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Abstract Robot based computing systems have been widely investigated in
the last years. One of the main issues is to solve global tasks by means of local
and simple computations. Robots might be cooperative or competitive, still
the algorithm designer has to detect a way to accomplish the desired task.
In this paper, we propose a platform made up of small and self-propelled
robots with very limited capabilities in terms of computing resources, stor-
age and sensing. In particular, we consider cheap robots moving within a
confined area. The area is suitably coloured so as to be able for a robot en-
dowed with a light sensor to reasonably detect its position. Moreover, robots
can communicate with each other by exchanging short messages. Based only
on those weak capabilities, we show how it is possible to realise interesting
basic tasks. Apart for the relevance in educational contexts, our platform
also represents an interesting case study for the main question posed in the
literature about the minimal settings under which interesting tasks can be
distributively solved.

1 Introduction

Robotic systems have been widely studied in the last decades. Robotics finds
applications in many field of research and it involves both computer scien-
tists and engineers. In fact, facing robotic issues concerns the design, the
construction, the operation, and the use of robots. In particular, two main
field of research have been investigated so far: swarm robotics (e.g., see [2, 20])
and modular robotics (e.g., see [3]).
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The former is mainly about robotic systems in which interconnected enti-
ties can somehow recover from failures or rearranging themselves in order to
accomplish the required task (eg, see [23]). Their main objective is to achieve
systems that are more versatile, affordable, and robust than their standard
counterparts, at the cost of a probable reduced efficacy for specific tasks, see,
e.g. [1, 22].

The latter mainly differ from modular robotics as individual robots in the
system do not need to be connected with each other all the time, but they
are usually fully autonomy mobile units (see, e.g., Kilobot [19]). The inter-
action among robots specified by means of robots’ capabilities should lead to
a desired collective behaviour. The approach has been mainly investigated
in the field of artificial swarm intelligence, but it finds applications also in
biological studies of insects, ants and other fields in nature, where swarm
behaviour occurs. The research concerning swarm robotics is mainly focused
on theoretical aspects, by considering robot systems in the abstract, where
capabilities of the robots as well as the complexity of the environment are re-
duced to their minimum. Basic models widely investigated in this context are
the Amoebot model [12, 13], and the more recent Silbot [8, 9], Moblot [4],
and Pairbot [15] models. One of the main issue faced when dealing with
such models is that they help, in general, in rigorously analyse the designed
algorithms, hence providing new theoretical insights that subsequently also
extend the practical aspect of the studied systems.

One of the models well investigated in swarm robotics is certainly OBLOT
(see, e.g., [5, 6, 7, 10]). Such a model can be considered as a sort of framework
within which many different settings can be manipulated, each implied by
specific choices among a range of possibilities, with respect to fundamental
components like time synchronisation as well as other important elements,
such as memory, orientation, mobility and communication. Settings are often
maintained at their minimum.

From a practical view point, the technology required to implement algo-
rithms designed within OBLOT does not rely on special sensors nor actua-
tors. Hence, cheap hardware might be used and experimented. An example of
real robots working this way can be found in [11, 18, 21]. In general, robots’
capabilities are maintained as weak as possible so as to understand what is
the limit for the feasibility of the problems. Moreover, the less assumptions
are made, the more a resolution algorithm is robust with respect to possible
disruptions.

In this paper, we propose a new practical swarm robotic system. Our study
started from educational purposes but we believe it can find many interesting
applications, suggesting non-trivial solutions in case of reduced capabilities
allowed to the robots.
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2 System model and communication protocol

We envision and implement a robotic system where a set of identical robots is
equipped with the following minimum components: one sensor, one actuator
and one communication subsystem.

All robots operate in a finite environment, acquiring data from it through
the sensor (position) and interacting with it through the actuator (motion).
In what follows we frequently refer to robots as ANTs. An optional monitor
(laptop) module is used to start, stop and monitoring the robots; it is con-
nected to the same communication subsystem of ANTs, but it does not in-
teract with the environment nor participate to the robots’ behaviour. The
robot model is depicted in Fig. 1.

Other important constraints for robots regard the limited computational
and memorisation capabilities. Those lead to keep main attention on efficient
algorithms that cannot count on complex sensors and actuators.

Further, this choice is aimed at experimenting with real-time systems for
resource constrained devices. To this ending, it is important to accurately
define the memory settings for the data structures in each single task, as well
as the composition of tasks at a higher level.

robot

ANTs

environment
square

monitor

Laptop

actuator
motion

sensor
position

communication

wireless

Fig. 1: System model.

