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Motivated by the fact that the null-shell of a collapsing black hole can be described by a perfectly
reflecting accelerating mirror, we investigate an extension of this model to mirror semi-transparency
and derive a general implicit expression for the corresponding Bogoliubov coefficients. Then, we
turn this into an explicit analytical form by focusing on mirrors that are accelerated via an impulsive
force. From the so-obtained Bogoliubov coefficients we derive the particle production. Finally, we
realize the field coming from left-past spacetime region, passing through the semitransparent moving
mirror and ending up to right-future spacetime region as undergoing the action of a Gaussian
quantum channel. We study the transmission and noisy generation properties of this channel,
relating them to the Bogoliubov coefficients of the mirror’s motion, through which we evaluate
capacities in transmitting classical and quantum information.
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I. INTRODUCTION

The dynamical Casimir effect [1] is the general model
encompassing the gravitational analog model of scalar
particle creation by a single perfectly reflecting moving
mirror [2–4]. The usual approach to the analog is to
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assume a prescribed trajectory that fulfills given phys-
ical requirements and compute the resulting radiative
measures [5–10]. A key theoretical success of the dy-
namical Casimir effect has been the demonstration that
accelerated point mirrors disturb the quantum vacuum
via a non-zero Bogoliubov transformation and renormal-
ized stress tensor, resulting in principal outputs: parti-
cle production, energy flux and entanglement (see e.g.
[11–17]). To reconcile the usual divergent stress tensor,
point-splitting regularization is used to construct mean-
ingful finite results consistent with particle production
(e.g. [18, 19]). In this prescription, it is found that
the particle production and energy flux are a result of
the mirror’s acceleration and jerk, respectively [20, 21].
The entropy associated with the moving mirror has moti-
vated investigations into thermodynamic puzzles (see e.g.
[22, 23]) and quantum information issues (see e.g. [24–
26]). Efforts are underway to directly1 measure moving
mirror radiation [28, 29].

Recently, perfectly reflecting mirror solutions in (1+1)-
dimensions have been found that demonstrate unex-
pected resemblances to strong gravitational systems in
(3 + 1)-dimensions. Particularly, (1 + 1)D mirrors could
emulate the radiation provided by accelerating bound-
aries in (3+1)D in terms of particle production and radi-
ated energy. A typical example of the emulated (3 + 1)D
radiation is given by objects undergoing a gravitational
collapse into a black hole, leading to Hawking radia-
tion. Currently, analogy between mirrors and well-known

1 Superconducting quantum interference device can act as moving
mirrors whereas the dynamical Casimir effect can be measured
in the case of a Bose-Einstein condensates, see the review [27].
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spacetimes, e.g. Schwarzschild [5], Reissner-Nordström
[30], Kerr [8], and de Sitter/AdS have been found [10].

Even if the apparent issue related to different dimen-
sions seems to occur, this analogy is predictive and shows
the goodness of mirrors in (1 + 1)D with particular tra-
jectories in describing such physical cases.

Non-thermal or quasi-thermal perfectly reflecting solu-
tions closely characterize other well-known curved space-
time end-states, including extremal black holes (asymp-
totic uniformly accelerated mirrors [8, 31–34]), black
hole remnants (asymptotic constant-velocity mirrors [35–
40]) and complete black hole evaporation (asymptotic
zero-velocity mirrors [6, 13, 15, 25, 41–43]). However,
it is worth saying that the reduction from a (3 + 1)-
dimensional spacetime to a (1+1)-dimensional spacetime
does not yield a conformally invariant action. For exam-
ple, starting from a massless (3 + 1)-dimensional the-
ory in the curved background of spherically symmetric
Schwarzschild geometry, transversal (angular) momenta
will effectively induce a non-zero mass term in the re-
duced (1 + 1)-dimensional theory. Hence, the (1 + 1)D
spacetime we are going to deal with does not aim to rep-
resent the (3 + 1)D system2.

Remarkably, generalizing Bogolyubov coefficients in
(3 + 1)-dimensional theory has so far been intractable.
Consequently, attempts toward particle production anal-
ysis in (3 + 1)D spacetime is beyond the scope of this
paper.

Despite impressive progress over the last half-century
[27], the moving mirror model is still evolving. The ex-
tension to realistic conditions for partially transmitting
mirrors has had success in generalizing the specialized
case of perfectly reflecting mirrors which often posses in-
frared divergences [45–50]. Semi-transparent mirrors can
also be used to simulate a null-shell collapse to form a
black hole and provide new insights in determining the
physics of particle production [51, 52].

Considering semitransparent mirrors, we provide a
more realistic case for the dynamical Casimir effect since,
in real mirrors, perfect reflection is only an approxima-
tion valid for a small range of frequencies. For the black
hole-mirror analogy, perfect reflection models the regu-
larity condition at the center of the collapsing ball r = 0,
where r is the radial coordinate in (3 + 1)D spacetime3.
This condition says that the field vanishes at r = 0 be-
cause no field can exist behind r < 0, as the coordinate
itself is defined only for r ≥ 0. The semitransparency of
the mirror stresses out this condition: this may seem un-
physical. However, in important and interesting contexts
where it becomes impossible to impose regularity, say e.g.
4-dimensional Schwarzschild spacetime with Eddington-
Finkelstein coordinates such that r = 0 is a spacelike

2 In the mirror framework, one direct and precise connection that
holds in both dimensional contexts, (3 + 1)D and (1 + 1)D, is
the Lorentz invariant power as demonstrated in Ref. [44]

3 We remind that the analogy occurs between (1 + 1)D mirrors
and (3 + 1)D collapsing balls or shells

curvature singularity (see e.g. Eq. (5.137) of Ref. [20]),
perfect reflection might indeed need to be relaxed. For
this reason, there is good physical motivation to study
semi-transparent moving mirrors with respect to black
hole radiation.

Another intriguing issue is the interplay between mir-
rors and quantum information theory. A mirror can be
seen as a fundamental tool to model a quantum communi-
cation channel. Since the relation between input and out-
put modes through a mirror is linear, it actually realizes a
bosonic Gaussian channel. In this perspective, the mirror
is however always considered at rest. Only recently quan-
tum channels arising from the reflection of a one-mode
bosonic input upon a perfectly reflecting moving mirror
have been characterized [26]. It seems then quite natural
to investigate the information transmission capabilities
of quantum channels arising in the broader context of
semitransparent moving mirrors. This would allow us to
also explore the information capabilities across the null
shell of a collapsing black hole.

In this paper we investigate the particle production
from a semitransparent moving mirror, obtaining ana-
lytical expressions of Bogoliubov coefficients. To do this,
we consider a very short acceleration period compared
with the wavelength of the produced particles, namely we
focus on impulsive accelerated semitransparent mirrors.
Consequently, we obtain a finite spectrum of the radiated
particles. Then, we investigate the transmission of a sig-
nal, carried by the field, through a semitransparent mov-
ing mirror. The above mentioned spectrum permits to
understand if the mirror motion can improve the quality
of the signal transmission, or if it only creates additional
noise, compared with the static case. Actually, we shall
realize the field coming from left-past spacetime region,
passing through the semitransparent moving mirror and
ending up to right-future spacetime region as undergo-
ing the action of a Gaussian quantum channel, obtaining
an average transmission coefficient, τ , and an average
number of noisy particles created, n. For a mirror with
a short acceleration period we find τ < 1 and n = 0,
yielding a beam splitter bosonic channel. Therefore, an
exact expression of the classical and quantum capacity
is provided. The most interesting property arising from
this line of investigation is that, for each frequency of the
input signal, τ is maximized when the final speed of the
mirror is equal to a critical speed, which is different from
the speed of light.

