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Abstract

We report results on the behavior of a particular incompressible Navier-Stokes (NS) flow in the
whole space R3, related to the complex singular solutions introduced by Li and Sinai in [13] that
blow up at a finite time. The flow exhibits for some time a tornado-like behavior: a sharp increase of
vorticity and of the maximal velocity, with concentration in an annular region around an axis. There
is however no rotation around the axis and the approximate axial symmetry with no swirl excludes
a real blow-up. We conclude with a discussion on the possible candidates for a real blow-up.
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1 Introduction

We report results, obtained by computer simulations, guided by a theoretical analysis, on a new solution
of the incompressible Navier-Stokes equations (NS) in R3, with no boundary conditions, which arises in
connection with the contribution of Li and Sinai [13] to the “global regularity problem”, i.e., the problem
whether smooth solutions in absence of forcing can become singular at a finite time. The problem is open
since the pioneering work of J. Leray [11] in 1937, and, in spite of many brilliant contributions, it is still
open and in the list of the Clay millennium prize. Mathematically speaking the most notable difficulties
of NS equations in 3D are its non-locality, due to incompressibility, and super-criticality. The system is
super-critical with respect to the basic energy conservation law.

Leray, who first proved a global weak existence theorem and a uniqueness and regularity theorem
only for finite times, believed that there is loss of regularity and it is related to turbulence. The modern
view of turbulence involves transitions to chaotic flows rather than singularities. However, if singularities
exist, they could describe sudden concentrations of energy in a finite region, as it happens in tornadoes
or hurricanes, for which no effective model is now available. In fact, the main features of the possible
finite-time singularities (“blow-up”), are the divergence of the total enstrophy [19], and the divergence
at some point of the absolute value of the velocity [17].

In recent times, results of discrete models of the NS equations which preserve the energy conservation
[6, 9] seem to indicate that blow-up’s are real. A blow-up was also proved by T. Tao [18] for a continuous
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model obtained by modifying the bilinear term of the NS equations. (The introduction is a good review
of the state of the global regularity problem.) As for the evidence from computer simulations, the NS
equations are in general difficult to follow on the computer, especially for high values of the velocity
and the vorticity, and in absence of reliable theoretical guide-lines on the structure of the blow-up the
computer simulation are inconclusive (see, e.g., [8])

In 2008 a paper of Li and Sinai [13] introduced a new approach. It is based on dynamical system
techniques, which allow to control, for some classes of flows, the tranfer of energy to the fine scales. The
approach can also be applied to other models [15]. We give here a brief description.

Consider the NSS in the whole space R3 with no forcing

∂u

∂t
(x, t) +

3∑
j=1

uj(x, t)
∂u

∂xj
(x, t) = ν∆u(x, t)−∇p(x, t), x = (x1, x2, x3) ∈ R3. (1)

∇ · u(x, t) =
∑
j

∂uj
∂xj

(x, t) = 0, u(x, 0) = u0(x), (2)

where ν is the kinematic viscosity and p is the pressure, which can, by incompressibility, be recovered in
terms of the velocity field by a Biot-Savart law. Assuming ν = 1 (which can always be obtained by a
suitable scaling), and introducing the modified Fourier transform

v(k, t) =
i

(2π)3

∫
R3

u(x, t)e−i〈k,x〉dx, k = (k1, k2, k3) ∈ R3, (3)

where 〈·, ·〉 denotes the scalar product in R3, the equation (1) can be written, by a Duhamel formula, as
a single integral equation:

v(k, t) = e−tk
2

v0(k) +

∫ t

0

e−(t−s)|k|2
∫
R3

〈v(k − k′, s),k〉Pkv(k′, s)dk′ds, (4)

where Pkv = v− 〈v,k〉|k|2 k denotes the solenoidal projector and v0 is the transform of u0. In general v(k, t)

is a complex function. Li and Sinai consider only real solutions of (4), which in general correspond to
complex solutions of (1). However if v0(k) (and hence v(k, t) for t > 0) is antisymmetric, the solution
u(x, t) is also real and antisymmetric in x.

