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Abstract: Marine microorganisms have been demonstrated to be an important source for bioactive
molecules. In this paper we report the synthesis of Ni nanoparticles (NiSNPs) used as reducing and
capping agents for five bacterial strains isolated from an Antarctic marine consortium: Marinomonas
sp. ef1, Rhodococcus sp. ef1, Pseudomonas sp. ef1, Brevundimonas sp. ef1, and Bacillus sp. ef1. The
NiSNPs were characterized by Ultraviolet–visible (UV–vis) spectroscopy, Dynamic Light Scattering
(DLS), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and Fourier Transform
Infrared (FTIR) spectroscopic analysis. The maximum absorbances in the UV–Vis spectra were in
the range of 374 nm to 422 nm, corresponding to the Surface plasmon resonance (SPR) of Nickel.
DLS revealed NiSNPs with sizes between 40 and 45 nm. All NiSNPs were polycrystalline with a
face-centered cubic lattice, as revealed by XRD analyses. The NiSNPs zeta potential values were
highly negative. TEM analysis showed that the NiSNPs were either spherical or rod shaped, well
segregated, and with a size between 20 and 50 nm. The FTIR spectra revealed peaks of amino acid
and protein binding to the NiSNPs. Finally, all the NiSNPs possess significant antimicrobial activity,
which may play an important role in the management of infectious diseases affecting human health.

Keywords: nanomaterials; green synthesis; Antarctic bacteria; antimicrobial activity; nosocomial
pathogens

1. Introduction

Antarctic marine bacteria represent an invaluable source of novel bioactive molecules
that can be exploited in several biotechnological applications, including pharmaceutics [1].
Nanotechnology is gaining importance as a discipline for innovative materials and applica-
tions. Nanoparticles (hereafter called NPs) are becoming the fundamental building blocks
of nanotechnology. NPs are materials between 1 and 100 nm in diameter. Their small
dimensions and high surface area-to-volume ratio enable them to display novel chemical
and physical properties. Special interest has been devoted to metal NPs, which are being
widely used as industrial catalysts, in chemical sensing devices, in medical applications, in
cosmetics, and as microelectronics [2–6].

Nickel NPs (NiSNPs) can be used as an electrode layer in multilayer ceramic capaci-
tors (MLCC) [7] and as an interlayer for brazing stainless steel at lower temperatures [8].
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Recently, NiSNPs have been synthesized through many routes such as polyol [9,10], sono-
chemical [11], thermal decomposition [12], and microemulsion [13]. However, physico-
chemical synthetic protocols take a long time and result in a wider size range due to the
thermal gradients. Furthermore, physico-chemical approaches are expensive and may
produce toxic waste that needs to be treated before being discharged into the environment.

To counteract these problems, there is an urgent need to find inexpensive and envi-
ronmentally friendly nanomaterial synthesis protocols. In this regard, the green synthesis
of metallic NPs offers an attractive and inexpensive alternative to conventional physical
and chemical methods [14]. The choice of green sources for solvent, reducing agent, and
stabilizing/capping agent are three main criteria which should be handled with care in
the green synthesis approach. Over the past decade, the use of water as a solvent has
been prevalent, although, in some studies, other solvents such as ethanol and methanol
have been used [15]. Two distinct biogenic sources with the potential to be applied as
bioreducing agents in the green synthesis of NPs are microorganisms (e.g., bacteria, fungi,
yeasts, and algae) and plants [15].

In this paper, we report a green protocol for the synthesis of NiSNPs using bacteria
isolated from a consortium associated with the psychrophilic Antarctic ciliate Euplotes fo-
cardii [16–18]. The bacteria have been shown to be able to produce metal NPs, including
silver and copper NPs [19–22], beside additional molecules that can be used in several
industrial applications [23–25]. This biosynthetic approach appears to be a cost-efficient
and promising alternative to conventional methods of synthesizing water-soluble NiSNPs.
Synthesized NiS nanocrystals were deeply characterized and examined for their antibac-
terial activity. To the best of our knowledge, this is the first report of NiSNPs synthesis
using Antarctic bacteria and it will provide useful references for further studies on biogenic
Ni-based NPs.

