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We address the issue of the discrimination between two-qubit amplitude damping chan-
nels by exploring several strategies. For the single-shot, we show that the excited state does
not always give the optimal input, and that side entanglement assistance has limited ben-
efit. On the contrary, feedback assistance from the environment is more beneficial. For the
two-shot, we prove the in-utility of entangled inputs. Then focusing on individual (local)
measurements, we find the optimal adaptive strategy.

I. INTRODUCTION

A quantum channel is a linear stochastic (precisely a linear, completely positive and trace-
preserving) map on the set of density operators [1]. As such, it can describe any physical process.
It is often essential to distinguish between two (or even more) physical processes. Hence the issue
of quantum channel discrimination becomes pervasive well beyond the boundary of information
theory [2–6]. Quite generally, channel discrimination is a challenging task [7–10]. In fact, although
it can be traced back to the (somehow old problem of) states discrimination [11, 12], it involves
a double optimization: on the output measurement and the input state. Recently, bounds on the
error probability were found for general strategies [13, 14].

Among quantum channels, the amplitude damping plays a prominent role as it describes the
energy loss of a system, which is the most common effect occurring in an open system. As a mat-
ter of fact, this channel is often invoked as an example when dealing with discrimination (see e.g.
[13, 14]). However, a systematic and thorough study of amplitude damping channel discrimina-
tion starting from dimension two is still lacking. Here we address this issue and unveil several
unexpected results. For one-shot discrimination, the optimal input state turns out to not always
be the excited state. Furthermore, side entanglement has a limited benefit because of a limited pa-
rameter region where it brings improvement and the smallness of such improvement. In contrast,
feedback assistance from the environment results more beneficial. By such feedback, we mean
the possibility to access the environment, measure it and then use this (classical) information to
adjust the state of (or the measurement process in) the main system according to the desired goal
[15]. Additionally, we prove that entangled inputs are not useful for two-shot, although collective
measurement can give the minimum error probability. Then, restricting the attention to individ-
ual measurements, we find the optimal adaptive strategy (useful for a complete LOCC strategy
[16]).

The paper is organized in two main Sections. Sec.II is devoted to one-shot discrimination. In
Subsec.II A the optimal input is found. In Subsec.II B side entanglement is considered. Feedback
assistance model is presented in Subsec.II C. Then, Sec.III is devoted to two-shot discrimination.
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In Subsec.III A the optimal input is found when also collective measurements are allowed. The
optimal adaptive strategy for individual measurements is devised in Subsec.III B. Finally, in Sec.IV
conclusions are drawn.

II. ONE-SHOT DISCRIMINATION

It is customary to consider the amplitude damping channel as coming from the unitary inter-
action of the system with the environment generated by

H = η
(
a†b+ ab†

)
, (1)

where a, a† (res. b, b†) are the ladder operators of the system (resp. environment).
For a qubit system and qubit environment, in the computational basis {|00〉, |01〉, |10〉, |11〉}we

have

H =


0 0 0 0
0 0 η 0
0 η 0 0
0 0 0 0

 , (2)

and then the corresponding unitary U = e−iH reads

U =


1 0 0 0
0 cos η −i sin η 0
0 −i sin η cos η 0
0 0 0 1

 . (3)

The map on the system’s states can be written as

N (ρ) = K0ρK
†
0 +K1ρK

†
1, (4)

where the Kraus operators are given by

K0 = 〈0|U |0〉 =

(
1 0
0 cos η

)
, (5)

K1 = 〈1|U |0〉 =

(
0 −i sin η
0 0

)
, (6)

with the bra-ket taken on the environment. The quantity sin2 η represents the decay probability
(η ∈ [0, π2 ]).

A. Optimal input

Let us analyze the distinguishability of two amplitude damping channels characterized by
parameters η0 and η1. By referring to Fig.1, we assume that each one acts with probability P0 =
P1 = 1/2 on an input state

|ψ〉 =
√

1− x |0〉+ e−iϕ
√
x |1〉 , (7)

where x ∈ [0, 1] and ϕ ∈ [0, 2π). Without loss of generality, we take η0 > η1. We can also set ϕ = 0,
because of the symmetric action of N with respect to the z axis in the Bloch sphere.
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Figure 1: Schematic representation of the channel discrimination through unitary dilation. One has to
determine whether Uη0 or Uη1 acted by controlling only the main system (top line).