The communication subsystem we consider implements a mutual-exclusive
ring protocol where a set of z robots, denoted with R = {r0, . . . , rz}, provide
to each other their position in the environment. What a robot sends on its
turn t, with t ∈ [0, z], is a broadcast message bt = rt||rt+1||currPos where rt
is the identifier of itself, rt+1 is the identifier of the robot that will broadcast
the message bt+1 on the next turn and currPos is the current position of rt on
the environment. An additional payload can be provided with bt, consisting
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of information for verifying the correct reception of the message and a bit to
control the start and stop of all robots by the monitor.

Each robot is configured to be in two states, the listening state SL and the
broadcasting state SB . When it is not his turn to communicate, a robot is
always in SL, parsing the message received form the only robot rt of the ring
enabled to broadcast. Once received, a robot in SL obtains from the message
bt the current position sent by rt, storing it locally, and checks if rt+1 matches
its identifier. If so, the robot switches to state SB . At each turn t, the rt robot
in SB assembles and broadcasts the message bt by deriving the identifier of
the next ring member and the current position. In order to detect faulty ring
members, two local timeouts are set in each robot, a global timeout Tg and a
response timeout Tr. The first is of the order of seconds, the time required for
a complete ring round trip. It is useful both to start the protocol, ensuring
that the first robot started enters in SB , and to prevent the protocol from
ending. The second is used in the SB state so that the broadcasting robot
rt verifies that the next member of the ring is active. If not, the robot rt
will continue this acknowledgement i times with the successors of rt+1 until
a robot rt+1+i in the ring responds with a broadcast message.2 All the robots
rt+1...rt+i are declared inactive for the turn t and will be allowed to re-enter
in the successive turns. Our ring protocol is implemented by a single infinite
loop algorithm installed in all robots, see Algorithm 1. We call this program
RACom together with two subroutines listen and broadcast.

2.1 Implementation details

Our implementation of the model is made up of small ANTs, a platform on
which they operate and an optional monitoring computer. Each ANT (see
Fig. 2a) consists of:
• One load-bearing aluminium structure on which it is positioned a Arduino

UNO (ATmega328P at 16 MHz, 2 KB SRAM, 32 KB);
• Two stepper motor SY35ST26-0284A with 200 step and Adafruit Motor

Shield v2.3;
• One RGB light sensor TCS34725;
• One serial wireless module HC-12 433 MHz SI4438;
• Two 9 volts rechargeable battery 900 mAh.

The platform on which the ANTs move is a two meters square. The surface
is made of coloured photographic paper (see Fig. 2b). Colours are distributed
so as a robot can deduce its position by sensing the corresponding colour.
The system can be monitored using a notebook with a specific ANT (Arduino
and communication module only) connected via USB. The software has been
designed in C with FreeRTOS [14]. Four subroutines have been realised:
2 Sums in the subscript of the robots’ identifiers must be considered modulo z.
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Algorithm 1 RACom
1: while true do
2: if init = false then
3: Let z be the number of robots
4: Let myID be the robot’s identifier
5: Start global timeout Tg

6: Set state = SL

7: Set init = true
8: end if
9: if Tg not expired then

10: listen()
11: end if
12: if Tg expired then
13: broadcast()
14: end if
15: end while
16:
17: function broadcast :
18: Set i = 1, t = myID, state = SB

19: while state = SB do
20: Set t = (t+ i) mod z
21: Set currPos
22: Set bmyID = myID||rt||currPos
23: Broadcast message bmyID

24: Start response timeout Tr

25: while Tr not expired do
26: listen()
27: end while
28: i = i+ 1
29: end while
30: end function
31:
32: function listen :
33: Read bt from serial
34: if bt not empty then
35: Parse rt+1 from bt
36: if rt+1 = myID then
37: broadcast()
38: end if
39: if rt+1 ̸= myID then
40: Set state = SL

41: end if
42: Restart Tg

43: end if
44: end function

• Communication routine. It deals with the communications among ANTs.
The driver of the HC-12 module performs a timed reading of the buffer and
transfers the data to the Communication routine which interprets them
and sends them to the other ANTs involved in the communication;
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(a) One of our own built ANTs. (b) The coloured surface among which
ANTS move.

Fig. 2: Our implementation of the ANTs system.

• Position routine. It deals with the identification of the positioning of the
ANT. The TCS34725 module drive takes timed readings of the RGB values
of the surface under the ANT. The values are transferred to the Position
routine which interprets them by two functions:

map(r, g, b) → sites: Given a tuple of red, green, blue values, map pro-
duces the set sites composed by all the coordinates of the plane that
are consistent with these values. Note that although the plane has been
generated in such a way that the uniqueness of colours for each point
is guaranteed, the low sensitivity of the sensors or interference can pro-
duce incorrect reading values;

trace(traces, sites) → (x, y): Given two sets of points, traces and sites,
the trace function identifies the point where the ANT is located, select-
ing among the sites those that are consistent with the path taken.