The paper is organized in the following: in Sec. II
we provide the general expressions for Bogoliubov coeffi-
cients for semitransparent moving mirrors, assuming the
trajectory of the mirror starting from time-like past and
ending at time-like future in proper null coordinates. in
Sec. III we focus on trajectories which have a finite accel-
eration period leading to analytic expressions when this
period is very small. In Sec. IV we show that the trans-
mission of a signal through a semitransparent moving
mirror corresponds to the transmission through a bosonic
Gaussian quantum channel, following the same procedure
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used in Ref. [26]. Finally, in Sec. V we provide an ex-
act expression for the classical and quantum capacity of
the quantum channel created by an impulsive acceler-
ated mirror. Throughout we use natural units, namely
~ = c = 1.

II. BOGOLIUBOV COEFFICIENTS FOR
MOVING MIRRORS WITH PROPER NULL

COORDINATES

In this section we propose a general, thought implicit,
expression for the Bogoliubov coefficients relating input
(in) and output (out) modes in the presence of a semi-
transparent moving mirror. These coefficients give in-
formation about the spectrum of particles produced by
the mirror and will be at the heart of the communication
properties of the mirror.

We work on a (1 + 1)D spacetime, which can be com-
pactly portrayed through Penrose diagrams, as in Fig. 1.

As stressed in the introduction, the (3+1)-dimensional
case is more realistic, even if very harsh to study analyt-
ically. Nevertheless, the (1 + 1)D results provide a suit-
able matching with theoretical expectations in (3 + 1)D
spacetimes, e.g. recovering the Hawking radiation and/or
obtaining the dynamical Casimir effect when the mirror
is very large. Consequently, the next results are thought
to hold a relevant guidance for (3 + 1)D spacetimes.

There, i− and i+ represent time-like past and future in-
finities, respectively. The null surfaces J±R/L are instead

the boundaries of the Penrose diagram. Since only mass-
less scalar particles will be considered as input and out-
put, the input mode should necessarily come from a past
null-like surface J−R/L, whereas the output mode should

end up at a future null-like surface J±R/L. To this end,

we simply introduce the null coordinates u = t − x and
v = t+x. The trajectory of a mirror is usually expressed
via null coordinates through the function p(u) := vmirror
and its inverse f(v) := umirror, e.g. [3]. To guarantee
the mirror does not evolve faster than light both p(u)
and f(v) are increasing monotonic functions.

As anticipated, we only consider a massless scalar field
Φ (since it describes the vast majority of radiation fields)
without self-interaction. The Lagrangian density for this
field interacting with a static mirror at the position xm
is described by [51]:

L =
1

2
∂µΦ∂µΦ + ηΦδ(x− xm). (1)

From this, one can obtain the following reflection and
transmission amplitudes:

r(ω) = − iη

ω + iη
, s(ω) =

ω

ω + iη
, (2)

where ω is the frequency of the reflected/transmitted
mode.

I L
+

I R
+

I L
-

I R
-

i
0

i
0

i
+

i
-

FIG. 1. Penrose diagram showing the trajectories of high
acceleration mirrors for different values of the parameter ν,
defined in Sec. III. The trajectory is like the one described by
Eq. (24) with u0 very small. In particular, ν = 1.5 for the
green dashed line, ν = 2 for the green line, ν = 4 for the black
dashed line and ν = 100 for the black line. We can imagine
the infinitesimal acceleration period to be in a neighborhood
of t = 0.

The field Φ can be expanded as:

Φ =
∑

J=L,R

∫ ∞
0

(
φJωa

J
ω + φJ∗ω aJ†ω

)
dω, (3)

where φRω (resp. φLω) is the input mode with frequency ω
incoming from the right, i.e. J−R (resp. left, i.e. J−L ) and
aRω (resp. aLω) is the corresponding annihilation operator.
Considering the boundary condition given by the mirror
at the position x = xm, the modes φRω and φLω can be
written, respectively, as:

φRω (u, v) =
1√

4π|ω|
(
s(ω)e−iωvθ(u− v + 2xm)

+
(
e−iωv + r(ω)e−iωu

)
θ(v − u− 2xm)

)
, (4)

φLω(u, v) =
1√

4π|ω|
(
s(ω)e−iωuθ(v − u− 2xm)

+
(
e−iωu + r(ω)e−iωv

)
θ(u− v + 2xm)

)
. (5)

The expressions for the input modes (4) and (5) are
valid when the mirror is static. When the mirror moves
along a trajectory xm(t) also the amplitudes r(ω) and
s(ω) change in time (see Appendix A of [52]). Hence,
there is a great mathematical complication, since the
boundary condition between the left side and right side
of the mirror becomes time-dependent. To overcome this
problem, we resort to the strategy used in Ref. [53].
Namely, we put ourselves in the mirror frame, using
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proper coordinates. The proper distance from the mirror
is indicated by ρ and the proper time by τ . From them,
the proper null coordinates are defined as u := τ − ρ and
v = τ + ρ. The proper null coordinates u and v could
also be written in terms of the external null coordinates
u = t − x and v = t + x through u(u) and v(v) which
depend on the trajectory of the mirror (specified by p(u)
and f(v)). This dependence comes from the metric con-
servation (see Eq. (20) of [54]):

ds2 = du2 = dv2 = ∂up(u)du2 = ∂vf(v)dv2, (6)

from which one obtains:

du(u)

du
=
√
∂up(u),

dv(v)

dv
=
√
∂vf(v). (7)

Finally, we define the input modes in proper coordinates
as gRω and gLω .

In the mirror frame, the mirror is obviously static.
Hence, the modes gRω and gLω could be written analo-
gously to the modes φRω and φLω in the static case, i.e.
like Eqs. (4) and (5):

gRω (u, v) =
1√

4π|ω|
×
(
s(ω)e−iωvθ(u− v) +

(
e−iωv + r(ω)e−iωu

)
θ(v − u)

)
,

(8)

gLω (u, v) =
1√

4π|ω|
×
(
s(ω)e−iωuθ(v − u) +

(
e−iωu + r(ω)e−iωv

)
θ(u− v)

)
.

(9)

From now on, we consider only time-like trajectories
for the mirror, i.e. we consider trajectories starting at i−

and ending up at i+, referring to the Penrose diagram in
Fig. 1. In that case, both the modes in external coordi-
nates {φRω }v and the ones in proper coordinates {gRω }v
form a complete set of input modes incoming from J−R .
Analogously, both the sets {φLω}u and {gLω}u are complete
sets of modes incoming from J−L . As a consequence, the
modes in external coordinates φJω are related to the ones
in proper coordinates through the following Bogoliubov
transformation [53]:

φJω =

∫ +∞

−∞
χ(ω′)

(
φJω, g

J
ω′

)
gJω′dω′, (10)

where χ is the sign function.
Using Eq. (10) one may obtain a general expression for

the input modes in external coordinates φJω. Let us turn
our attention to the scalar product

(
φRω , g

R
ω′

)
. To single

out a convenient integration surface for the integration,
we select J−R , since here φRω = 1√

4π|ω|
e−iωv and gRω =

1√
4π|ω|

e−iωv(v). So, the scalar product becomes

(
φRω , g

R
ω′

)
= −i

∫ +∞

−∞

(
(∂vg

R∗
ω′ )φRω − gR∗ω′ ∂vφ

R
ω

)
dv. (11)