According to (3), we obtain

Uηi |ψ〉 |0〉 =
√

1− x |00〉+
√
x (−i sin ηi |01〉+ cos ηi |10〉) , i = 0, 1. (8)

Consequently, the output state of the channel reads

ρi =
(
1− x+ x sin2 ηi

)
|0〉 〈0|+

√
x(1− x) cos ηi |0〉 〈1|

+
√
x(1− x) cos ηi |1〉 〈0|+ x cos2 ηi |1〉 〈1| , i = 0, 1. (9)

So the problem of channel discrimination is now translated into the discrimination between two
mixed states, ρ0 and ρ1, each occurring with probability 1/2. To this end, it is known that the
optimal measurement is given by the projection on the positive and negative subspaces of ρ0 −
ρ1 [1] (also known as Helstrom measurement [11]). Denoting by |v0〉 and |v1〉 its (normalized)
eigenvectors corresponding respectively to positive and negative eigenvalues, we can evaluate

P0(0) ≡ 〈v0|ρ0|v0〉, (10a)
P1(1) ≡ 〈v1|ρ1|v1〉. (10b)

Then, the probability of success in discriminating between ρ0 and ρ1, each occurring with proba-
bility 1/2, is given by

Psucc =
1

2
P0(0) +

1

2
P1(1). (11)

This turns also out to be [1]

Psucc =
1

2

(
1 +

1

2
‖ρ0 − ρ1‖1

)
, (12)

where ‖T‖1 ≡ Tr
√
T †T .

Inserting (10) into (11) (or equivalently using (9) into (12)), yields explicitly

Psucc =
1

2

{
1 + (cos η1 − cos η0)

√
x [1− x(1− γ2)]

}
, (13)

where

γ ≡ γ(η0, η1) ≡ cos η1 + cos η0. (14)

Maximizing (13) over x (taking into account that 0 ≤ x ≤ 1) we get

Psucc =
1

4

(
2 +

cos η1 − cos η0√
1− γ2

)
, γ <

1√
2
, (15a)

Psucc =
1

2

(
sin2 η0 + cos2 η1

)
, γ ≥ 1√

2
. (15b)
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Note that the optimal value of x results

x =
1

2(1− γ2)
, for γ <

1√
2
, (16a)

x = 1, for γ ≥ 1√
2
. (16b)

This means, interestingly, that the optimal input state is not always the excited state |1〉 as one
would expect (just because it is commonly considered as the most sensitive state to the damping
action). The result can be better understood by looking at Fig.2. There we show the separation
between ρ0, for η0 = 0 (i.e., ρ0 = |0〉 〈0|) and ρ1 in Eq.(9), for different values of η1. One can clearly
see that once η1 becomes bigger than π/4 (hence γ becomes smaller than 1√

2
), the farthest point

from the origin is no longer on the vertical axes (see curve corresponding to η = π/3).

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

Figure 2: Pictorial representation of the amplitude damping effect. Points along the curves have polar
coordinates ‖ |0〉 〈0| − ρ1(θ)‖1 and θ, where θ ≡ arcsin

√
x. Different curves corresponds to different values

of η1 (from outer to inner curve η1 = 0, π/6 and π/3). The point at the intersection of the vertical axes and
each curve above the origin corresponds to the state ρ1 = N (|1〉〈1|).

B. Side entanglement

Consider the usage of side entanglement according to the model of Fig.3.

2cm
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Figure 3: Model for channel discrimination exploiting entanglement between the input system and an
accessible reference system.