2. Results and Discussion
2.1. Bacterial Synthesis of Nickel (Ni) Nanoparticles

We observed the formation of pale green extracellular aggregates in the form of fine
powder at the bottom of the flasks 24 h after the addition of 1 mM of NiSO4 to the bacterial
cultures: Marinomonas sp., Rhodococcus sp., Pseudomonas sp., Brevundimonas sp., and Bacillus
sp., (Figure S1). Being the first bacteria isolated from a consortium associated with the
ciliate E. focardii, these were named with the suffix ef1. The deposits were collected and
washed several times with double distilled water and dried at room temperature for further
characterization (Figure S2). The formation of pale green powder on the bottom of the
flask was also observed after 120 h of incubation of Microbacterium sp. MRS-1 in liquid
nutrient medium containing 2000 ppm of NiSO4 and this powder was characterized as Ni
nanoparticles [26]. The mechanism involved in the formation of these NPs may be due to
biologically controlled and metabolism-dependent processes which involve nucleation and
deposition of inorganic particles and production of extracellular nanomaterials by efflux
mechanism [27]. The characteristics of the synthesized NPs are summarized in Table S1.

Ultraviolet–Visible (UV–Vis) spectrum analysis of the resulting NiSNPs gave absorp-
tion peaks close to 425 nm (Figure 1). However, Bacillus sp. ef1 and Brevundimonas sp. ef1
spectra also show a shift of the peaks toward 650 (D) or 550 nm (E), that can be attributed
to synthesized NPs of different size, as reported in [28].
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All synthesized NPs were examined by X-ray diffraction (XRD) to determine the ex-
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sulfide particles; more details are as follows: 
- The observed diffraction peaks of Marinomonas sp. ef1 (Figure 2A) were at 30.1°, 
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- Brevundimonas sp. ef1 showed formation of nanocrystalline peaks at 31.21°, 34.9°, 
47.92°, 53.25° attributed to (100), (101), (102), (110), (200) and (202) planes of NiSNPs 
(JCPDS card nos: 2-1280) 

Figure 1. UV–Vis absorbance spectra of NiSNPs synthesized from (A) Marinomonas sp. ef1, (B) Rhodococ-
cus sp. ef1, (C) Pseudomonas sp. ef1, (D) Brevundimonas sp. ef1, and (E) Bacillus sp. ef1.

2.2. X-ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) Spectroscopic Analysis

All synthesized NPs were examined by X-ray diffraction (XRD) to determine the exact
crystalline structure (Figure 2). All NPs show the typical XRD pattern of the nickel sulfide
particles; more details are as follows:

- The observed diffraction peaks of Marinomonas sp. ef1 (Figure 2A) were at 30.1◦,
44.82◦ 53.5◦, 62.6◦ and 73.1◦, attributed to (100), (102), (110), (200), and (202) planes of
NiSNPs (ICDD 01-075-0613).

- The peaks from Rhodococcus sp. ef1 display distinct diffraction peaks at 31.21◦, 34.9◦,
47.92◦, 53.25◦, 63.11◦, 73.27◦, attributed to (100), (101), (102), (110), (200), and (202)
planes of NiSNPs (JCPDS reference 010750613).

- XRD pattern of Pseudomonas sp. ef1 synthesized NiS NPs showed peaks at 31.11◦,
34.92◦, 47.93◦, 53.40◦, 63.11◦ were attributed to (100), (101), (102), (110) and (200)
planes of NiSNPs (JCPDS2-1280).

- Brevundimonas sp. ef1 showed formation of nanocrystalline peaks at 31.21◦, 34.9◦,
47.92◦, 53.25◦ attributed to (100), (101), (102), (110), (200) and (202) planes of NiSNPs
(JCPDS card nos: 2-1280).

XRD absorption peaks for Bacillus sp. ef1 synthesized NiS NPs are at 31.21◦, 34.9◦,
47.92◦, 53.25◦, 63.11◦, and 73.27◦ and correspond to (100), (101), (102), (110), (200) and
(202) planes of NiSNPs. The XRD pattern matched well with JCPDS data for NiSNPs (card
no.01-075-0613).
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Figure 2. X-ray diffraction profiles of NiSNPs synthesized from (A) Marinomonas sp. ef1, (B) Rhodococ-
cus sp. ef1, (C) Pseudomonas sp. ef1, (D) Brevundimonas sp. ef1, and (E) Bacillus sp. ef1.