Using the fact that these modes vanish for v → ±∞ we
can integrate Eq. (11) by parts, simplifying the scalar
product to

(
φRω , g

R
ω′

)
= 2i

∫ +∞

−∞
gRω′∂vφ

R
ωdv

=
ω

2π
√
|ω||ω′|

∫ +∞

−∞
e−i(ωv−ω

′v(v))dv. (12)

The same thing is done for the scalar product
(
gLω′ , φLω

)
integrating on the surface J−L and obtaining

(
φLω , g

L
ω′

)
= 2i

∫ +∞

−∞
gL∗ω′ ∂vφ

L
ωdv

=
ω

2π
√
|ω||ω′|

∫ +∞

−∞
e−i(ωu−ω

′u(u))du. (13)

From now on, we also consider a detector positioned on
the right of the mirror. Hence, the terms of gJω (from
Eqs. (8) and (9)) proportional to θ(u− v) are neglected.
For the mode coming from the right of the mirror φRω ,
applying some contour integration in the variable ω′ and
using the fact that u(u) and v(v) are increasing mono-
tonic functions (to guarantee that the mirror speed is not
faster than the speed of light), we obtain

φRω =
1√
4πω

e−iωv + φreflω,R (u), (14)

where φreflω (u) is the reflected wave of the input mode:

φreflω (u) =

√
ω

4π
i

∫ +∞

−∞

(
1

2
χ(u(u)− v(v′))

−θ(u(u)− v(v′))e−η(u(u)−v(v
′)
)
e−iωv

′
dv′.

(15)

With a similar calculation, we can obtain φLω as

φLω =

√
ω

4π
(−i)

∫ +∞

−∞
θ(u− u′)e−η(u(u)−u(u

′))e−iωu
′
du′

=

√
ω

4π
(−i)

∫ u

−∞
e−η(u(u)−u(u

′))e−iωu
′
du′ . (16)

In the presence of an accelerating boundary, we expect
a difference between the input and the output spacetime
structure [21, 55, 56]. The output mode (outgoing to the
right, i.e. J +

R ) can be written in terms of the input ones
through the following Bogoliubov transformation:

φoutω =
∑

J=R,L

∫ ∞
0

(
αRJωω′φJω′ + βRJωω′φJ∗ω′

)
dω′, (17)

where αRRωω′ =
(
φoutω , φRω′

)
, αRLωω′ =

(
φoutω , φLω′

)
, βRRωω′ =(

φout∗ω , φRω′

)∗
and βRLωω′ =

(
φout∗ω , φLω′

)∗
are the Bogoli-

ubov coefficients we want to compute. We are partic-
ularly interested in the β Bogoliubov coefficients, since
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they give us information about the production of the
particles by the mirror. Since we consider mirrors with a
trajectory ending at i+, J +

R is a surface we can use as an
integration surface for the scalar product of Bogoliubov
coefficients. In fact on this surface we have

φout∗ω −→ 1√
4πω

eiωu, (18a)

φRω′ −→ φreflω′,R, (18b)

Applying the derivative of the scalar product to the input
modes φJω and changing the variable from u to u (we
define u(u) as the inverse of u(u)) we obtain the following
general expression for the Bogoliubov coefficients:

βRRωω′ = − η

2π

√
ω′

ω

∫ +∞

−∞

∫ +∞

−∞
θ(u− v(v′))eηv(v

′)−iω′v′e−ηu−iωu(u)dv′du, (19)

βRLωω′ = − η

2π

√
ω′

ω

∫ +∞

−∞

∫ +∞

−∞
θ(u− u(u′))eηu(u

′)−iω′u′
e−ηu−iωu(u)du′du, (20)

and

αRRωω′ = − η

2π

√
ω′

ω

∫ +∞

−∞

∫ +∞

−∞
θ(u− v(v′))eηv(v

′)+iω′v′e−ηu−iωu(u)dv′du, (21)

αRLωω′ =

√
ω′

ω
δ(ω − ω′)− η

2π

√
ω′

ω

∫ +∞

−∞

∫ +∞

−∞
θ(u− u(u′))eηu(u

′)+iω′u′
e−ηu−iωu(u)du′du. (22)

Considering Eqs. (19) and (20), we have that NR
ω =∫ +∞

0

∣∣βRRωω′

∣∣2 dω′ is the spectrum of the particles produced
due the reflection of the modes at the right of the mirror

and NL
ω =

∫ +∞
0

∣∣βRLωω′

∣∣2 dω′ is the spectrum of particles
produced due the transmission of the modes at the left
of the mirror. The total spectrum of produced particles
is therefore given by

Nω = NR
ω +NL

ω . (23)

III. APPROXIMATED TRAJECTORIES WITH
IMPULSIVE ACCELERATION

Once we have found a general expression for the Bo-
goliubov coefficients, as reported in Eqs. (19), (20), (21)
and (22), we aim at finding trajectories for which the
Bogoliubov coefficients can be explicitly and analytically
computed. In this Section we show that this task can be
accomplished for trajectories corresponding to impulsive
acceleration.

First, looking at Eqs. (19) and (20), we notice that
finding explicit Bogoliubov coefficients turns out to be
non-analytical and quite hard for some physical aspects

that we summarize below.

1) The trajectories in null comoving coordinates are
arguments of exponentials, and the only functions
which can be easily analytically computed in an ex-
ponential are the linear ones, which corresponds to
a non-accelerating mirror, giving trivially the Bo-
goliubov coefficients β = 0.

2) In order to find a non-trivial trajectory we have to
use integral functions (such as the Euler gamma),
but even if we solve one integral with it, we also
need to solve the other. This will be an integral of
an exponential multiplied by an integral function,
which is almost always not computable analytically.

3) In particular for Eq. (20) we need to find a function
u(u) such that the exponential of it and the expo-
nential of its inverse u(u) is integrable analytically.
Even if such a function exists, it is needed also that
Eq. (19) is analytically computable.

4) For some trajectories (such as the Carlitz-Willey’s
and the uniform acceleration trajectory [56]) we can
pass easily from the expressions of the trajectories
in null coordinates to u(u) and v(v). However, for
the other non-trivial trajectories which provides an
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exact solution for the Bogoliubov coefficients in the
perfectly reflecting case (Walker-Davies [6], Arctx
[43], Dlogex [57], Proex [40], etc.) it is impossible
even to find an analytic expression for the trajec-
tories in null coordinates u(u) and v(v). Reversely,
if we succeed finding a function u(u), such that we
can find an analytic function for the Bogoliubov co-
efficients, we need to have the respective functions
p(u) and f(v) describing the trajectory of a mirror.
To this aim, the quantities p(u) and f(v) should be
real, without asymptotes, without singularities in
their domain, and monotonic in their domain.

We thus consider a class of trajectories that will allow
us to simplify the treatment. It consists of trajectories
fulfilling the conditions below:

• the mirror is static at x = 0 for t < 0,
• it begins to accelerate toward its left along a certain

trajectory z(t) at t = 0 until it reaches the time t0,
arriving to the point x0,

• after a time interval t0, the mirror continues trav-
elling with the same velocity V reached after the
acceleration period. Such V must be smaller than
1, otherwise the proper acceleration of the mirror
would become infinite.

Such a trajectory can be described though the simplest
choice, represented by the following function

ptot(u) =


u, if u ≤ 0,

p(u), if 0 < u ≤ u0,
p(u0) + ν−1(u− u0), if u > u0.