Let |Ψ〉 =
√

1− y |01〉 +
√
y |10〉 be an entangled state between the reference system and the

channel’s input. Then, we have to distinguish between the following two states at the measure-
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ment stage:

TrE

{
(I ⊗ Uηi) |Ψ〉 |0〉 〈0| 〈Ψ| (I ⊗ Uηi)

†
}

= cos2 ηi(1− y)|01〉〈01|+ y|10〉〈10|

+
√
y(1− y) cos ηi (|01〉〈10|+ |10〉〈01|)

+ (1− y) sin2 ηi|00〉〈00|, i = 0, 1, (17)

where the unitaries are as in (3).
The success probability (12) for the states in (17) leads to

Psucc(η0, η1, y) = (cos η1 − cos η0)
{

(1− y)γ +
√

(1− y) [4y + (1− y)γ2]
}
. (18)

Then, in Fig.4 we show Psucc(η0, η1, y
∗), where

y∗(η0, η1) := argmaxy Psucc(η0, η1, y)= max

{
0,
γ − 1

γ − 2

}
. (19)

This latter quantity gives the optimal amount of entanglement and is shown in Fig.5.

Figure 4: Maximum probability of success P (η0, η1, y
∗) vs η0 and η1.
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Figure 5: Optimal value y∗ (Eq.(19)) vs η0 and η1. The white line corresponds to γ−1
γ−2 = 0.
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In Fig.6 we report the difference Psucc(η0, η1, y
∗) − Psucc(η0, η1, 0). It shows that the improve-

ment due to the side entanglement is relatively tiny. Moreover, it does not occur in all parameters’
region. It is worth reminding that in other channels, like depolarizing channels, the effective-
ness of side entanglement shows up for values of parameters making the channels entanglement-
breaking [9]. Here, we have amplitude damping channel that is never entanglement-breaking,
except for ηi = π/2. Nevertheless, the region with nonzero values in Fig.6 is close to this border.
It is also interesting to note from Fig.5 that a small amount of entanglement is more effective than
the maximal (y never reaches the value 1/2).

Finally, we note that according to the discussion at the end of SubSec.II A, the component |10〉
of |Ψ〉 (inputting no excitation to the channel) only plays a role when approaching the region
γ < 1/

√
2. Then, the more we move towards the corner where η0 = η1 = π/2, the more the weight

of the two components of |Ψ〉 become balanced.

0

0.01

0.02

0.03

0.04

Figure 6: Difference between success probability computed at optimal y and y = 0 (Eq.(18)) vs η0 and η1.

C. The use of feedback

Let us now move on to a discrimination strategy using feedback as illustrated in Fig.7. It
presumes the possibility to locally access the environment [15].

2cm|ψ〉
Uη

|0〉

Figure 7: Channel discrimination with feedback. A first measurement is performed on the environment
(bottom line), and then according to its outcome, a second measurement is performed on the system (top
line). Here and in the following figures, double lines represent classical information.

We perform on the environment a measurement in the basis {|α+〉 , |α−〉}, where

|α+〉 = cosα |0〉+ sinα |1〉 , (20a)
|α−〉 = − sinα |0〉+ cosα |1〉 , (20b)
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are two orthogonal states in the plane x− z with α ∈ [0, π/2] to be determined.
Then, depending on the environment’s measurement result, we choose a proper observable

for the system. In this way, the feedback actuation has to be intended as the measurement on the
main system performed conditioned to the environment’s measurement outcome.

We can hence distinguish between the following possibilities:

• Environment outcome +1 (eigenvalue corresponding to |α+〉). This happens with probabil-
ity:

P (+1) =
1

2
Tr
(
〈α+|Uη0 |ψ〉 |0〉 〈0| 〈ψ|U †η0 |α

+〉
)

+
1

2
Tr
(
〈α+|Uη1 |ψ〉 |0〉 〈0| 〈ψ|U †η1 |α

+〉
)
, (21)

and the resulting state on the system is

|ϕ+
0 〉 =

1

N+
0

〈α+|
(
Uη0 |ψ〉 |0〉

)
, (22)

or

|ϕ+
1 〉 =

1

N+
1

〈α+|
(
Uη1 |ψ〉 |0〉

)
, (23)

depending on which unitary has acted. Here, 1/N+
i , i = 0, 1 are normalization factors.