FTIR analysis was carried out to identify capping biomolecules of the NiSNPs synthe-
sized by the Antarctic bacteria. The FTIR analysis evidenced the presence of N–H, C–N,
C–H and O–H groups, which corresponds to the presence of metabolites and proteins sur-
rounding the NiSNPs. The FTIR spectra results are described in detail in the Supplementary
Materials. Mallikarjuna et al. [29] reported that the carbonyl and hydroxyl groups from
amino acid residues or proteins can strongly bind to metal NPs like capping agents and
stabilize the NPs by preventing its agglomeration. Sathyavathi et al. [30] also suggested
that the biological molecules exhibit a dual role of formation and stabilization of NPs in the
aqueous medium.

2.3. Dynamic Light Scattering (DLS) Analysis of Bacterial NiSNPs

Dynamic light scattering (DLS) was performed to estimate the particle’s size and zeta
potential. Marinomonas sp. ef1, Rhodococcus sp. ef1, Pseudomonas sp. ef1, Brevundimonas sp.
ef1 and Bacillus sp. ef1 NiSNPs showed average diameters of 42.3 nm, 44.8 nm, 42.1 nm,
40.7 nm, and 40.5 nm, respectively (Figure 3).

Similarly, the zeta potential values of Marinomonas sp. ef1, Rhodococcus sp. ef1, Pseu-
domonas sp. ef1, Brevundimonas sp. ef1 and Bacillus sp. ef1 NiSNPs are −32.2 mV, −31.1 mV,
−28.5 mV, −30.6 mV and −29.3 mV, respectively (Figure 4).
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2.4. Transmission Electron Microscopy (TEM) Analysis

TEM images of the bacterial synthesized NiSNPs showed both rods and spherical
shapes (Figure 5). The size range of the spherical and rod NiSNPs are reported in Table 1.
Our results are in good agreement with previous studies by Govindasamy et al. [31] and
Wang et al. [32] that reported varied-shaped (irregular polygonal, cylindrical, and spherical)
NiSNPs and agglomeration, probably due to magnetic interaction and polymer adherence
between the particles.
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Figure 5. Transmission Electron Microscopy (TEM) of NiSNPs synthesized from the Antarctic bacteria.
The bars correspond to 100 nm. In white, the measurement of NP diameters, reported as follow:
(A) Marinomonas sp. ef1 NPs: the average size is 40–50 nm, for the rod shaped; 20–30 nm for the
spherical shaped (B) Rhodococcus sp. ef1 NPs: the average size is 25–50 nm for the rod shapes and
15–30 nm for the spherical shaped; (C) Pseudomonas sp. ef1 NPs: the average size is 30–50 nm, for the
rod shaped; 20–30 nm for the spherical shaped, (D) Brevundimonas sp. ef1 NPs: the average size is
40–50 nm, for the rod shaped; 20–30 nm for the spherical shaped, and (E) Bacillus sp. ef1 NPs: the
average size is 30–50 nm, for the rod shaped; 20–30 nm for the spherical shaped.
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Table 1. MIC and MBC/MFC values (µg/mL) of the bio NiSNPs against pathogens.

Marinomonas Rhodococcus Brevundimonas Pseudomonas Bacillus

MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC

Staphylococcus aureus 12.5 ± 0.2 25.0 ± 0.4 25.0 ± 0.4 25.0 ± 0.4 12.5 ± 0.4 25.0 ± 0.4 25.0 ± 0.4 25.0 ± 0.4 12.5 ± 0.4 12.5 ± 0.4

Escherichia coli 25 ± 0.4 25 ± 0.3 12.5 ± 0.1 25 ± 0.4 25 ± 0.5 25 ± 0.2 25 ± 0.2 25 ± 0.3 12.5 ± 0.1 12.5 ± 0.4