(24)

For simplicity, hereafter we refer to the complete trajec-
tories with the subscript “tot” and with the usual p(u),
f(v), u(u) and v(v) we refer to the trajectory of the
mirror only on its period of acceleration. In Eq. (24)
u0 = t0 − x0 quantifies the width of the acceleration pe-
riod, alongside with ν−1 := ∂up(u)|u0 , which ensures the

continuity of the derivative on u0
4. The quantity ν is re-

lated to the final speed of the mirror V through ν = 1+V
1−V

and any deviations from the linearity in terms of ∼ u
would imply that, at asymptotic regimes, the velocity is
no longer a constant.

Analogously, we can write the inverse of ptot(u), i.e.,
ftot(v) by

ftot(v) =


v, if v ≤ 0,

f(v), if 0 < v ≤ v0,
f(v0) + ν(v − v0), if v > v0,

(25)

where v0 = p(u0). It is worth noticing that all the quan-
tities derived from u0 ,i.e., v0, u0 = u(u0) and v0 = v(v0)
satisfy the equations describing the trajectories of the
mirror ,i.e., v = p(u), u = f(v), u = v(v) and v = u(u).
As consequence we have: v0 = p(u0), u0 = f(v0) and
u(u0) = v(v0) = u0 = v0.

In proper coordinates Eq. (24) and Eq. (25) become:

utot(u) =


u, if u ≤ 0,

u(u), if 0 < u ≤ u0,
u(u0) + ν−1/2(u− u0), if u > u0,

(26)

vtot(v) =


v, if v ≤ 0,

v(v), if 0 < v ≤ v0,
v(v0) +

√
ν(v − v0), if v > v0.

(27)

We now focus on the β Bogoliubov coefficients (in or-
der to obtain the α it is sufficient to switch ω′ → −ω′

everywhere except in the external factor − η
2π

√
ω′

ω , and

add the term
√

ω′

ω δ(ω − ω
′) in αRLωω′). For this class of

trajectories we obtain, separating the integrals, through
the Eq. (19) and Eq. (20) the following

βRRωω′ = − η

2π

√
ω′

ω

[
e−iωu0−ηu0

(ω
√
ν − iη) (ω′ + iη)

− 1

(ω′ + iη)(ω + ω′ + iε)
− e−iωu0−iω′v0

(ων + ω′ − iνε) (ω
√
ν − iη)

+
1

η − iω′

∫ u0

0

e−ηu−iωu(u)du+
e−iωu0−ηu0

η + iω
√
ν

∫ v0

0

eηv(v
′)−iω′v′dv′

+

∫ u0

0

e−ηu−iωu(u)

(∫ v(u)

0

eηv(v
′)−iω′v′dv′

)
du

]
;

(28)

4 The continuity of ptot(u) and of its first derivative should be
imposed at u = 0 as well. Hence, the trajectory p(u) should be

chosen to satisfy this condition.
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βRLωω′ = − η

2π

√
ω′

ω

[
e−iωu0−ηu0

(ω
√
ν − iη) (ω′ + iη)

− 1

(ω′ + iη)(ω + ω′ + iε)
− e−i(ω+ω

′)u0

(ω + ω′ − iε) (ω
√
ν − iη)

+
1

η − iω′

∫ u0

0

e−ηu−iωu(u)du+
e−iωu0−ηu0

η + i
√
νω

∫ u0

0

eηu(u
′)−iω′u′

du′

+

∫ u0

0

e−ηu−iωu(u)

(∫ u(u)

0

eηu(u
′)−iω′u′

du′

)
du

]
,

(29)

where ε is an exponential cutoff in u and v, needed in
order to make some integrals convergent. For the β Bo-
goliubov coefficients, we can set ε = 0 without prob-
lems. However, for the α Bogoliubov coefficients we can-
not neglect ε, otherwise a divergence for them occurs for
ω = ω′5.

For computing particle production, we only need the
β Bogoliubov coefficients. So, limiting to ε = 0 and
looking at Eqs. (28) and (29), we soon notice that we
need a strategy to neglect those integrals that are non-
analytical.

Since the arguments of all the integrals have no singu-
larities in their integration range, and since for u0 → 0
we have also v0 → 0 and u(u)→ 0, the first option is to
consider u0 → 0, taking the acceleration period so much
short to neglect its contribution. Further, with the recipe
u0 ∼ 0, we stress that, before this period the mirror was
at rest, whereas after it the mirror shows a finite velocity.

Since we are minimizing the period in which the mirror
accelerates, we could maximize the acceleration. In this
respect, we refer to these mirrors as “impulsive acceler-
ated mirrors”, in which particular physical consequences
are expected. In particular, to clarify why we need
to maximize the acceleration, let us first consider the
well-consolidate Carlitz-Willey trajectory [56]. Here, we
have u(u) = 2

k

(
1− e−ku/2

)
and v(v) = 2

k

(
1−
√

1− kv
)
,

where k is intimately related to the mirror acceleration.

Even though we cannot fix the acceleration, since it is
not constant for the Carlitz-Willey trajectory, we can fix
the parameter k to be arbitrarily large enough. Thus, the
approximation for impulsive accelerated mirrors consists
in setting u0 � 1 and k � 1, leading to the single main
assumption ku0 = const. The value of this constant is
related to the final speed of the mirror itself. Indeed, the
parameter ν in Eqs. (28) and Eq. (29) is simply given by
ν = eku0 for the Carlitz-Willey trajectory. The trajecto-
ries of such mirrors are portrayed in Fig. 1. It is worth
noticing that the above described approximation is valid
for all those trajectories provided that we can associate

to the acceleration of the mirror a constant parameter k.
Finally we can apply the approximation to Eqs. (28)

and (29), using k = ln(ν)/u0 and expanding in series for
u0 → 0. For short acceleration periods, only the lowest
expansion orders are clearly needful.

To the zeroth order the integrals on Eq. (28) and
Eq. (29) can be completely neglected. In this case, the
Bogoliubov coefficients read

βRRωω′ = − η

2π

√
ω′ω

√
ν (ω′ − ω

√
ν) (ω

√
ν − 1) + iη (ν − 1)

(ω
√
ν − iη) (ω′ + iη) (ων + ω′) (ω + ω′)

,

(30)

βRLωω′ = − η

2π

√
ω′ω

1−
√
ν

(ω
√
ν − iη) (ω′ + iη) (ω + ω′)

. (31)

Here, we are neglecting the acceleration period and
Eqs. (30) and (31) are valid for each trajectory for which
we associate a constant parameter k to the acceleration.
Both the Bogoliubov coefficients Eqs. (30) and (31) have

the factor
√
ω′ω at the beginning.

So, their modulus squares show the factor ω′ω, that
is not cancelled by any term in the denominator. This
ensures that in these modulus squares no infrared diver-
gences occur6 for ω′ → 0. Furthermore, for ω′ → +∞
Eqs. (30) and (31) are asymptotic to ω′−3/2. This means
that their modulus squares do not provide any ultravio-
let divergence. As a consequence the number of particles
produced with this approximation is finite and different
from zero for finite values of ω. Finally, checking the case
in which the mirror lies at rest, namely ν = 1, we imme-
diately notice that the Bogoliubov coefficients are zero,
as expected.