It is then optimal to measure the observable |ϕ+
0 〉 〈ϕ

+
0 | − |ϕ

+
1 〉 〈ϕ

+
1 | on the main system to

discriminate between (22) and (23) [1]. This can be done, following (12), with probability[25]
1
2

(
1 +

√
1− | 〈ϕ+

0 |ϕ
+
1 〉 |2

)
. Thus, the probability of success when environment outcome is

+1, reads:

P (+)
succ = P (+1)× 1

2

(
1 +

√
1− | 〈ϕ+

0 |ϕ
+
1 〉 |2

)
. (24)

• Environment outcome -1 (eigenvalue corresponds to |α−〉). This happens with probability:

P (−1) =
1

2
Tr
(
〈α−|Uη0 |ψ〉 |0〉 〈0| 〈ψ|U †η0 |α

−〉
)

+
1

2
Tr
(
〈α−|Uη1 |ψ〉 |0〉 〈0| 〈ψ|U †η1 |α

−〉
)
, (25)

and the resulting state on the system is

|ϕ−0 〉 =
1

N−0
〈α−|

(
Uη0 |ψ〉 |0〉

)
, (26)

or

|ϕ−1 〉 =
1

N−1
〈α−|

(
Uη1 |ψ〉 |0〉

)
, (27)

depending on the acted unitary. Here 1/N−i , i = 0, 1 are normalization factors. It is then
optimal to measure the observable |ϕ−0 〉 〈ϕ

−
0 |−|ϕ

−
1 〉 〈ϕ

−
1 | on the main system to discriminate

between (26) and (27). Thus, the probability of success when environment outcome is −1,
reads:

P (−)
succ = P (−1)× 1

2

(
1 +

√
1− | 〈ϕ−0 |ϕ

−
1 〉 |2

)
. (28)
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Finally, putting (24) and (28) together we get the overall probability of success as

Psucc = P (+)
succ + P (−)

succ

=
χ

2

1 + sinα sin

(
η0 − η1

2

)√
x (µ+ ν)

c1c2


+

1− χ
2

[
1 + cosα sin

(
η0 − η1

2

)√
x (µ− ν)

(1− c1)(1− c2)

]
, (29)

where

χ ≡ 1

2
− 1

2
cos(2α)

[
1− x

(
sin2 η0 + sin2 η1

)]
, (30a)

µ ≡ [1 + (2x− 1) cos η0 cos η1 + sin η0 sin η1] , (30b)
ν ≡ cos(2α) [(2x− 1) + cos η0 cos η1 + (2x− 1) sin η0 sin η1] , (30c)

ci ≡
1

2
− 1

2
cos(2α)

[
1− 2x sin2 ηi

]
, i = 0, 1. (30d)

Analyzing Eq.(29), we found the maximum success probability as

Psucc =
1 + sin(η0 − η1)

2
, (31)

attained when x = 1 and α = π
4 . Provided that η0 6= η1 and η0 6= π

2 − η1, we have the probability
of success with feedback greater than without feedback as shown in Fig.8.

Figure 8: Difference between the maximum probability of success with feedback (31) and without feedback
(15) vs η0 and η1. The white line corresponds to γ = 1/

√
2 (see (14)).

We note that the best measurement on the environment is on the basis |±〉 ≡ (|0〉 ± |1〉)/
√

2
and the best input state is always |1〉 in contrast to what happened in the absence of feedback. In
Fig.8 it is also visible a slight asymmetry of the behavior between the regions η1 < π/2 − η0 and
η1 > π/2 − η0. We suspect that this is due to the fact that projection on the environment helps
in creating states on the main system that are better distinguishable, provided that system and
environment are enough entangled prior the measurement. For big η’s they are not, hence the
process is less effective.

Finally, it is worth mentioning a similarity of this problem with the discrimination of unitary
dilations of the amplitude damping channel using local measurements (analogous similarity was
pointed out in Ref.[17] for channel estimation).
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III. TWO-SHOT DISCRIMINATION

In this section, we shall consider the discrimination assuming to have two copies of the channel
characterized either by parameter η0 or by parameter η1 (with again equal probability 1/2).

