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A B S T R A C T

Background: Age is one of the major risk factors for Alzheimer’s disease (AD) which is considered 
the most common adult-onset dementia. There is little information about age-related changes 
during brain dementia.
Methods: This study observed age-related variations in the brain throughout adulthood in mag-
netic resonance imaging (MRI) of the AD and healthy brains. The Open Access Series of Imaging 
Studies (OASIS) is used as a database. The method consists of design and develop a computer 
approach based on artificial intelligence (AI) to segment white matter (WM) from the MRI. Then, 
the number of pixels within the segmented white matter (WM) of the brain was calculated. 
Correlation was used to investigate age relation with WM changes in the normal and AD brain.
Results: The WM change with aging was more correlated in AD group (rAD = − 0.505, p-value =
0.0007) than control group (rControl = − 0.357, p-value = 0.0001).
Conclusion: Higher correlation of WM pixel counts with age in AD group approved that AD is 
characterized by the relevant involvement of the WM and age. Our approach gained additional 
information on the quantitative pathological changes associated with the AD as the most common 
brain disorder of the elderly.

1. Introduction

1.1. Alzheimer’s disease and aging

Neurodegenerative disorders leading to dementia is a challenging disease for those affected [1]. Alzheimer’s disease (AD) is the 
most form of dementia [2]. With aging, the risk of dementia particularly AD rises dramatically [3]. Investigation of the age-related 
changes of the brain during AD might provide a new insight to understand more about the disease, and its symptoms [4]. There is 
little information regarding age-related changes throughout AD, however, age-related variations on the normal human brain have 
been studied in different articles [5–12].

Abbreviations: AD, Alzheimer’s disease; WM, White Matter; GM, Gray Matter; MRI, Magnetic Resonance Imaging; OAS SIS, Open Access Series of 
Imaging Studies; T1-w, T1-weighted; CDR, Clinical Dementia Rating; MMSE, Mini-Mental State Examination.
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1.2. Alzheimer’s disease and white matter deterioration

In the evaluation of age-related brain changes, it is better to consider both white matter (WM), and gray matter (GM) parts of the 
brain. For a long time, AD has been considered as the GM disease and most studies assessed only GM volume decline with aging [9,10]. 
However, recently it has revealed that WM also involved and WM deterioration as a sign of neurodegeneration might increase de-
mentia risk [13]. Based on the pathological evidence, WM damage even might occur independently of GM atrophy [13]. The results of 
previous researches about WM are different but essentially, they showed WM volume is steady or increases slight throughout 
adulthood (40- 50-year range) [14–16], and followed by a high decline (around 60 years old) [14–17]. In another study, GM volume 
loss in normal brain appeared to be a constant and linear function of age throughout adult life, whereas WM volume loss seems to be 
delayed until middle adult life [17].

1.3. Magnetic resonance imaging

Recent significant breakthroughs in magnetic resonance imaging (MRI) and computer technology have resulted in precise, 
reproducible, and quantitative assessments of brain morphometry [18–22]. We therefore conducted this study using MRI of healthy 
and AD individuals to quantitatively measure the age-related changes in WM.

2. Materials and methods

2.1. Subjects

The dataset in this study is Open Access Series of Imaging Studies (OASIS) database [23]. This database consists of a cross-sectional 
collection of MR images of 416 subjects, both men, and women (mostly women), aged between 33 and 96 years old (Table 1). The 
female subjects are more than the male because women live longer than men do on average and older age is one of the most criteria for 
AD [24].

In this study, all images are 3D T1-weighted (T1-w) MRI scans in X-Y planes. Subjects are differentiated to several groups based on a 
global clinical dementia rating (CDR) scale including normal with no dementia and CDR of 0, and with AD dementia including very 
mild AD (CDR = 0.5) and mild AD (CDR = 1). 181 subjects were without CDR and therefore they were not included. Table 1 shows the 
ranges of age, education levels, and gender of AD and healthy group.

2.2. Methods

Fig. 1 shows the procedure of this study. The first step is using brain MRI of AD patients and the final outputs are the effect of age on 
the WM in healthy and AD individuals.

The MRI scans were visually controlled (VK) to confirm that structural defects or technical artifacts were not present. Analysis of 
MRI data was done by the Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL) (www.fmrib.ox.ac.uk/ 
fsl) as our previous study [21].

