w)
t∏

k=t−τ

[∑
uk≥0

pTk|Uk,I<k,W,R(ik + uk|uk, i<k, w, r)

· pUk|Ik,I<k,W,R(uk|ik, i<k, w, r)

]

= pR(r) · pW (w)
t∏

k=t−τ

[∑
uk≥0

pTk|I<k,W,R(ik + uk|i<k, w, r) · pUk|Ik(uk|ik)

]
. (S.4)

The sum over the undetected cases uk is ideally running up to the total population minus the

observed cases ik (neglecting effects of acquired immunity), but in practice it is cutoff much

earlier by the distribution pUk|Ik , as discussed below.

The only assumptions made to derive the posterior probability density in Eq. (S.4) have

been that W is independent of R and that Uk only depends on Ik. So, Eq. (S.4) quite generally

describes how to incorporate the effect of undetected cases in a Bayesian statistical model for

the effective reproduction number, given the serial interval and incidence data.
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We now turn to formulate our assumptions about each of the terms appearing in Eq. (S.4),

and we will reach a simple analytical form, ready to use for numerical simulations.

The prior pR(r) for R is assumed to be uniform.

For the prior distribution pW (w) of the serial interval variable W we assume a continuous

Gamma distribution (to be evaluated on integer values of w) described by two parameters: the

shape parameter a and the rate parameter b

pW |a,b(w|α, β) =
βα

Γ(α)
wα−1e−βw . (S.5)

The parameter values at 1σ level have been reported in Ref. [14] as

a = 1.87± 0.26 , b = 0.28± 0.04 . (S.6)

The prior distributions of the serial interval parameters a, b are considered normal: a ∼

N (1.87, 0.262), b ∼ N (0.28, 0.042).

The probability mass function of the undetected cases Ut, which we already assumed to

depend on It only, can be modelled in many different ways, for example with decreasing proba-

bilities associated to large values of undetected cases, and also in a time-dependent way. In this

paper we adopt the simplest assumption of a discrete uniform distribution with a single param-

eter CU : Ut ∼ Uniform([0, CUIt]). This way, we are describing the situation where the number

of undetected cases at a given time t can be at most CU times the number of reported cases

at the same time. We leave the investigation of alternative (and more realistic) scenarios to

future work. So, the probability mass function of the number of undetected cases, conditioned

on the values of the incidence data and the parameter CU is

pUt|It,CU (ut|it, cU) ∝ χ[0,cU it](ut) , (S.7)

where χ is the indicator function. The prior distribution of the continuous parameter CU is

assumed to be an uninformative uniform prior between 0 and 2: CU ∼ Uniform([0, 2]). The

choice of the number 2 if of course subjective, although we believe it is a reasonable and

conservative prior.

The number of new total cases Tk at time k within the time window [t − τ, t], given the

previous incidence data, the serial interval data and the value of R, is assumed to be Poisson-

distributed with parameter RΛk, where the total infection potential at a generic time t is defined
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by

Λt(w, i<t) ≡
t∑

s=1

it−sws . (S.8)

At first approximation, this quantity can be considered as unaffected by the undetected cases,

as the serial interval distribution is derived from tracking the secondary of reported cases.

By considering the sample of secondary infections as representative of the population, the

approximation above is justified. The generalizations to replace the Poisson distribution with

a two-parameter negative binomial distribution and to include the undetected cases into Λt are

left to future work.

Therefore, we can write explicitly the probability mass function of Tk|I<k,W,R as

pTk|I<k,W,R(ik + uk|i<k, w, r) =
1

(ik + uk)!
e−rΛk(w,i<k) [rΛk(w, i<k)]

ik+uk . (S.9)

Now we have collected all the ingredients of Eq. (S.4), and we added the nuisance parameters

a, b, CU to the model. So the joint posterior density of R and the nuisance parameters reads

pR,a,b,CU |I≤t,W (r, α, β, cU |i≤t, w) ∝ pR(r) pW |a,b(w|α, β)

×
t∏

k=t−τ

[∑
uk≥0

e−rΛk(w,i<k) [rΛk(w, i<k)]
ik+uk

(ik + uk)!
· pUk|Ik,CU (uk|ik, cU)

]
. (S.10)

By marginalizing over a, b, CU we finally get the posterior probability density for R

pR|I≤t,W (r|i≤t, w) ∝ pR(r)

∫
dα dβ dcU pa(α) pb(β) pCU (cU) pW |a,b(w|α, β)

×
t∏

k=t−τ

[∑
uk≥0

e−rΛk(w,i<k) [rΛk(w, i<k)]
ik+uk

(ik + uk)!
· pUk|Ik,CU (uk|ik, cU)

]
. (S.11)

With a uniform prior for the number of undetected cases as described in Eq. (S.7), the sum

in the square bracket of Eq. (S.11) can be computed analytically in terms of the regularized

upper incomplete gamma function Q(s, x) as

pR|I≤t,W (r|i≤t, w) ∝ pR(r)

∫
dα dβ dcU p(α) p(β) pCU (cU) pW |a,b(w|α, β)

×
t∏

k=t−τ

[Q ((1 + cU)ik + 1, rΛk(w, i<k))−Q (ik, rΛk(w, i<k))] . (S.12)

At any time t > τ , from this conditional posterior probability density it is possible to compute

the mean and the 95% central credible intervals. In particular, the effective reproduction
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number Rt is the expected value of R conditioned on the past incidence data and serial interval

Rt = E[R|I≤t,W ] =

∫
dr r pR|I≤t,W (r|i≤t, w) , (S.13)

where the conditional probability density pR|I≤t,W (r|i≤t, w) marginalized over all nuisance pa-

rameters is given by Eq. (S.11) in general, and by Eq. (S.12) for the particular case of uniform

distribution of the number of undetected cases.