A. Optimal input

Let us first consider the possibility of using entangled inputs. Since for a single shot the optimal
input state lies in the x−z plane, we construct entangled input states as a linear combination of 2-
fold tensor product of these states with real coefficients. This amounts to consider the two inputs
state as

√
1− x|01〉+

√
x|10〉, (32)

or
√

1− x|00〉+
√
x|11〉, (33)

with x ∈ [0, 1].
According to the 2-fold action of (4), in case of (32) we will get the output states as

ρ
(2)
i = sin2 ηi|00〉〈00|+ (1− x) cos2 ηi|01〉〈01|+ x cos2 ηi|10〉〈10|

+
√
x(1− x) cos2 ηi (|01〉〈10|+ |10〉〈01|) , i = 0, 1. (34)

While in case of (33) as

ρ
(2)
i =

(
(1− x) + x sin4 ηi

)
η|00〉〈00|+ x sin2 ηi cos2 ηi (|01〉〈01|+ |10〉〈10|) + x cos4 ηi|11〉〈11|

+
√
x(1− x) cos2 ηi (|00〉〈11|+ |11〉〈00|) , i = 0, 1. (35)

Using (12) with the states (34) gives

Psucc =
1

2

(
1 + sin2 η0 − sin2 η1

)
, (36)

which is independent of x. On the other hand, using (12) with the states (35) gives

Psucc =
1

2

{
1 +

x

4

∣∣cos2(2η0)− cos2(2η1)
∣∣+

√
x

2
|cos(2η0)− cos(2η1)|

}
, (37)

which attains its maximum for x = 1. Therefore, we can conclude that entanglement across the
two inputs is useless. Then, we consider as input the 2-fold tensor product of (7) and optimize
over x. In other words, we consider

Psucc = max
x

1

2

(
1 +

1

2

∥∥∥ρ0 ⊗ ρ0 − ρ1 ⊗ ρ1

∥∥∥
1

)
, (38)

where ρis are given by (9).
The difference between this optimized success probability and (15) is shown in Fig.9.
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Figure 9: Difference between the maximum probability of success (38) and (15) vs η0 and η1.

The optimal value x∗ of x for (38) as function of η0 and η1 is reported in Fig.10. Note that
the region where the x∗ value is smaller than one is shrunk with respect to the single-shot case
(γ < 1/2). Although the exact boundary cannot be expressed analytically, we found numerically
that

γ(η0, η1) <
1

2
⇒ x < 1, (39)

where γ(η0, η1) is given by (14). It is worth remarking that for x∗ = 1 the optimal observable ρ0−ρ1

constructed with (34) turns out to be local (its normalized eigenvectors are |00〉, |01〉, |10〉, |11〉),
while for x∗ < 1 results nonlocal (its normalized eigenvectors are entangled).

0.5

0.6

0.7

0.8

0.9

1.0

Figure 10: Optimal value x∗ of x for (38) vs η0 and η1. The white line represents the boundary γ = 1/
√

2
for the single-shot case.
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B. Adaptive strategy

In the previous subsection, although getting rid of entangled inputs, we saw the necessity of
using collective measurement in some parts of the parameters’ region. What happens if we restrict
to individual measurements to have a completely local strategy (analogously to [16])? We expect
an improvement with respect to the one shot-case, but this relies on using an adaptive strategy,
which can generally be depicted as in Fig.11.

0.2cm

trash
0.2cm

trash

|ψ〉
Uη

|0〉

|ψ〉
Uη

|0〉

Figure 11: Schematic representation of channel discrimination through a local adaptive strategy. The
measurement outcome on the first copy determines the measurement to be performed on the second copy.

At the output of the two channel copies, we have

1

2
ρ⊗2

0 +
1

2
ρ⊗2

1 , (40)

with ρi given by (9).
On the first copy we use the POVM whose elements are |v0〉〈v0| and |v1〉〈v1|, with |v0〉 and

|v1〉 the (normalized) eigenvectors of the observable ρ0 − ρ1. On the second copy, we choose a
POVM depending on the previous copy’s measurement outcome, i.e., Πx1

x2 , xi ∈ {0, 1}, where
the subscript denotes the element of the POVM, while the superscript the dependence from the
previous measurement outcome. We define

Pj(x2|x1) ≡ Tr
[
ρjΠ

x1
x2

]
. (41)

Then the success probability will be given by

Psucc =
1

2
[P0(0|0)〈v0|ρ0|v0〉+ P0(0|1) (1− 〈v0|ρ0|v0〉)]

+
1

2
[P1(1|1)〈v1|ρ1|v1〉+ P1(1|0) (1− 〈v1|ρ1|v1〉)] . (42)

Eq.(42) should be maximized overall POVMs Πx1
x2 . Actually, the first and fourth terms can be

maximized overall Π0
0 being Π0

1 = I − Π0
0, while the second and third terms can be maximized

overall Π1
1 being Π1

0 = I −Π1
1.