To the first order expansion, we restrict the trajecto-
ries to the ones with non singular ∂uu(u) and ∂uv(v′)
throughout the range 0 ≤ u ≤ u0. Hence, first order
Bogoliubov coefficients are

βRRωω′ ∼ −
η

2π

√
ω′ω

{ √
ν (ω′ − ω

√
ν) (
√
ν − 1) + iη (ν − 1)

(ω
√
ν − iη) (ω′ + iη) (ων + ω′) (ω + ω′)

+
(ω + ω′) [η (V0ν − 1) + iων (U0

√
ν − 1)− iω′

√
ν (V0

√
ν − U0)]

(ω
√
ν − iη) (ω′ + iη) (ων + ω′) (ω + ω′)

u0

}
,

5 For Eq. (22), considering ε 6= 0, the Dirac delta can be seen as
1
π

ε
ε2+(ω−ω′)2

.
6 This is valid for βRR

ωω′ , if ω 6= 0. If not, we could have possible
infrared divergences, leading to unphysical particle production.
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βRLωω′ ∼ −
η

2π

√
ω′ω

1−
√
ν + i(ω + ω′) (U0

√
ν − 1)u0

(ω
√
ν − iη) (ω′ + iη) (ω + ω′)

,

(32)
where U0 := ∂u0

u0|u0=0 and V0 := ∂u0
v0|u0=0. For the

Carlitz Willey trajectory [58], we get

U0 =
2

ln ν

(
1− 1√

ν

)
, (33)

V0 =
1

ln ν

(
1− 1

ν

)
. (34)

In terms of ν, the first order Bogoliubov coefficients for
the Carlitz-Willey trajectory become

βRRωω′ ∼ −
η

2π

√
ω′ω

{ √
ν (ω′ − ω

√
ν) (
√
ν − 1) + iη (ν − 1)

(ω
√
ν − iη) (ω′ + iη) (ων + ω′) (ω + ω′)

+
(ω + ω′)

[
η
(

1
ln(ν) (ν − 1)− 1

)
+ iων

(
2

ln(ν) (
√
ν − 1)− 1

)
− iω′

√
ν

ln(ν)

(
1√
ν

+
√
ν − 2

)]
(ω
√
ν − iη) (ω′ + iη) (ων + ω′) (ω + ω′)

u0

 ,

(35)

and

βRLωω′ ∼

− η

2π

√
ω′ω

1−
√
ν + i(ω + ω′)

(
2

ln(ν) (
√
ν − 1)− 1

)
u0

(ω
√
ν − iη) (ω′ + iη) (ω + ω′)

.

(36)

Since only the first order of u0 is considered, in the com-
putation of the modulus square of the Bogoliubov coeffi-
cients, the terms proportional to u20 are neglected.

Summing the modulus square of Eq. (36) and Eq. (35),
we obtain

∣∣βRRωω′

∣∣2 +
∣∣βRLωω′

∣∣2 =
η2

4π2
ωω′

[
(
√
ν − 1)2(ων + ω′)2 + ν(ω

√
ν − ω′)2(

√
ν − 1)2 + η2(ν − 1)2

(ω2ν + η2)(ω′2 + η2)(ων + ω′)2(ω + ω′)2

+
2(ω + ω′)

(
η
√
ν(ω′ − ω

√
ν)(
√
ν − 1)

(
1

ln(ν) (ν − 1)− 1
)

+ η(ν − 1)
(
ω′

ln ν (
√
ν − 1)2

)
− ων

(
2

ln ν (
√
ν − 1)− 1

))
(ω2ν + η2)(ω′2 + η2)(ων + ω′)2(ω + ω′)2

u0

 .
(37)

Thus, by integrating over dω′ we get the total number of
particles with frequency ω created by the mirror. Even
though the corresponding number could be analytically
computed, its expression turns out to be extremely com-
plicated. Thus, we omitted it explicitly.
Studying Eq. (37), one can prove that the zero order term
increases as ν increases. In particular, it converges to an

asymptotic value A as ∝
√
ν
−1

. Instead, the first or-
der term, as ν increases, goes to zero faster, namely as

1√
ν ln ν

. Starting from this fact, one can prove that, for

u0 enough small, an upper bound for the particle pro-
duction is provided when ν → ∞. This upper bound is
provided by the following analytical expression.

Nω →
η2

2π2ω

[
ω2 − η2

(ω2 + η2)2
ln

(
ω

η

)
+
πηω − ω2 − η2

(ω2 + η2)2

]
.

(38)
The spectrum of the particles production for the trajec-
tories shown in Fig. 1 is depicted in Fig. 2(a). In the

Figs. 2(b), 2(c), 2(d) some comparisons among the con-
tributions of the right and left part of the mirror are
shown: it can be seen from them that the two contribu-
tions are comparable when η � u−10 . We also stress an
infrared divergence for the spectrum, in agreement with
the modified Carlitz-Willey trajectory as found in Refs.
[43] and [53]. Moreover, we can observe that the contri-
bution of the vacuum modes in the right of the mirror
dominates over the one in the left for low frequencies. For
high frequencies the contribution of the vacuum modes
in the left is slightly higher than the one in the right,
becoming the same for ω →∞ only.

IV. QUANTUM CHANNEL ARISING FROM A
MOVING MIRROR

We now revisit the model of semitransparent moving
mirrors through an information communication perspec-
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0.6
N

= 1.5
= 2
= 4
= 10

(a)Spectrum of the particles produced by the mirror with
η = 1 for different values of A, obtained integrating in dω′

Eq. (37). It is u0 = 0.0001.
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0.4
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(b)Comparison of the spectra of the particles produced at the
right hand side of the mirror. NR

ω (resp. NL
ω ) is the

contribution from the vacuum modes at the right (resp. left)
hand side of the mirror, obtained integrating in dω′ the

modulus squared of Eq. (35) (resp. Eq. (36)). The complete
spectrum is the sum NL

ω +NR
ω . Here η = 1, u0 = 0.0001 and

A = 0.1.

0.00 0.05 0.10 0.15 0.200.00
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0.10
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(c)The same of 2(b) but with η = 0.1 and A = 0.5.
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0.1

0.2

0.3

0.4
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(d)The same of 2(b) but with η = 0.1 and A = 0.1.

FIG. 2. Plots showing the behaviour of the particle production as function of the frequency for a mirror with a trajectory like
the ones shown in Fig. 1.

tive. In particular, the aim is to realize the field com-
ing from left-past spacetime region, passing through the
semitransparent moving mirror and ending up to right-
future spacetime region as undergoing the action of a
quantum channel. Then study the capacities in transmit-
ting classical and quantum information of such a channel.

We consider as input a mode from J−L and as output
the same mode transmitted by the mirror and outgoing
toward J +

R . The bosonic modes in these two zones are
related to each other through the Bogoliubov transfor-
mations, which are linear. Hence, taking the mode say
of frequency ω as an input mode, while the other modes
as environment modes (initially in vacuum, and after the
process traced out), we end up with a Gaussian quantum
channel.