Multiplying the initial data by a real parameter A, which controls the initial energy, and iterating the
Duhamel formula, the solution of (4) is written as a power series:

vA(k, t) = Ag(1)(k, t) +

∫ t

0

e−k
2(t−s)

∞∑
p=2

Apg(p)(k, s)ds, (5)

where g(1)(k, s) = e−sk
2

v0(k), g(2)(k, s) =
∫
R3

〈
g(1)(k− k′, s),k

〉
Pkg

(1)(k′, s)dk′ and for p > 2

g(p)(k, s) =
∑

p1+p2=p
p1,p2>1

∫ s

0

ds1

∫ s

0

ds2

∫
R3

〈
g(p1)(k− k′, s1),k

〉
·

·Pkg
(p2)(k′, s2)e−(s−s1)(k−k′)2−(s−s2)(k′)2dk′ + boundary terms. (6)

The boundary terms involve g(1) and have a slightly different form (see, e.g.,[4], where it is also shown,
under some general conditions on v0, that the series converges if |A|t is small).

Li and Sinai [13] consider real initial data v0 such that the support is mainly concentrated inside a
sphere KR of radius R centered around the point k(0) with |k(0)| >> R. Then the function g(p), which is
essentially a convolution, has a support centered around pk(0) and (by analogy with probability theory)
an effective diameter of the order O(

√
p).

Li and Sinai argue that the behavior of g(p) for large p is determined by the fixed points of the
map g̃(p) → g̃(p+1), where g̃(p)(Y, s) = g(p)(pk(0) +

√
pY, s) are the functions in the rescaled variables
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(rescaled as for the Central Limit Theorem). Hence, if we know the fixed point corresponding to the
initial data we can control the excitation of the high k-modes, i.e., of the fine structure components of
u(x, t).

More precisely, in [13] the following Ansatz is formulated: for a class of gaussian dominated initial
data with support as described above, as p→∞ the following asymptotics holds

g̃(p)(Y, s) ∼ p(Λ(s))p
3∏
i=1

g(Yi)(H(Y) + δ(p)(Y, s)), Y = (Y1, Y2, Y3) (7)

where H is the fixed point, g(x) = e−
x2

2√
2π

is the standard Gaussian density, Λ is a strictly increasing smooth

positive function and δ(p)(Y, s) → 0 as s → ∞. (Assuming the standard gaussian is not restrictive, as
it can always be obtained by rescaling. ) The fixed point equation for H [13, 5, 3] has infinitely many
solutions that can be explicitly written down [13]. (H is in fact a plane vector, as its component along
k(0) vanishes by incompressibility.)

Assuming k(0) = (0, 0, a), with a > 0, the Ansatz (7) is proved in [13] for the fixed point H(0)(Y) =
c(Y1, Y2, 0), where c is a real constant. It turns out that the linearized map at the fixed point has
a 6-dimensional unstable subspace and a 4-dimensional neutral subspace, in addition to an infinite-
dimensional stable one. The main result of [13] can be formulated as follows. Let a > b >> 1, and
consider initial data of the form

v0(k) = v̄(k) = A

[(
k1, k2,−

k2
1 + k2

2

k3

)
+ Φ(k1, k2, k3)

] 2∏
i=1

g(ki)g(k3 − a)χb(k3 − a), (8)

where χb(k3) is smooth and such that χb(k3) = 0 if |k3| ≥ b, χb(k) = 1 if |k| ≤ b− ε, with ε small enough,
Φ = Φ(1) + Φ(2), Φ(1) is a linear combination of the unstable and neutral eigenfunctions of the linearized
map near H(0), and Φ(2) is a vector in the stable subspace. Then if Φ(2) is small enough, there are a time
interval (S− ≤ s ≤ S+) and an open set of the parameters defining Φ(1) for which the Ansatz (7) holds.

The blow-up is an easy consequence: if A = ± 1
Λ(τ) , τ ∈ (S−, S+), the series (5) diverges as s ↑ τ .

Observe that both the total enstrophy and the total energy diverge as t ↑ τ (for complex function the
energy equality holds but it is not coercive).