Klebsiella pneumoniae 12.5 ± 0.2 25 ± 0.2 12.5 ± 0.2 25 ± 0.5 12.5 ± 0.3 25 ± 0.4 25 ± 0.4 25 ± 0.4 6.25 ± 0.1 12.5 ± 0.3

Pseudomonas aeruginosa 12.5 ± 0.1 12.5 ± 0.2 12.5 ± 0.3 25 ± 0.43 12.5 ± 0.4 25 ± 0.2 12.5 ± 0.2 12.5 ± 0.4 12.5 ± 0.2 12.5 ± 0.4

Proteus mirabilis 3.12 ± 0.2 6.25 ± 0.4 6.25 ± 0.1 12.5 ± 0.4 12.5 ± 0.2 12.5 ± 0.1 6.25 ± 0.2 12.5 ± 0.3 6.25 ± 0.4 12.5 ± 0.4

Citrobacter koseri 6.25 ± 0.2 12.5 ± 0.4 12.5 ± 0.2 12.5 ± 0.3 12.50.4 25 ± 0.2 6.25 ± 0.1 12.5 ± 0.4 12.5 ± 0.2 12.5 ± 0.3

Acinetobacter baumanii 12.5 ± 0.3 12.5 ± 0.2 6.25 ± 0.3 12.5 ± 0.2 12.5 ± 0.3 25 ± 0.4 12.5 ± 0.3 12.5 ± 0.5 12.5 ± 0.2 12.5 ± 0.1

Serratia marcescens 6.25 ± 0.2 12.5 ± 0.4 6.25 ± 0.4 12.5 ± 0.2 6.25 ± 0.1 12.5 ± 0.3 12.5 ± 0.4 12.5 ± 0.2 6.25 ± 0.1 12.5 ± 0.4

MIC MFC MIC MFC MIC MFC MIC MFC MIC MFC

Candida albicans 25 ± 0.4 25 ± 0.3 12.5 ± 0.5 25 ± 0.1 12.5 ± 0.4 25 ± 0.4 25 ± 0.2 25 ± 0.4 12.5 ± 0.4 25 ± 0.2

Candida parapsilosis 12.5 ± 0.1 25 ± 0.4 25 ± 0.3 25 ± 0.2 12.5 ± 0.2 25 ± 0.3 12.5 ± 0.1 25 ± 0.3 6.25 ± 0.2 12.5 ± 0.3

2.5. Antibacterial and Antifungal Activity of NiSNPs

The Kirby–Bauer disk diffusion test was performed to verify the antimicrobial activity
of the synthesized NiSNPs. We tested one Gram-positive bacterium (Staphylococcus aureus),
Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas
aeruginosa, Serratia marcescens, Citrobacter koseri, Acinetobacter baumanii) and two Candida
species, C. albicans and C. parapsilosis, particularly widespread among the human fungal
pathogens (Figure 6).

Clear inhibition zones are visible around the NiSNPs disks for each pathogen tested,
suggesting that the NiSNPs possessed antimicrobial activity against both bacteria and fungi.
The results of the Kirby–Bauer disk diffusion are summarized in Table S2.

We also estimated the minimum inhibitory concentration (MIC) and the minimum
bactericidal/fungicidal concentration MBC/MFC. MIC is defined as the lowest concentra-
tion of the antibacterial agent to inhibit pathogens’ growth by serial dilution. As shown
in Table 1 and Figures S3–S7, the NiSNPs synthesized by all the Antarctic bacteria show
MIC values ranging from 3.12 to 25 µg/mL against the Gram-negative bacteria, whereas
the MIC values ranged from 12.5 to 25 µg/mL against Gram-positive bacteria. The MIC
values against fungi ranged from 6.25 to 25 µg/mL. MBC and MFC are defined as the
lowest concentration of antibacterial or antifungal agent needed to kill the pathogens (i.e.,
no growth observed on the MHA plate). In the study, MBC/MFC values were in the range
of 6.25 to 25 µg/mL. The results are reported in detail in the Supplementary results. From
these results, it appears that NiSNPs prepared by these Antarctic bacteria are particularly
efficient against pathogenic Gram-negative bacteria. However, these NiSNPs demonstrated
antibiotic effects also against Candida and the Gram-positive Staphylococcus aureus. In gen-
eral, NiSNPs synthesized from Antarctic bacteria appear more effective than those obtained
from Ocimum sanctum leaf extract, that showed maximum antimicrobial activity against
tested pathogens at concentrations of 50–100 µg/mL, almost double than the antimicrobial
concentrations of the NiSNPs reported in this paper [33].