To formalize such a mapping, following [26], it is suffi-
cient to know that a Gaussian quantum channel maps
a bosonic Gaussian state into another bosonic Gaus-

sian state. Considering only one mode ω, the canon-
ical variables in phase space are given by the vector
zω = (qω, pω) ∈ R2 and a Gaussian bosonic state is rep-
resented by a characteristic function

χin(zω) = exp

(
−1

4
zTω · σω · zω + idTω · zω

)
, (39)

where dω = (〈Qω〉, 〈Pω〉) and σj is the so called covari-
ance matrix, defined as7

σω =

(
〈Q2

ω〉 1
2 〈PωQω +QωPω〉

1
2 〈PωQω +QωPω〉 〈P 2

ω〉

)
. (40)

7 Qω = 1√
2

(
a†ω + aω

)
and Pω = 1

i
√
2

(
aω − a†ω

)
are the canonical

quadrature operators for the mode ω.
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A one mode Gaussian quantum channel maps the one
mode characteristic function, Eq. (39), into

χout(zω) = exp
(
− 1

4
zTω ·

(
TσωTT + N

)
· zω

+i
(
dTω · TT + vTω

)
· zω

)
,

(41)

where a Gaussian quantum channel is so characterized
by the triad (T,N,v) with T and N as two 2×2 matrices
respectively related to the attenuation/amplification of
the mode, and to the noise which affects the input sig-
nal. In particular, the attenuation/amplification is given
by τ = detT. Since the information transmission capa-
bilities of the channel can be characterized in terms of
entropic quantities, that do not depend on the vector v,
we can investigate the evolution of the covariance matrix,
σj . Thus, from Eqs. (39) and (41), we write

σinω 7−→ σoutω = Tσinω TT + N. (42)

Our focus is on the covariance matrix, Eq. (40), of the
input mode and its output as a result of Eq. (42). In line
with our aim at the beginning of this section, all modes
at J−L are considered uncorrelated and in the vacuum,
but the single frequency mode of interest is ω. This can
be formalized with the following values

〈aLω′aLω′′〉 = Mδ(ω − ω′)δ(ω′ − ω′′), (43)

〈aL†ω′ a
L
ω′′〉 = Nδ(ω − ω′)δ(ω′ − ω′′), (44)

and the expectation values of all the other combination
of bosonic operators (including the ones relative to the
right side of the mirror) equal to zero (except for the
Hermitian of Eq. (43) and the commutation of Eq. (44)).
Moreover, following Eqs. (43) and (44), N is the mean
number of particles in the input state, and M specifies
the correlation between Qω and Pω.

Using Eqs. (43) and (44), we calculate σinω and σoutω

taking the input and output bosonic operator for the
mode ω (related to each other by a Bogoliubov trans-
formation). We calculate the quadrature operators for
both of them using Eq. (43) and Eq. (44). It turns out
that the input and output covariance matrices are related
by a relation equal to Eq. (42) from which we can obtain

the entries of the T =

(
T1 T2
T3 T4

)
and N =

(
N1 N2

N3 N4

)
in

terms of Bogoliubov coefficients, i.e.,

T1 = επ<
(
αRLωω − βRLωω

)
, (45)

T2 = επ=
(
αRLωω + βRLωω

)
, (46)

T3 = −επ=
(
αRLωω − βRLωω

)
, (47)

T4 = επ<
(
αRLωω + βRLωω

)
, (48)

N1 =− επ

2

∣∣αRL∗ωω − βRLωω
∣∣2 + (49)

+
1

2

∫ ∞
0

(∣∣αRL∗ωω′ − βRLωω′

∣∣2 +
∣∣αRR∗ωω′ − βRRωω′

∣∣2) dω′ ,
N2 =N3 = −επ=

(
αRLωω β

RL
ωω

)
+ (50)

+

∫ ∞
0

=(αRLωω′βRLωω′ + αRRωω′βRRωω′)dω′ ,

N4 =− επ

2

∣∣αRL∗ωω + βRLωω
∣∣2 + (51)

+
1

2

∫ ∞
0

(∣∣αRL∗ωω′ + βRLωω′

∣∣2 +
∣∣αRR∗ωω′ + βRRωω′

∣∣2) dω′,
where ε is the cutoff8 of Eqs. (28) and (29). Here < and
= denote the real and imaginary parts, respectively.

For the average attenuation/amplification in time τ :=
detT, we have the following general expression

τ = ε2π2
(
|αRLωω |2 − |βRLωω |2

)
. (52)

Applying the Bogoliubov coefficients of an impulsive ac-
celerated mirror to first order in a u0 expansion around
u0 = 0 and using the Carlitz-Willey’s acceleration we get

τ =
4Ω4ν + Ω2 (1 +

√
ν)

2

4 (Ω2ν + 1) (Ω2 + 1)
, (53)

where Ω := ω/η. It is easy to see that τ = ω2

ω2+η2 , as

expected, for ν = 1. We are reminded that as Ω → ∞
one has τ = 1 (perfect transparency) and as Ω→ 0, one
has τ → 0 (perfect reflection), even when ν 6= 1.

Transmission through a semitransparent mirror should
result in three main effects:

1. a loss of the input signal, since part of that is re-
flected ;

2. an interference of the input signal with the other
modes of the initial vacuum environment ;

3. a particle production contribution which eventually
amplifies the input signal.

One can prove that τ < 1 for all frequencies and ν, pro-
viding that no signal amplification occurs, as evidence of
the first effect. Nevertheless, for ν > 1, there is a re-
duction of such loss. The second and third effect also
show themselves in this way (nevertheless, the effect of
the particle production mostly arises as noise, since it
occurs even without an input signal).

Another relevant aspect of Eq. (53) is that to the first
order in u0 around u0 = 0 does not contribute to τ . In

8 We ignored it for β coefficients, although it is needful for α co-
efficients, otherwise as ω = ω′ possible divergences arise.
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general, one can prove that also the other orders of u0
does not give a contribution to τ in the limit ε → 0. In
fact, calculating τ from the general expression Eq. (29)
(taking the corresponding α coefficient), for finite acceler-
ation periods result in convergent integrals. Under these
conditions, in the limit ε→ 0, only the divergent part of
αRLωω gives a contribution:

lim
ε→∞

αRLωω =
1

πε
− η

2πε

[
(1 +

√
ν)ω − 2iη

i (ω
√
ν − iη) (ω − iη)

]
. (54)

After a calculation, one can prove that this will lead to
the same τ of Eq. (53). In conclusion, we have shown
that, for the calculation of τ we are justified in removing
the restriction over a small acceleration period. It is
then realized that this τ is valid for any mirror trajectory
with a finite acceleration period, at least in the limit
ε→ 0.

Studying τ from Eq. (53), for ν → ∞, we have an
asymptotic behaviour of τ equal to

τ =
Ω2 + 1

4

Ω2 + 1
. (55)

However, differently from the particle production Nω (see
Sec. III), τ does not increase in a monotonic way by in-
creasing the final speed of the mirror toward its left (as
considered in Fig. 1). In fact, for each value of Ω we have
a finite value of ν which maximizes τ . In other words,
it exists a critical final Vcrit(Ω) of a mirror (accelerat-
ing toward the left) with finite acceleration period, for
which τ reaches a maximum and slightly decreases for
V > Vcrit, asymptotically reaching τ described by Eq.
(55). The critical value of ν, say νcrit, in function of Ω,
can be written as

νcrit(Ω) =
9

2
+

4

Ω2
+

1 + (3Ω2 + 1)
√

(9Ω2 + 1)(Ω2 + 1)

2Ω4
.

(56)
For Ω � 1 we have νcrit → ∞ which corresponds to
Vcrit = 1. For Ω � 1 the critical speed reaches the
asymptotic value Vcrit(Ω → ∞) = 0.8. The decreasing
of τ after Vcrit is sharper for low frequencies, although
Vcrit is closer to the speed of light in this range. A plot
for τ is portrayed in Fig. 3.