• Motion routine. It deals with the motion of the ANT. The motion is
made by sending commands to Adafruit Motor Shield. A control has been
created that allows to issue commands for the advancement in a straight
line, the curves with a given arc and control of the accelerations in order
to have a fluid motion without jerks. This is also useful for preventing
the wheels from losing grip. This feature makes it possible to monitor, by
means of a feedback system, the real position of the ANT with respect to
that reached after a movement.

• Brain routine. It deals the autonomous control of all the system. This
routine allows the coordination of the system by interacting with all the
other routines and realising its objectives. A mini control language has
been created that allows to load the objectives with a laptop connected
to the ANTs network. Once the relative objectives have been loaded on
the ANTS, the function of the laptop is for supervision only (position and
states of the ANTs) or it can be disconnected from the network.
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Fig. 3: Software architecture.

Timed callbacks have been created in order to manage the hardware mod-
ules TCS34725 (colour sensor) and SI4438 (wireless communication). The
routines and callbacks are connected via queues for correct interactions. The
general architecture is shown in Fig. 3.

2.2 Patrolling

An example of task for which we applied the ANTs system previously de-
scribed concerns the Patrolling. The requirement is to continuously moni-
tor/visit the area of interest (our coloured square surface) without incurring
in colliding ANTs. Moreover, ANTs are subject to disruptions, that may in-
terrupt their functioning. Hence, we aim to design a fault-tolerant distributed
algorithm to solve Patrolling. Due to the reduced capabilities of the ANTs, a
simple solution in terms of running complexity is also required.

In our system each ANT broadcasts its position according to the described
mutual-exclusive ring protocol. In so doing, all ANTs have a map with the
coordinates of all ANTs continuously updated. Referring to this map and
its current position, an ANT calculates two movements, “going straight” or
“dodging”. The idea is that, based on two consecutive positions of each other
ANT, an ANT can understand whether along its (straight) way a collision
may occur, in which case it decides to slightly deviate in order to avoid the
positions occupied by the other ANTs. Deviations are also required if the
border of the area to monitor is reached. If an ANT breaks, clearly it cannot
communicate its position during its turn. Hence, all other ANTs can deduce
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Fig. 4: ANTs patrol coverage.

that the ANT is broken by exploiting the associated timeouts not met by the
broken ANT. In so doing, the failure will not alter the correct functioning of
the ANTs. An ANTi can avoid the border or any other ANTj , with i ̸= j,
along its way, by calculating the dodging movement. ANTi can in fact deduce
the direction (in terms of angle αij wrt the coordinate system given by the
area of interest) and hence the vector between the two coordinates (xi, yi) and
(xj , yj). If αij is large enough and the obstacle is close enough (with respect
to a predefined safety measures), ANTi will turn according to the sign of
the angle, otherwise it continues to go straightforward. A similar approach
is used in [16]. Our solution differs in the use of less expensive hardware and
that the calculation is done on the basis of the positions of the ANTs.

We build a simulator for our solution in ARGoS [17]. The goal is to trace
the coverage of the area of interest where ANTs perform the patrolling. The
environment is configured to be a square of (−2, 2) length per side in the
ARGoS unit. In there, 10 ANTs are randomly placed with uniform distri-
bution at the start of the simulation. We run 80 seconds simulation and we
detect 5 coordinates per second from each ANT, collecting 4000 coordinates
in total. The speed of the ANTs is set in a reasonable way to avoid errors
in the simulation. In Fig. 4 we show the coverage obtained, it is possible to
notice a coverage of more than the 90% of the area.

3 Conclusions and Future Work

We have proposed a new platform for the implementation of modular robotics
solutions where robots’ capabilities have been reduced to their minimum. Al-
though we started from educational intents, we believe the composed system
has some potentials that can be exploited for designing non-trivial solutions
in environments where robots cannot count on sophisticated hardware. We
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have reported our experience by means of a basic task, namely the Patrolling.
It is worth noting that in the proposed solution each ANT moves in a de-
terministic way. Instead, we could modify this behaviour by considering that
each ANT calculates future positions in a random way such that, by knowing
the future locations of the other ANTs, each ANT can decide in advance to
travel a safe path. We conjecture that such an algorithm might be a good so-
lution to the Patrolling task and it might be even faster in terms of number of
iterations. We plan to verify the conjecture by making comparisons with our
current system via the simulator, possibly defining also different movement
policies.

Another direction of research that deserves investigation is about the pos-
sible tasks that can be approached within the simple proposed system. For
instance, an interesting task where a competitive rather than collaborative
behaviour must be designed has been faced while investigating the so-called
Puss in the corner puzzle. Six ANTs are placed at the corner of a regular
hexagon and one is placed in the centre. From this initial configuration, a
configuration must be reached where each ANT does not occupy its initial
position. In this case, the choice of each ANT competes with all the other
ANTs to achieve its goal.
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