Drug-resistant pathogens have created serious concerns across the globe due to the
limited choices in antibiotic treatment [34]. A source of new biomolecules with antimi-
crobial activity against drug-resistant pathogens is represented by metabolites produced
by novel isolated bacteria [35]. Our study highlights an efficient strategy in obtaining
bionanomaterials that can be used as antibiotics against many of these pathogens. The
antimicrobial activity of nickel NPs most probably relies on the generation of reactive
oxygen species (ROS) and release of nickel ions Ni(II). Diffusion and endocytosis of Ni
NPs followed by NiNPs’ accumulation in the cell membrane alters membrane permeability
and destroys membrane proteins. Furthermore, Ni NPs react with water-forming ROS that
penetrate the cell membrane causing damage with subsequent leakage of cellular contents.
Dissolution of Ni (II) ions and free radicals interrupt electron transport in the microbial
cell resulting in cell death [33]. Gram-negative bacteria showed higher inhibition zones
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than the Gram-positive Staphylococcus aureus. Vanaja et al. [36] reported that Gram-positive
bacteria have thick and chemically complex peptidoglycan in the cell wall. Therefore, NPs
are not easily entered into the Gram-positive bacterial cell. By contrast, Gram-negative
bacteria have a thin cell wall, and the NPs can easily enter bacterial cells and cause their
antimicrobial effects.
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Figure 6. Antibacterial and antifungal activity of NiSNPS by Kirby–Bauer Disk Diffusion Susceptibil-
ity Test against pathogenic and Gram-positive bacterium (Staphylococcus aureus), Gram-negative bacte-
ria (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Serratia marcescens,
Citrobacter koseri, Acinetobacter baumanii) and two Candida species, C. albicans and C. parapsilosis. 1. Mari-
nomonas sp. ef1 synthesized NiSNPS; 2. Rhodococcus sp. ef1 synthesized NiSNPS; 3. Brevundimonas sp.
ef1 synthesized NiSNPS; 4. Pseudomonas sp. ef1 synthesized NiSNPS; 5. Bacillus sp. ef1 synthesized
bio NiSNPS. C: control (1 mM NiSO4). Bars: 10 mm.
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3. Materials and Methods
3.1. Cultures and Chemicals

Marinomonas sp. ef1, Rhodococcus sp. ef1, Brevundimonas sp. ef1, Pseudomonas sp. ef1
and Bacillus sp. ef1 strains used in this work were isolated from a bacterial consortium
associated with the Antarctic ciliate E. focardii. All strains were maintained on Luria–
Bertani agar (LBA) Petri dishes (Tryptone 10 g/L, Yeast extract 5 g/L, NaCl 5 g/L) at 22 ◦C
(optimum growth temperature). All chemicals used were of analytical grade and were
purchased from Sigma Aldrich (Milan, Italy) and Carlo Erba (Milan, Italy). Culturing media
were purchased from ITW reagents (Milan, Italy).

3.2. Biosynthesis of NiSNPs

Bacterial strain colonies were inoculated in 100 mL of LB broth individually from agar
plates and incubated overnight at 22 ◦C on a rotatory shaker set at 200 rpm. The bacterial
growth was monitored by measuring the optical density (O.D.) of the culture media at
λ = 600 nm to reach an OD of about 2.8–2.9. At this stage the cells were in the mature and
high dividing stage of their life cycle. Later, NiSO4 was added to the cultures to a final
concentration of 1 mM. The cultures were then incubated in bright conditions for 24 h on a
rotator shaker at 150 rpm and 22 ◦C to facilitate the biosynthesis of NPs. As a control, 24 h
culture media (Luria–Bertani) with 1 mM NiSO4 without the organisms and heat killed
bacterial cultureswere maintained. The preliminary detection of NPs’ synthesis was carried
out by visual observation of a color change of the reaction mixture. The synthesis was then
confirmed by UV–Vis spectra using a Shimadzu UV 1800 spectrophotometer.