One expects a contribution to the noise created by the
mirror due to the particle production and characterized
by Nω with frequency mode ω. Since τ < 1 for each ω,
η and A, we anticipate a lossy and noisy quantum chan-
nel. By the classification of one-mode Gaussian chan-
nels made in Ref. [59], we perform two unitary Gaussian
transformations, one before and one after the quantum
channel (respectively named, pre-processing and post-
processing), in order to reduce the matrix N, of a lossy
and noisy quantum channel, to its canonical form

Nc = (1− τ)

(
1

2
+ n

)
I, (57)

0 1 2 3 40.0

0.2

0.4

0.6

0.8

1.0

= 1
= 10
= 1000

FIG. 3. Behaviour of τ vs Ω from Eq. (53). It was considered:
a static mirror (ν = 1), a mirror accelerating toward the left
with a final speed comparable to Vcrit ∼ 0.8, i.e. the critical
speed at high frequencies (ν = 10) and a mirror accelerating
toward the left with a final speed really close to the speed of
light (ν = 1000).

where n is the number of noisy particles created by the
quantum channel. The term 1

2 is naturally related to
vacuum energy induced by mode ω. In the continuous
limit we expect that it takes the value 1

2πε .

Moreover, instead of finding the average number of
noisy particles arriving to the detector n, in the con-
tinuous limit we expect to have a spectrum of particles
expressed as nω. The former, once integrated in a range
of frequencies, provides a dimensionless number. Hence,
in the continuous case, Eq. (57) becomes

detN = (1− τ)

(
1

2πε
+ nω

)
. (58)

In the continuous limit only an infinitesimal range of
frequencies would be detected. We can therefore write
n = επnω.

Since the determinant of N does not change when re-
ducing it to its canonical form, we can study it from
Eqs. (49), (50) and (51), leading to

detN = detNc =

(
1− τ
2πε

+B

)2

− C2, (59)

where

B := −επ
∣∣βRLωω ∣∣2 +Nω, (60)

and

C :=

∣∣∣∣∣∣επαRLωω βRLωω −
∑

S=L,R

∫ ∞
0

αRSωω′βRSωω′dω′

∣∣∣∣∣∣ . (61)
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Comparing Eq. (58) with Eq. (59), we get

nω =
1

2πε

[
−1 +

√
1 + 4πε

B

1− τ
+ 4π2ε2

B2 − C2

(1− τ)2

]
.

(62)
Thus, the average number of noisy particles arriving to
the detector is

n =
1

2

−1 +

√
1 + 4

B̃

1− τ
+ 4

B̃2 − C̃2

(1− τ)2

 , (63)

where B̃ := επB and C̃ = επC.
If B and C are not divergent, for ε → 0 we have B =

Nω and expanding the square root in the last term of
Eq. (62), we get the spectrum

nω =
Nω

1− τ
. (64)

Consequently, in this case, n = 0, that corresponds to
our stand-alone approximation, i.e., to an impulsive ac-
celerated mirror. Indeed, we already demonstrated Nω is
convergent as well as B, with B̃ = 0. Analogously, one
can easily prove the convergence of C as well, leading to
C̃ = 0. This behaviour naturally suggests that the im-
pulsive semitransparent mirror acts like a beam splitter.

A different expectation occurs when B and C are di-
vergent, e.g. for the perfectly reflecting Carlitz-Willey
mirror. In this case a rigorous approach to get B̃ and
C̃ requires the use of wave packets, where the frequency
range is supposed to vanish. In fact, applying this ap-
proach to the Carlitz-Willey trajectory furnishes a finite
B̃, see e.g. [43] for further details.

V. QUANTUM CHANNEL CAPACITIES

In this section, we evaluate classical and quantum ca-
pacities of the quantum channel described in the previous
section. In so doing, we quantify the capability of an im-
pulsive accelerated mirror to transmit both classical and
quantum information.

For bosonic Gaussian channels the regularization of the
capacities is a hard task and this problem is not fully
solved, neither for classical nor quantum capacities. For-
tunately, the channel we obtained in Sec. IV becomes a
beam splitter in the continuous limit. For this kind of
channels the additivity is proved both for classical [60]
and quantum capacity [61].

We start by studying the classical capacity. Let us
take the classical information we want to transmit with
continuous random variable X and probability distribu-
tion px. The encoding procedure is identified by a map
which associates to each value x of the random variable a
state ρx. Let Φ be the quantum channel of communica-
tion. The maximum that we can extract about X at the
channel output is given by Holevo information [62, 63]:

χ(ρ,Φ) = S (Φ(ρ))−
∫
pxS(Φ(ρx))dx. (65)

where S is the von Neumann entropy and ρ :=
∫
pxρxdx.

For one-mode Gaussian (OMG) channels it is possible
to express the Holevo information in terms of covariance
matrices if we restrict the possible encodings to Gaussian
ones, see e.g. [64]. Namely, we have to restrict the pos-
sible inputs of the OMG channel (T,N,v) to be bosonic
Gaussian states with covariance matrix σ and d = (x, 0).
Moreover we assume px to be a Gaussian probability dis-
tribution with mean equal to zero and covariance matrix
σ′. In the reference [65] it is proved that, if the channel
is a beam splitter, such encodings maximize the Holevo
information, becoming [66]

S
(
T(σ + σ′)TT + N

)
− S

(
TσTT + N

)
, (66)

where the Von Neumann entropy S, referring to a co-
variance matrix σ, can be written by S(σ) = h(d), with

d :=
√

det(σ) and

S(σ) =

(
d+

1

2

)
log

(
d+

1

2

)
−
(
d− 1

2

)
log

(
d− 1

2

)
.

At this point, the classical capacity C is given by the
maximum of Eq. (66) over the inputs σ and σ′. How-
ever, since the bosonic Gaussian states are in an infinite-
dimensional Hilbert space, as input we can take a state
with an infinite particle amount. Obviously, this maxi-
mizes the Holevo information and it leads to an infinite
classical capacity. This case is unrealistic, since we need
an infinite amount of energy for the encoding process.
In order to remove this possibility, we have to impose a
restriction on the maximum energy E which can be used
for the encoding, by

1

2
ωTr(σ + σ′) ≤ E. (67)

With this prescription, the following classical capacity
for a noiseless, lossy channel (beam splitter), has been
obtained by [60]

C =
τE

ω
log

(
τE + ω

τE

)
+ log

(
τE + ω

ω

)
. (68)

Plots of C are shown is Fig. 4. Since the channel is
asymptotically without loss for ω → ∞, one can expect
a constant capacity in this limit. However, for great fre-
quencies the encoding necessitates more energy. For this
reason, if the energy is constrained, the number of pho-
tons we can use for the encoding decreases linearly. In
fact, studying the asymptotic behaviour of τ for ω →∞,
it turns out that C goes to zero very slowly, ∼ lnω

ω . In-
stead, for ω → 0, C goes to zero linearly. Moreover, from
Eq. (68) we can see that the capacity increases with τ .

As a consequence, we expect the capacity to be max-
imized for ν = νcrit. Further, it is interesting to notice,
from Fig. 4, how for different values of ν the maximum
of the lower bound of the classical capacity occurs for dif-
ferent values of ω. This “maximum capacity frequency”
seems to decrease when we increase ν. However, since
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FIG. 4. Classical capacity of an impulsive accelerated mir-
ror constraining the encoding energy to E = 5 according to
Eq. (68) for various values of ν. τ is provided by the Eq. (53)
with η = 1.

the peak becomes higher increasing the final speed of the
mirror, we can conclude that the capability of an impul-
sive accelerated mirror to transmit classical information
always increases with the mirror final speed.