Artificial intelligence model: we firstly designed and developed a new automatic artificial intelligence (AI) model to extract WM 
from the images. It uses Single-level discrete 2-D wavelet transform (2DWT) to extract features from the brain images [25]. Statistical 
features were defined in the distribution of the WM in the pixels of an image. In order to find the statistically significant features, 
features’ comparison between groups (AD versus control) was done using statistical tests (P-values<0.05). The statistically selected 
features were first order statistical features including Contrast, Energy, Entropy, Mean, Root Mean Square (RMS), Standard Deviation, 
Skewness, Kurtosis, Variance, and Homogeneity (Table 2). These extracted features were used to identify the characteristic of the 
segmented WM and therefore, as input for the AI classification between early AD and healthy individuals. We chose 2DWT because it 
provides an efficient multi-resolution decomposition of images [26]. Principle component analysis (PCA) was used to reduce the 
dimensions of features [27].

Kernel support vector machine (KSVM) was used as classifier [28]. Data comparisons were adjusted for CDR, based on it, subjects 
are divided into two different classes, the first class includes patients with the AD (AD group) and the other class contains 
non-demented healthy subjects (control group).

To evaluate the performance of the AI to segment WM, the output of the WM segmentation was compared with the results of WM 
extracted from FSL as the gold standard. The comparison procedure was done by calculation of Sorensen-Dice similarity [29] between 

Table 1 
Summary of subject demographics and dementia status.

Group AD Normal

Age 62–92 33–94
CDR 0.5–1 0
MMSE 15–30 25–30
Education 1–5 1–5

Clinical Dementia Rating: CDR, Mini-Mental State Examination: MMSE.
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two binary images of the results and gold standard.
Pixel count: MRI is composed of the array of pixels in different brain areas. Pixel count is the number of pixels within a specified 

intensity range and has been recognized as a first-order statistical feature in the MRI studies [30]. The final output of the proposed 
computer aided system was the number of pixels for extracted WM of each subject.

Correlation analysis: Pixel count determination provided the possibility to quantitatively verify the age-related changes of WM for 
each subject. Spearman’s correlation analysis [31] between age and pixel count as the volumetric variable was done in both groups of 
AD and control. Significant results were considered at p < 0.05.

All preprocessing and postprocessing of the MR images, as well as statistical analysis were performed using MATLAB R2022a.

3. Results

The results of WM segmentation using the proposed method showed an accurate performance (average Dice score = 0.891, p <
0.001, Fig. 2).

Fig. 3 shows the trends of changing WM during aging in control and AD groups. The black point sets represent the actual data point 
of MW pixel counts. Since AD mostly happens in elderly individuals, the age range of control group and AD patients are different. This 
range for control group covers 20–100 years while for AD is 60–100 years. The trend related to control group in first years increased 
and then started to decrease. In fact, control and AD brains showed inverse non-linear patterns with age. Healthy brains trend indicated 
a slight increment from young to middle age and slighter decrease to the old, however, the AD brains had always decreased. The 
correlation of WM and age in control and AD groups were − 0.35 and − 0.5 respectively. Higher correlation of WM pixel counts with age 
was found in AD group.

Fig. 1. Block diagram of the proposed method for the assessment of age-related WM changes throughout adulthood using magnetic resonance 
imaging (MRI).

Table 2 
The extracted statistical features of the dataset.

CDR CDR 0 CDR 0.5 CDR 1

Mean, SD Mean SD Mean SD Mean SD

Contrast 0,28557 0,021301 0,28151 0,012408 0,28619 0,015661
Energy 0,77079 0,006166 0,77457 0,008604 0,76927 0,007893
Homogeneity 0,93524 0,001524 0,93644 0,002249 0,9348 0,002266
Mean 0,00383 0,001102 0,00346 0,000686 0,00397 0,000587
SD 0,08973 6,75E-05 0,08972 4,83E-05 0,08973 4,22E-05
Entropy 2,80456 0,063483 2,78092 0,034237 2,78764 0,038769
RMS 0,0898 0 0,17062 0 0,0898 0,255575
Variance 0,00809 4,22E-05 0,00809 3,16E-05 0,00808 3,16E-05
Kurtosis 12,49786 1,163231 12,78919 1,938669 12,93199 1,558777
Skewness 1,08466 0,16185 1,1595 0,142252 1,10997 0,214674

CDR: Clinical Dementia Rating, SD: Standard Deviation, RMS: Root Mean Square.
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4. Discussion

This work employed voxel-based morphometry and MRI to segment WM in the human brain. Furthermore, it accurately assessed 
normal ageing and AD in the segmented parts using pixel count in MRI. Fig. 3 showed the results of the age-related variation of WM in 
both control and AD groups.