Coming back to real flows, it is natural to consider initial data obtained by antisymmetrizing the data
(8) associated to solutions that blow-up. Their support is now concentrated in two finite regions around
±k(0), and the convolution g(p) is a sum of terms centered around the points (0, 0, `a) with ` = −p, . . . , p,
with the main contribution coming for |`| = O(

√
p). We have again a simple mechanism which, as the

components g(p) are excited, moves the support of the solution to the high k region. It is weaker than
for the complex case, but it is rather efficient, especially if a is large.

The present paper is a brief report on the behavior of one such solution, which exhibits some features
of a “tornado”, such as a sharp increase of the absolute values of velocity and vorticity in a confined
region, but does not seem to blow up. As we argue below, this is possibly due to the axial symmetry
of the fixed point H(0). We expect however that the results of [13] on the blow-up hold also for other
fixed points H 6= H(0), which are in general not axial symmetric, and we are sure that. In absence of
theoretical results, important information can be obtained on the complex flows and their related real
flows by computer simulations, which can also reveal physically relevant details.

From the mathematical point of view one should extend the fixed point analysis to the real antisym-
metric solutions, and also extend the whole theory to other fixed points H 6= H(0).

The plan of our paper is as follows. In §2 we give some results of computer simulations, and §3 is
devoted to concluding remarks.
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2 Results of computer simulations

The initial data of the real flow are obtained by antisymmetrizing the function (8) with Φ ≡ 0 and A > 0
(the simulations show that Φ does not have much influence on the behavior of the solution):

v(0)(k) = A

(
k1, k2,−

k2
1 + k2

2

k3

)
g(k1)g(k2) [g(k3 − a)χb(k3 − a) + g(k3 + a)χb(k3 + a)] . (9)

We used a special program for solutions of the integral equation (4), created for the purpose of
following the blow-up of the complex solutions, as described in the paper [3], where solutions of (4) with
initial data of the type (8) could be followed up to times close to the critical blow-up time.

Our mesh in k-space is a regular lattice centered at the origin with step δ = 1, with maximal
configuration [−254, 254]× [−254, 254]× [−3000, 3000]. We deal with about 5 · 109 real numbers, close to
the maximal capacity of modern supercomputers.

As in the previous work [3], our aim was to follow the behavior of the total enstrophy and of its
marginal distributions in k-space, which describes the flow of energy to the microscale in physical space.
The mesh step δ = 1 allows to follow the solution for values of |k| of a few thousand. The behavior of
the total enstrophy and its marginals in k-space is stable with respect to refinements of the mesh, as it
is mainly due to the extension of the support along the k3-axis (the transversal diameter of the support
grows more slowly). On the other hand the mesh step is rough for the initial values (9), which have
a diameter of the essential support of the order of a few units, so that the large scale behavior of the
solution u(x, t) is poorly reproduced, as it happens with the axial symmetry (as it happens for the axial
symmetry in some figures below). An analysis comparing the accuracy of our program with respect to
that of finite-difference methods is under way.

We report results obtained by simulating a particular solution with initial data (9): a = 30 and A is
such that the initial energy E0 = 1

2

∫
R3 |u(x, t)|2dx = 2.5×105. The study of the behavior of the solutions

as the parameters a and A vary is under way. Recall however that the NS scaling holds: If v(k, t) is a
solution of (4) with initial data v0(k), and λ > 0 then the function v(λ)(k, t) = λ2v(λk, λ−2t) is also a
solution with initial data λ2v0(λk).

In what follows time is measured in units of τ = 1.5625× 10−8. As for the complex case [3] the large
initial data ensure a short running time, which makes simulations possible.

The first remarkable feature of the flow is that the total enstrophy S(t) =
∫
R3 |ω(x, t)|2dx, where

ω(x, t) is the vorticity field, increases sharply up to a critical time TE ≈ 711τ and then decays. The
same pattern is followed by the maximal value of the speed |u(x, t)|, except that the critical value is
TV ≈ 400τ .