So we can independently perform the following maximizations (for fixed input x):

max
Π0

0:0≤Π0
0≤I

1

2

{
Tr
[
ρ0Π0

0

]
〈v0|ρ0|v0〉+ Tr

[
ρ1(I −Π0

0)
]

(1− 〈v1|ρ1|v1〉)
}
, (43)

and

max
Π1

1:0≤Π1
1≤I

1

2

{
Tr
[
ρ0(I −Π1

1)
]

(1− 〈v0|ρ0|v0〉) + Tr
[
ρ1Π1

1

]
〈v1|ρ1|v1〉

}
. (44)
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Let us consider the problem of Eq.(43). Defining p0 := 〈v0|ρ0|v0〉 and q0 := 〈v0|ρ1|v0〉we can recast
it into the following form

p0 + q0

2
max

Π0
0:0≤Π0

0≤I

{
p0

p0 + q0
Tr
[
ρ0Π0

0

]
+

q0

p0 + q0
Tr
[
ρ1(I −Π0

0)
]}

, (45)

which coincides with the optimal discrimination of ρ0 and ρ1, this time appearing with prob-
abilities p0

p0+q0
and q0

p0+q0
respectively. Hence, it can be solved by again resorting to Helstrom

measurement. In other words, Π0
0 and I − Π0

0 can be constructed as projectors onto positive and
negative subspaces of the operator p0

p0+q0
ρ0 − q0

p0+q0
ρ1.

With Eq.(44) one can proceed similarly by defining p1 := 〈v1|ρ1|v1〉 and q1 := 〈v1|ρ0|v1〉. There-
fore, Π1

1 and I − Π1
1 will be constructed as projectors onto positive and negative subspaces of

the operator q1
p1+q1

ρ0 − p1
p1+q1

ρ1. Ultimately, we can get the success probability as the function
Psucc(η0, η1, x) given by

Psucc =
p0 + q0

2

1

2

{
1 +

∥∥∥∥ p0

p0 + q0
ρ0 −

q0

p0 + q0
ρ1

∥∥∥∥
1

}
+
p1 + q1

2

1

2

{
1 +

∥∥∥∥ q1

p1 + q1
ρ0 −

p1

p1 + q1
ρ1

∥∥∥∥
1

}
. (46)

To evaluate the performance of the adaptive strategy, we compare this probability, maximized
over x, with the optimal success probability for two-shot (38). Fig.12 shows the difference between
the latter and the former. As we expected, such a difference is nonzero only in the region of
Fig.10 where x∗ < 1, however it is very tiny. This shows that the devised local adaptive strategy
performs almost like the strategy involving collective measurement.

0

0.002

0.004

0.006

0.008

0.010

Figure 12: Difference between the maximum probability of success using collective measurement (Eq.(38))
and that using the adaptive strategy (Eq.(46) maximized over x) vs η0 and η1 in the region γ < 1/

√
2.

Furthermore, Fig.13 shows the difference between the maximum probability of success using the
adaptive strategy and that of a single-shot. Note that the range of values in Fig.13 is one order of
magnitude bigger than Fig.12. As a consequence Fig.13 faithfully follows Fig.9.
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Figure 13: Difference between the maximum probability of success using the adaptive strategy (Eq.(46)
maximized over x) and that of a single shot (Eq.(15)) vs η0 and η1.

We close this SubSection saying that the strategy we pursued was based on Bayesian updating
using forward optimization, much like Ref.[18]. However in Ref.[19] it was shown that backward
optimization can give better performance in case mixed states have to be discriminated. In the
present case the latter seems not much effective. Anyway, a comparison of the two methods is
provided in Appendix A.

C. Adaptive strategy with feedback

We now develop an adaptive strategy that includes the feedback from the environment, as
illustrated in Fig.14.