3.3. Extraction and Purification of NiSNPs

NiSNPs were collected from both intracellular and extracellular fractions. Briefly, 5 mL
culture samples were collected in a sterile 15 mL Falcon tube individually and centrifuged
at 7000× g on a Beckmann J2-21 (Beckmann Coulter, Milan, Italy), at 4 ◦C for 10 min, to
separate the extracellular fraction and the bacterial pellet. To remove any uncoordinated
biological molecules, the supernatant containing the extracellular fraction of the NPs was
again centrifuged at 17,000× g for 15 min, and the NPs recovered in the supernatant.
Furthermore, the bacterial pellet was suspended in 4 mL of sterile deionized water and
stored at −20 ◦C in a deep freezer. The samples were frozen and thawed four times and
vortexed to brake bacteria and to extract the NPs. The samples were centrifuged at 800× g,
at 4 ◦C for 10 min. The resulting pellet was discarded, and the supernatant was used as the
intracellular fraction NPs sample. Intra- and extracellular NPs were washed twice with
deionized water by centrifugation steps at 16,000× g, and dried. The recovered NiS NPs
were used for further characterization and antibacterial experiments.

3.4. Characterization of NiSNPs

The absorption optical spectrum of NiSNPs was recorded using Shimadzu UV-2401
PC double beam spectrophotometer from the range between 300 and 600 nm at (25 ± 1) ◦C.
The particle size distribution and zeta potential of the NPs were studied using Zetasizer
Nano-ZS90 (Malvern Instruments, Worcestershire, UK). TEM analysis was performed using
JOEL Model 1200 FX under 80 kV power supply. Samples were prepared by placing drops
of NiSNPs suspension over a carbon coated copper grid, extra solution was removed by
blotting paper and the solvent was allowed to evaporate with the help of a critical point
dryer. An image was obtained by the interaction of electrons transmitted through the
specimen. The functional groups capped on the surface of the NiSNPs were identified
with the FTIR spectrum using the Nicolet380 FTIR spectrometer. The sample was prepared
and stabilized under reactive humidity before acquiring the spectrum. The spectrum was
measured between 400 and 4000 cm−1 at the resolution of 4 cm−1. The X-ray diffraction
(XRD) measurements were performed using a Rigaku-D/MAX-PC 2500 X-ray diffractome-
ter (Rigaku, Milan, Italy) with a Cu Kα (λ = 1.5405 Å) in 2θ range from 0 to 80◦ at scan rate
of 0.03◦ S−1.
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3.5. Assessment of Antibacterial Properties
3.5.1. Bacteria Strains Preparation

The antibacterial activity of biosynthesized NiSNPs was tested against Staphylococcus au-
reus (ATCCV@25923), Escherichia coli (ATCCV@25922), Klebsiella pneumoniae (ATCCV@13883),
Pseudomonas aeruginosa (ATCCV@27853), Proteus mirabilis (ATCCV@35659), Citrobacter koseri
(ATCCV@25408), Acinetobacter baumanii (ATCCV@19606), Serratia marcescens (ATCCV@13880),
Candida albicans (ATCCV@ 90028) and Candida parapsilosis (ATCCV@22019). All the strains
were cultured in Mueller Hinton broth (MHB) (Merck, Germany) at 37 ◦C for 24 h with
200 rpm agitation.

3.5.2. In Vitro Antibacterial Susceptibility Test
Kirby–Bauer Disk Diffusion Susceptibility Test

The antibacterial activity of NiSNPs against the selected bacterial strains was carried
out using Kirby–Bauer Disk Diffusion Susceptibility Test method. Using sterile cotton
swabs, the bacteria strains were spread on the Mueller-Hinton agar (MHA). The disks were
loaded with 25 µL (25 µg) of NiS NPs solution and Ni sulphate solution (1 mM) and dried.
The disks were then placed on the agar plate and incubated at 37 ◦C for 24 h. The zone of
inhibition was observed after 24 h of incubation.