S.2 Incidence data by country

The daily incidence data, i.e. the number of new positive cases on each day, we used for the

plots in Section 2 are plotted in figure S.1. Notice how the pattern of disease incidence in

Italy, Spain, France, Germany, UK and USA are different from the pattern in South Korea

and Sweden. For Spain, a negative incidence of -1400 was reported on 2020-04-19. We believe

this is due to fixing numbers which were incorrectly reported previously. In order to deal with

positive incidence data only, we adjust the negative number of cases reported on 2020-04-19 by

distributing the cases of the previous and following day. In particular, we assign one-half of the

reported cases on 2020-04-18 and one-fourth of the cases on 2020-04-20 to the daily incidence

on 2020-04-19, resulting in a total of 590 cases on 2020-04-19.

S.3 Serial interval distribution

The serial interval is the number of days occurring from the onset of symptoms in a patient and

the onset of symptoms in a secondary patient infected by the primary one. For modelling the

serial interval we used a gamma distribution (see Eq. (S.5)). We simulate different realizations

of the gamma distribution considering the parameters a and b normally distributed, with mean

and variance reported in Eq. (S.6). The resulting 95% confidence interval is shown in figure S.2

S.4 Results for the Italian regions

We apply our statistical model, described in Section S.1, to the incidence data in the twenty

Italian regions, retrieved from Ref. [16]. The computation of Rt starts 5 days after the first

reported day, that is the same for all the regions. This choice is adopted in order to bypass the

uncertainty and delay in collected data in the very first days. For the time window length we
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use τ = 7 days. The results for all regions in alphabetical order are shown in Figures S.3, S.4,

S.5, S.6, S.7, and Table S.1
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Figure S.1: Number of new daily infection cases of COVID-19 in the countries considered in this

paper. The vertical lines refer to the time when containment measures have been adopted (for the

USA, we show the lock-down date in the state of NY as a reference).
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Figure S.2: Serial interval distribution, as a gamma distribution in Eq. (S.5). The solid line corre-

sponds to the central values of the parameters in Eq. (S.6). The shaded region is the 95% confidence

interval.
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Figure S.3: Evolution of effective reproduction number for COVID-19 in four Italian regions: Abruzzo,

Basilicata, Calabria, Campania.
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Figure S.4: Evolution of effective reproduction number for COVID-19 in four Italian regions: Emilia

Romagna, Friuli Venezia Giulia, Lazio, Liguria.
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Figure S.5: Evolution of effective reproduction number for COVID-19 in four Italian regions: Lom-

bardia, Marche, Molise, Piemonte.
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Figure S.6: Evolution of effective reproduction number for COVID-19 in four Italian regions: Puglia,

Sardegna, Sicilia, Toscana.
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Figure S.7: Evolution of effective reproduction number for COVID-19 in four Italian regions: Trentino

Alto-Adige, Umbria, Valle d’Aosta, Veneto.
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Region
R with reported Mean of marginalized

95% CrI
cases only posterior probability

Abruzzo 0.77 2.01 (1.20, 4.03)

Basilicata 1.29 2.94 (1.24, 7.31)

Calabria 0.46 1.32 (0.64, 2.59)

Campania 0.60 1.66 (0.89, 3.36)

Emila Romagna 0.64 1.45 (0.81, 2.93)

Friuli V. G. 0.54 1.28 (0.74, 2.37)

Lazio 0.80 1.81 (0.99, 3.69)

Liguria 0.75 1.52 (0.80, 3.13)

Lombardia 0.83 2.01 (0.94, 4.14)

Marche 0.78 1.86 (1.06, 3.38)

Molise 0.65 1.83 (0.72, 3.73)

Piemonte 0.63 1.46 (0.64, 3.12)

Puglia 0.64 1.68 (0.92, 3.37)

Sardegna 0.62 1.42 (0.75, 2.86)

Sicilia 0.56 1.39 (0.78, 2.72)

Toscana 0.61 1.55 (0.85, 3.03)

Trentino A. A. 0.49 1.07 (0.58, 2.04)

Umbria 0.52 1.03 (0.48, 2.07)

Valle d’Aosta 0.56 1.48 (0.74, 3.06)

Veneto 0.58 1.34 (0.91, 2.51)

Table S.1: The values of the effective reproduction number R for COVID-19, on the last day of

our analysis (2020-05-08), for each of the Italian regions we considered. The second column reports

the value we find by including only reported incidence data and mean values of the serial interval

distribution. On the third column we report the mean of the posterior distribution of R, marginalized

over the nuisance parameters describing the serial interval and undetected cases distributions. The

corresponding 95% credible interval is reported on the last column.
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