0.2cm

0.2cm

|ψ〉
Uη

|0〉

|ψ〉
Uη

|0〉

Figure 14: Schematic representation of channel discrimination through a local adaptive strategy including
feedback. On each step the measurement to be performed on the main system is determined by the mea-
surement outcome of the environment on that step, together with the measurement outcome of the main
system at the previous step.

On the first copy of the unitary, we proceed like in Subsection II C, defining a POVM Πe1
x1 whose

elements are

Πe1
x1=0 = |ve10 〉〈v

e1
0 |, (47)

Πe1
x1=1 = |ve11 〉〈v

e1
1 |, (48)
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where |ve10 〉 and |ve11 〉 are (normalized) eigenvectors of ϕe10 − ϕe11 . Here ϕe1j ≡ |ϕ
e1
j 〉〈ϕ

e1
j | with

j = 0, 1 and e1 = ±. Note that following the conclusions of Subsection II C, we are considering
the input |ψ〉 as |1〉 and the measurement on the environment on the basis |±〉, so that

|ϕ±0 〉 = ∓i sin η0|0〉+ cos η0|1〉, (49a)
|ϕ±1 〉 = ∓i sin η1|0〉+ cos η1|1〉. (49b)

As a consequence, at the output of the main system, we have to distinguish between pure states
(differently to what happened in the previous Subsection). We then define the probability

P e2j (x2|x1, e2) ≡ Tr
[
ϕe2j Πx1, e2

x2

]
, (50)

where Πx1, e2
x2 indicates the POVM elements characterized by xi ∈ {0, 1} and e2 = ±.

In terms of it, we can express the success probability as

Psucc =
∑

e1,e2=±

1

8

[
P e20 (0|0, e2)〈ve10 |ϕ

e1
0 |v

e1
0 〉+ P e20 (0|1, e2) (1− 〈ve10 |ϕ

e1
0 |v

e1
0 〉)

+ P e21 (1|1, e2)〈ve11 |ϕ
e1
1 |v

e1
1 〉+ P e21 (1|0, e2) (1− 〈ve11 |ϕ

e1
1 |v

e1
1 〉)

]
, (51)

where the factor 1
8 in front of the square brackets arises from the probability 1

2 of having Uηi ⊗Uηi ,
the probability 1

2 for e1 to take one of the two values, and the probability 1
2 for e2 to take one of

the two values. Now for each value of e1 and e2 we can separately maximize the terms

max
Π

0, e2
0 :0≤Π

0, e2
0 ≤I

1

8

{
Tr
[
ϕe20 Π0, e2

0

]
〈ve10 |ϕ

e1
0 |v

e1
0 〉+ Tr

[
ϕe20

(
I −Π0, e2

0

)]
(1− 〈ve11 |ϕ

e1
1 |v

e1
1 〉)

}
, (52)

and

max
Π

1, e2
1 :0≤Π

1, e2
1 ≤I

1

8

{
Tr
[
ϕe20

(
I −Π1, e2

1

)]
〈ve10 |ϕ

e1
0 |v

e1
0 〉+ Tr

[
ϕe20 Π1, e2

1

]
(1− 〈ve11 |ϕ

e1
1 |v

e1
1 〉)

}
, (53)

following the same reasoning of SubSec.III B.
Ultimately, we arrive at

Psucc =
1

2

[
1 + sin (η0 − η1)

√
1 + cos2(η0 − η1)

]
. (54)

The improvement with respect to the single-shot with feedback (Eq.(31)) is shown in Fig.15. We
can see that it is positive in all parameters’ region (but η1 = η0 and η0 = π

2 , η1 = 0) and is
maximum for η1 = η0 − π

4 .

Figure 15: Difference between the probabilities of success (54) and (31) vs η0 and η1.



15

IV. CONCLUDING REMARKS

We have addressed the issue of discriminating between two-qubit amplitude damping chan-
nels by considering single and double-shot. For the one-shot, we showed that the excited state as
input is not always optimal, and the side entanglement assistance has a limited benefit. In con-
trast, feedback assistance from the environment is highly beneficial. About feedback, we suspect
that it will be even more effective in case of discrimination of random unitary channels, where
the information recovered from the environment neutralizes the channel action (taking it back to
identity map).