Recent studies of age-related alterations have primarily focused on healthy brains. They have found conflicting results between 
ageing and WM changes; some have reported that WM decreases with age in the frontal, optic radiation, posterior [9] and anterior [4,
32] limbs of the internal capsule, ventrolateral thalamus [9], and anterior colpus collasum [11], while others have not [14,32,33].

Some studies used MRI to study age-related changes in WM in normal adults, and their findings revealed non-linear changing 

Fig. 2. The results of the artificial intelligence system for three individuals with three different levels of health including healthy brain (first 
column), very mild AD (scond column) and mild AD (third column). First raw: one slice of the magnetic resonance imaging (MRI), Second row: 
extracted white matter (WM) by the proposed AI system, third row: the value of clinical dementia rating (CDR) for each individual.

Fig. 3. The black point for each participant in their age group indicates the number of pixels (pixel count) of the retrieved white matter. The trend of 
pixel count with age is depicted by the red line (right: AD group, left: control group). The control group’s Spearman’s correlation coefficient is 
− 0.357, with a p-value of 0.0001, whereas the Alzheimer’s disease (AD) group’s is − 0.505, with a p-value of 0.0007.

V. Karami et al.                                                                                                                                                                                                        Heliyon 10 (2024) e37836 

4 



patterns with age [34,35]. According to our findings (Fig. 3), the control group’s tendency confirmed that WM variations have a 
non-linear shift as they go from young to middle age and subsequently decrease as they age. The WM trend was entirely in line with the 
findings of earlier investigations [4,9]. In the AD group, WM changes with ageing were noticeable throughout adolescence. The 
findings of WM pixel count in AD patients were similar with prior data and support one of our initial hypotheses of reduced WM in AD. 
The Spearman’s correlation coefficient was used to analyze the relationship between WM and the severity of dementia as a function of 
age.

The WM change with aging was more correlated in AD group (rAD = − 0.505, p-value = 0.0007) than control group (rControl =
− 0.357, p-value = 0.0001). The results obtained for controls appeared to be consistent with those of another study on 84 normal 
persons aged 13–70 years [36]. A higher value of correlation (rAD) indicates that severity of the current state of the AD may influence 
age-related WM decline. This also suggests that, in addition to GM, WM is a cognitive change in AD, which contradicts the fact that AD 
has traditionally been considered as a GM disease. Few studies on the association between age, normal cognition, and brain 
morphology [33–38] found that reduction of both GM and WM volumes was involved in age-related cognitive alterations.

Recent studies [39,40] showed that age-related distractibility is possibly caused by impaired sensory gating by the locus coeruleus 
and insufficient top-down control by the frontal areas.

Regarding AD groups, we do not have exact histological proof; we can only conclude based on the findings of our study (Fig. 3) that 
WM pixel counts decline with age. Nonetheless, age-related abnormalities such as myelin degradation and the amount of myelinated 
fibre lengths may play a role [9]. As a result, these abnormalities could be caused by aging or by the residual effects of brain dementia.

4.1. Limitations

This study has provided the results about the mechanism of age-related change of brain during AD. It is limited, however, by lack of 
follow-up dataset for each group. other limitations of this study are the unequal number of female and male, and imaging protocol 
artifacts of the dataset. Further research endeavors should aim to consider these to provide better insight of age-related brain changes 
in the AD.

5. Conclusion

Our study presented an accurate standardization of MRI method for assessing WM alterations during brain dementia despite the 
previous studies that mostly employed the same techniques for both GM and WM volumetric evaluations. In addition, the majority of 
prior studies only looked at certain areas of WM in healthy brains, which may not be useful for assessing WM changes, especially in 
dementia patients. We picked full brain images based on a published study’s recommendation [9], which said that in order to have a 
better knowledge of the pathological alterations of neurological disorders, entire brain images are desirable [9]. The global consid-
eration of WM instead of regional provided an overall approach to detect age-related brain changes in both groups. In this study, higher 
correlation of WM pixel counts with age approved that AD is characterized by the relevant involvement of the WM and aging. Most of 
the studies about aging and AD were single-site or using relatively small sample sizes [4,41–43], our dataset, which included both 
healthy subjects and AD patients, enabled us to overcome this limitation. In order to develop and leverage this method for individuals 
with AD, research needs to use a representative sample of equal amounts of men and women.
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