Next, we proceed to evaluate the quantum capacity,
obtained maximizing the coherent information over the
input (for a beam-splitter channel, the quantum capacity
is additive [66]). Brádler [67] proved that the one-shot
quantum capacity of a lossy and noisy OMG channel is
maximized: either when the number of photons N used
for the encoding is null, or when this number N is in-
finite (so, we have an infinite amount of energy for the
encoding). In the first case the maximized coherent in-
formation is zero and no quantum information can be
transmitted reliably. However, unlike the classical ca-
pacity framework, in case of infinite amount of energy
of the encoding we have a finite value for the coherent
information. This means that there is no need to im-
pose a constraint for the energy of the encoding in order
to have a finite value for the one-shot quantum capac-
ity. Nevertheless, the infinite energy of the encoding is
unrealistic. For this reason, the quantum capacity that
we intend to study might be considered as upper bound
of the “real one” with a finite encoding energy. How-
ever, the quantum capacity, obtained with a finite E, is
basically the same of the one obtained with E → ∞ in
the region ω � E. Consequently, even if we compute a
quantum capacity for E →∞, it is realistic to choose E
large enough within the range of employed frequencies.

For the coherent information Jc of a OMG lossy chan-
nel, as E →∞ we have [59, 61]

Jc(E →∞) = log
τ

1− τ
. (69)

0.0 0.5 1.0 1.5 2.0

4

2

0

2

J c

= 1
= 10
= 1000

FIG. 5. Coherent information for the impulsive accelerated
mirror with an input having an infinite number of photons,
according to Eq. (70).

Using τ from Eq. (53) we get

Jc(E →∞) = log

[
Ω2

(1+
√
ν)2

4 + Ω2ν

1 + Ω2
(
3
4 − 2

√
ν + 3

4ν
)] , (70)

whose behaviour is shown in Fig. 5. The quantum ca-
pacity of an impulsive accelerated mirror is given by

Q(ω) = max{0, Jc(E →∞, ω)}. (71)

Analyzing Eq. (70), we have that Q diverges logarith-
mically as ω → ∞, in agreement with the fact that the
channel becomes without loss in this limit. Even in this
case, for each frequency, the maximum of the quantum
capacity is obtained for ν = νcrit. The quantum capacity
is non-zero only if τ > 1

2 . This is in agreement with the
no-cloning theorem, for which it is impossible to transmit
quantum information reliably if we have a loss 1−τ larger
than 1

2 , otherwise the input state can be cloned, (see e.g.
[68]). Further, from Fig. 71 we observe that in the range
of frequencies in which Q > 0 the curve with ν = 10 is
larger than the one with ν = 1000. This suggests that,
unlike the classical capacity, in order to maximize the
quantum capacity with an impulsive accelerated mirror
we are forced to take a final speed of the mirror com-
parable with the critical speed for high frequencies, i.e.,
V ∼ 0.8.

The minimum frequency required for a non-null quan-
tum capacity depends upon ν through the relation

Ω2 =
(1−

√
ν)2

2ν
+

√
(1−

√
ν)4

4ν2
+

1

ν
. (72)

For both ν → 1 and ν → ∞ the frequency converges
to Ω = 1. By construction, we thus expect a minimum
in the range 1 < ν <∞.
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VI. FINAL REMARKS

In this work, we studied partially reflecting acceler-
ating mirrors finding general expressions for the Bogoli-
ubov coefficients. This work has been motivated by ana-
log models, called accelerated boundary correspondences,
that describe the correspondence between the particle
production from a null-shell of a collapsing black hole
and the particle production from a perfectly reflecting
accelerating mirror.

The natural extension to semi-transparency indicated
potential signatures of new effects. Along this line, we
have studied the trajectories in which the mirror satis-
fies a few physical conditions: in the past, it lies at rest
and in the future it shows a finite acceleration period,
ending with a constant sub-light speed. We introduced
the concept of impulsive accelerated mirrors and we com-
puted the Bogoliubov coefficients by considering a very
short acceleration period. Consequently, we evaluated
particle production from the so-obtained Bogoliubov co-
efficients, providing explicit analytical expressions depen-
dent on frequency and on the final speed of the mirror.

The particles considered are non-interactive scalar par-
ticles, hence with coupling constant λ→ 0. It was proved
in Refs.[69, 70] that the interaction (even if infinitesimal)
gives a non-negligible contribute to the particle produc-
tion at the time t ∼ λ−1. Here we considered an er-
ror on the frequency ∆(ω) = επ. As a consequence,
the particles produced are the ones in the time interval(
−(ε)−1,+(ε)−1

)
. Since we have taken the continuous

limit ε → 0, in order to neglect the contribute of the
interaction, it is sufficient to have λ → 0 faster than ε.
Moreover, considering mirrors with a finite acceleration
period, we expect the particle production (and its con-
sequent effects) to occur during the acceleration period.
Hence, even if we consider λ finite but very small, we do
not care about what happens at times t > λ−1, since the
acceleration is over at such times.

Next, we have recognized the mirror as a Gaussian
quantum channel acting between the spacetime regions
of left-past and right-future. The evolution of an in-
put signal crossing the mirror could then be studied us-
ing the previously obtained Bogoliubov coefficients. For
these quantum channels, we investigated the properties of
transmission of an input signal, the noise created by the
mirror over the channel and we finally evaluated both the
classical and quantum capacities. Since we were search-
ing for analytic solutions for the Bogoliubov coefficients,
the continuous limit for the frequencies was considered.
As a consequence, all the properties of the mirror as a
Gaussian channel (i.e., τ , n and the capacities) are an
average in time from −∞ to +∞.

In addition, we speculated about the physical conse-
quences of our framework. In particular, the simplicity
and flexibility of the moving mirror model, coupled to
its unique collection of radiative properties, demonstrate

that with use of appropriate trajectories the moving mir-
ror idealization of evaporating black hole radiation and
information transfer are remarkably suitable. In har-
mony with black hole complementarity [71], observers on
both sides of the mirror cannot make simultaneous phys-
ical measurements, much the same way that one cannot
both simultaneously measure, to within the uncertainty
principle, the position and momentum of a particle in
quantum mechanics. With non-horizon perfect reflection,
the information stays on one side of the mirror, carried by
the radiation providing full knowledge of the initial quan-
tum state; this necessarily requires that the radiation is
never precisely thermal but quasi-thermal [15]. That is,
the particles are not distributed in an exact Planck dis-
tribution but carry small imprinting evidence of collapse.
With non-horizon semi-transparency (e.g. Eq. (24)), the
right (left) observer collects the information from both
the right (left)-movers which reflect (transmit) through
the mirror, giving complete information about the initial
state. For the sake of completeness, one can also consider
the complementary communication scheme, namely the
reflection case of an input signal incoming from right-
past and outgoing to right-future. This prescription is
likely less interesting than the transmission case. Indeed,
the former works better in modeling black holes and in-
formation theory and holds a more appropriate physical
meaning. From the results of this work, we speculate
that this picture in general, and further use of this class
of trajectories in particular, will contribute towards the
resolution of information transfer in the black hole evap-
oration process.

Concluding, to get relevant information about the time
in which such properties occur, future works will general-
ize our treatment considering wave packets, whose wave
packet width, ∆ω, satisfies ∆ω ∼ u−10 and so we will in-
vestigate physical properties during this small accelera-
tion period, i.e., u0. The results lead smoothly to further
investigations with respect to astrophysical applications
to compact objects. For example, possible scenarios of
high-energy astrophysical explosions could be object of
future works modeled by means of our approach.
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