For the two-shot, we proved the in-utility of entangled inputs. Then, focusing on individ-
ual (local) measurements, we found the optimal adaptive strategy. We are confident that this
strategy can be extended in a Markovian way to n-shot, and the asymptotic analysis of its perfor-
mance would be foreseeable, eventually by employing techniques like dynamical programming
or reinforcement learning [21, 22]. Similarly, the adaptive strategy is applied to environment feed-
back assisted discrimination showing a smaller improvement than the case without feedback (cfr.
Figs.13 and 15). This is because feedback has provided a big enhancement already on the first
shot.

It is worth remarking that having two copies of the channel one could have used them in se-
quence, not in parallel as done in Sec.III. In such a case one is led to distinguish between N (ρ0)
and N (ρ1) (where ρis are given in (9)), each occurring with probability 1

2 . Simple calculations
show that this latter strategy cannot be better than the parallel one. For example, without feed-
back, its success probability equals (46) in the region η1 < η0 and η1 <

π
2 − η0, while it results

strictly smaller than (46) in the region η1 < η0 and η1 >
π
2 − η0.

In the future, it is worth extending the performed analysis to d-dimensional amplitude damp-
ing channels, also with restrictions on the set of input states (e.g., energy restriction). After all,
investigating amplitude damping channel discrimination in discrete systems can also provide
new insights for distinguishing continuous variable lossy channels [20], although this is often
traced back to the distinguishability of coherent states (for this latter subject see e.g. [22–24]).

Appendix A: Optimal POVMs for local adaptive strategy

Suppose that instead of projecting onto |v0〉 and |v1〉 on the first copy we realize a measurement
by a POVM {M, I −M}. Then (42) will become

Psucc =
1

2

{
Tr
[
ρ0Π0

0

]
Tr [ρ0M ] + Tr

[
ρ0

(
I −Π1

1

)]
Tr [ρ0 (I −M)]

+Tr
[
ρ1Π1

1

]
Tr [ρ1 (I −M)] + Tr

[
ρ1

(
I −Π0

0

)]
Tr [ρ1M ]

}
. (A1)

Defining

r0 ≡ Tr [ρ0M ] , s0 ≡ Tr [ρ1M ] , (A2)
r1 ≡ 1− s0, s1 = 1− r0, (A3)

equation (A1) can be rewritten as

Psucc =
r0 + s0

2

{
r0

r0 + s0
Tr
[
ρ0Π0

0

]
+

s0

r0 + s0
Tr
[
ρ1

(
I −Π0

0

)]}
+
r1 + s1

2

{
s1

r1 + s1
Tr
[
ρ0

(
I −Π1

1

)]
+

r1

r1 + s1
Tr
[
ρ1Π1

1

]}
. (A4)



16

Let us now impose that the measurement on the second copy is of the Helstrom kind. Thus Π0
0

and (I −Π0
0) are projectors onto the positive and negative eigenspaces of

r0

r0 + s0
ρ0 −

s0

r0 + s0
ρ1. (A5)

Analogously Π1
1 and (I −Π1

1) are projectors onto the positive and negative eigenspaces of

r1

r1 + s1
ρ0 −

s1

r1 + s1
ρ1. (A6)

As such all the quantities appearing in Eq.(A4) will depend upon M (for a fixed x). Then, maxi-
mizing Psucc over M , such that 0 ≤M ≤ I , realizes the backward optimization.

In such a way we can get the success probability P
(←)
succ(η0, η1, x). We also denote by

P
(→)
succ(η0, η1, x) the quantity (46). Then, in Fig.16, we show the difference

max
x

P (→)
succ(η0, η1, x)−max

x
P (←)
succ(η0, η1, x). (A7)

We may note that when the backward optimization performs better, it only gives a tiny improve-
ment (of the order of 10−3) to the success probability.

0

0.0025

0.0050

0.0075

0.0100

Figure 16: Difference (A7) between forward and backward optimized success probabilities vs η0 and η1. The
white line represents 0. Only the region where P (→)

succ(η0, η1, x) differs form (38) is shown.
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