Minimum Inhibitory Concentration (MIC), Minimum Bactericidal (MBC) and Minimum
Fungicidal (MFC) Concentration Evaluation

The MIC and MBC/MFC evaluations of the green synthesized NiSNPs were carried
out using the method described in the guideline of CLSI 2012 [19]. The MIC test was
performed in a 96-well round bottom microtiter plate using standard broth microdilution
methods while the MBC/MFC test was performed on the MHA plates. The bacterial
inoculums were adjusted to the concentration of 0.5 McFarland units. For the MIC test,
NiSNPs stock solution was prepared by dispersing it in sterilized deionized water using
ultrasonic to reach 200 µg/mL. A total of 100 µL of stock solution was serially diluted
twofold in 100 µL of MHB in the first row and finally 100 µL was discarded such that
the first well in the row of the microtiter plate contained the highest concentration of
NiSNPs, while the last well of the row contained the lowest concentration. Similarly,
NiSNPs were prepared in all the rows. Positive control contains only medium (K+) and
negative control contains medium and bacterial inoculums (K−). The microtiter plate was
then incubated at 37 ◦C for 24 h. The MIC value is defined as the lowest concentration of
antibacterial agent that inhibits the growth of bacteria. The MBC/MFC values were taken
as the lowest concentration of antimicrobial agents that completely kill the pathogens. To
check MBC/MFC, the suspensions from each well of the microtiter plates were spread into
MHA plates and were incubated at 37 ◦C for 24 h. MBC value was taken as the lowest
concentration with no visible growths on the MHA plates.

4. Conclusions

NiSNPs were successfully produced from Antarctic bacteria. The methodology is
simple and energy efficient. This approach shortens the reaction time and makes it easy
to continuously synthesize large quantities of products for industrial application. NPs
were characterized by using various analytical techniques such as UV–Vis absorption
spectroscopy, DLS, Zeta potential, FTIR, and XRD. The characterization studies confirmed
the formation of NiSNPs using the green synthesis. TEM analysis showed varied-shaped
NiSNPs in good agreement with previous reports. The synthesized NiSNPs had the most
effective antimicrobial activity against pathogenic Gram-negative bacteria but demon-
strated antibiotic effects also against the two tested Candida species and the Gram-positive
Staphylococcus aureus. This activity is higher than that reported for plant-synthesized NPs.
Antarctic bacteria have again been proven to be a precious source of bioactive material and
they will provide useful references for further studies on this subject.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md22020089/s1, Figure S1: Biosynthesis of NiS NPs from Mari-
nomonas sp. ef1, Rhododcoccus sp. ef1, Pseudomonas sp. ef1, Brevundimonas sp. ef1 and Bacillus sp.
ef1, respectively. Left panels: heat killed bacterial biomass with 1 mM NiSO4; central panel: LB
medium with 1 mM NiSO4; right panel: Biosynthesized NiS NPs. Figure S2: Purified NiS NPs from
Rhodococcus sp. ef1, Brevundimonas sp. ef1, Marinomonas sp. ef1, Pseudomonas sp. ef1 and Bacillus sp.
ef1. Figure S3: MIC assay of the NiSNPs synthesized by Marinomonas ef1 by Broth microdilution
method. Figure S4: MIC assay of the NiS NPs synthesized by Rhodococcus by Broth microdilution
method. Figure S5: MIC assay of the NiS NPs synthesized by Pseudomonas ef1 by Broth microdilution
method. Figure S6: MIC assay of the NiS NPs synthesized by Brevundimonas by Broth microdilu-
tion method. Figure S7: MIC assay of the NiS NPs synthesized by Bacillus by Broth microdilution
method. Table S1: Characteristics of NiS NPs synthesized by the different Antarctic bacteria. Table S2:
Pathogens inhibition growth (expressed as diameter in mm) in the presence of bacterial NiNPs and
NiSO4 (1 mM), used as a negative control. Supplementary results on FTIR spectroscopic analysis and
MIC and MBC/MFC Assay.
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