254

508

500 1000 1500 2000
t

2×108

4×108

6×108

8×108

1×109

S

100 200 300 400 500 600 700
t

200

220

240

260

max
xϵR3

|u(x,t)|

Figure 1: Left side: Plot of the total enstrophy S(t) with mesh [−147, 147]2 × [−3000, 3000] (orange) and
mesh [−254, 254]2 × [−3000, 3000] (blue). Right side: Plot of the maximal velocity as a function of time.
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In Fig. 1 (left) the blue line is a more precise description of the behavior of the total enstrophy.
The orange line describes a “false blow-up” due to a spurious production of enstrophy at the boundary
corresponding to the extremal values k1, k2 = ±147 of the narrow mesh.

Fig. 2 below describes the evolution in time of the marginal densities of the enstrophy along
the third axis: in k-space (left) S3(k3, t) =

∫
R2 |k|2|v(k, t)|2dk1dk2 (left), and in x-space S̃3(x3, t) =∫

R2 |ω(x, t)(x, t)|2dx1dx2.

-300 -200 -100 0 100 200 300

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

-0.4 -0.2 0.0 0.2 0.4

1×109

2×109

3×109

4×109

5×109

6×109

Figure 2: Plots of the marginal distributions S3(k3, t) (left) and S̃3(x3, t) (right) at the times t = 0 (blue),
t = 400τ ≈ TV (red), and t = 711τ ≈ TM (green).

On the left side of Fig.2 one can see how the support of the solution moves into the high |k|-region.
As predicted by the theory, as time grows the peaks of the figure on the left tend to be close to the values
k3 ≈ ja, with j = ±1,±2, . . . (green line), a modulated periodicity corresponding in the figure on the
right to the peaks of the green line at x3 = ±x̄3 with x̄3 ≈ π

a .

The evolution of S̃3(x3, t) as illustrated by Fig. 2 also shows that the vorticity is concentrated in the
neighborhood of symmetric pairs of planes orthogonal to the x3-axis. This is also true for the large values
of the velocity field u(x, t), as shown by the following Fig. 3, where we report the absolute value of the
velocity field on the plane x3 = 0.08, corresponding to the right red peak on S̃3(x3, 400) of Fig. 2.

Figure 3: The absolute value velocity field |u(x, t)| on the plane x3 = 0.03 at the time t = 400τ . The red
color indicates the highest values.

Much interest has been devoted in recent times to the behavior of the angle between the velocity
u(x, t) and the vorticity ω(x, t) = ∇×u(x, t) [1, 7]. In our case the average cosine of the angle, weighted
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with the local energy |u(x,t)|2
2 , is zero at the initial time (orthogonality) and increases up to the time

TE , when it reaches a value close to 0.45. The solution could not be followed after time TE with enough
accuracy (as it appears, it begins to decrease), so that we have no hint on whether “beltramization” [7]
is taking place.

3 Concluding remarks

As shown by Figg. 1, 2, 3, up to the critical time TV ≈ 400τ the maximal velocity has a significant
increase, and the vorticity also grows and undergoes a sharp concentration in two “doughnuts” around
the x3-axis, bisected by the planes x3 ≈ ±0.8. The velocities are also maximal in the “doughnuts”, while
elsewhere the fluid stays quiet. The total enstrophy increases up to the critical time TM ≈ 711τ , while
the maximal velocity decreases, and the sharp concentration persists, although the “doughnuts” undergo
some deformation.

The description is strongly remindful of tornadoes and hurricanes, except perhaps that in our case
there is no rotation around the x3-axis. In fact the solution with initial data (9) is axial-symmetric
with no swirl, although the axial symmetry is partially lost in Fig. 3 due to computation errors, as we
explained above.

Concerning the global regularity problem, it is well-known that regularity for all times holds for
axial symmetric solutions with no swirl and for solutions close to them [10]. As the fixed point H(0) is
axial symmetric, the possible violations of symmetry and/or the initial swirl which can be introduced by
inserting in the initial data (9) the function Φ in (8) would not produce a singularity. As we said above,
it is more promising to look at the real flows associated, again by antisymmetrization, to initial data
related to fixed points H 6= H(0) which are not axial symmetric. This will be the object of further work.

Acknowledgements. The computer simulations were performed at the Marconi Supercomputer of
CINECA (Bologna, Italy), within the framework of a European PRACE Project n. 2015133169, and also
of CINECA ISCRA Projects of type B and C.
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