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Abstract: We numerically investigate the transport of a Brownian colloidal particle in a square array
of planar counter-rotating convection rolls at high Péclet numbers. We show that an external force
produces huge excess peaks of the particle’s diffusion constant with a height that depends on the force
orientation and intensity. In sharp contrast, the particle’s mobility is isotropic and force independent.
We relate such a nonlinear response of the system to the advection properties of the laminar flow in
the suspension fluid.

Keywords: brownian motion; classical transport; convection rolls; advection enhanced diffusion

1. Introduction

Under quite general conditions, the fluctuation-dissipation theorem relates the re-
sponse of a system to an external perturbation with its equilibrium dynamics [1]. However,
the theorem’s predictions do not apply either in the nonlinear response regime, when
higher order corrections to the response functions grow appreciably, or out of equilibrium,
when the detailed balance is broken and currents flow across the system [2]. The theorem
can then be generalized in various ways [3].

An archetypal example of nonlinear response is represented by the dynamics of a
tracer particle moving in a complex medium under the action of an external force ~F. Two
common response quantifiers are the tracer’s mobility, µ, and its diffusion constant, D,
in the force direction. Upon increasing F, both observables are strongly affected by the
interaction between the tracer and its surrounding medium. This approach has inspired
active microrheology techniques [4], whereby the local and bulk mechanical properties
of a complex fluid, such as emulsions, suspensions, polymers, and micellar solutions, are
extracted from the motion of probe particles embedded within it.

Among the most surprising effects of the nonlinear response in nonequilibrium sys-
tems are negative differential mobility [5] and absolute negative mobility [6]. The former is
due to the changes of the medium caused by the driven tracer, whereas the latter results
from a more subtle combination of time memory, spatial asymmetry, and driving fields [7].
Negative differential mobility is a relatively more frequent phenomenon [8]. It has been
detected in geometries characterized by the emergence of entropic channels, with a driven
particle squeezing its way through a periodic array of rigid pores. These are effective
barriers of an entropic nature [9], which oppose the action of the external drive with height
dependent on the drive itself [10]. Another instance of negative differential mobility has
been reported for driven tracers in crowded environments [11,12], whereas the magnitude
and extension of the effect is controlled by the density and diffusion time of the obstacles.

A somehow related problem is particle transport in arrays of convection rolls. Here,
geometric constraints [13–15] are replaced by advection cells. This is a recurrent problem in
today’s nanotechnology [16,17] with promising applications in chemical engineering [18].
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Under quite general conditions, the combined action of advection and thermal fluctua-
tions in the suspension fluid is known to accelerate particle diffusion, an effect known
as advection enhanced diffusion (AED) [19,20]. However, the effects of an external drive
on the mobility and diffusion constant of an advected passive tracer have been scarcely
investigated in the current literature [21].

Let us consider a massless Brownian particle suspended in a square lattice of counter-
rotating convection rolls with periodic stream function (Figure 1),

ψ(x, y) = (U0L/2π) sin(2πx/L) sin(2πy/L). (1)

Here, L is the size of the flow unit cell, U0 the maximum advection speed at the roll
separatrices, ΩL = 2πU0/L the maximum vorticity at their centers, and DL = U0L/2π
an intrinsic flow diffusion constant. The mobility of an overdamped Brownian particle in
an incompressible flow is µ = 1, regardless of the applied force ~F [21]. Conversely, our
numerical simulations show that the diffusion constant depends on both the modulus and
the orientation of ~F. The nonlinear nature of the system response is apparent since µ is
isotropic in the plane x-y, whereas D is strongly anisotropic, with maxima in the diagonal
direction. Moreover, D exhibits huge peaks for F of the order of the advection drag, U0,
which we interpret as excess diffusion peaks due to the interplay of drive and advection
along the roll separatrices of ψ(x, y).

π     

F

F

(b)

π     π     

−π     

y0

θ = π /4

π     

Figure 1. Driven particle in a square convection array of Equation (1) with L = 2π. The force ~F
(dark blue arrow) is oriented: (a) diagonal to the convection rolls (θ = π/4); (b) parallel to the x axis
(θ = 0). Parallel periodic channels are delimited by solid black lines; arrows denote the advection
velocity field, ~u (light-blue), and the drag orientation along the channel edges (thick, gray).

This paper is organized as follows. In Section 2, we present our model and briefly
recap recent results on AED in unbiased laminar flows [22]. In Section 3, we summarize
some new numerical results obtained in the presence of an external planar force of tunable
intensity and orientation. We focus on the profile of the D(F) curves, namely on their
horizontal asymptotes and remarkable excess diffusion peaks. Three drive orientations
deserve special attention, namely diagonal with respect to the main axes of the square roll



Entropy 2021, 23, 343 3 of 10

array and parallel to them. Such special cases are discussed in Sections 4 and 5, respectively.
In Section 6, we anticipate future venues for this line of research.

2. Model

A point-like Brownian particle diffusing in the flow with stream function ψ(x, y),
Equation (1), obeys the Langevin equations,

ẋ = ux + F cos θ + ξx(t), ẏ = uy + F sin θ + ξy(t), (2)

where x and y are the particle’s coordinates, ~u = (ux, uy) = (∂y,−∂x)ψ is the incompress-
ible advection velocity vector, ~∇ · ~u = 0, and ~F = F(cos θ, sin θ) a tunable, uniform field,
termed here “force”, oriented at an angle θ with respect to the x axis. As illustrated in
Figure 1a, the array unit cell consists of four counter-rotating convection rolls. The random
sources, ξi(t) with i = x, y, are stationary, independent, delta-correlated Gaussian noises,
〈ξi(t)ξ j(0)〉 = 2D0δijδ(t), modeling equilibrium thermal fluctuations in a homogeneous,
isotropic medium. In our notation, D0 coincides with the particle’s free diffusion constant
in the absence of advection. Upon adopting the flow parameters, L and Ω−1

L , as convenient
length and time units, the only remaining tunable parameters are the noise strength, D0 (in
units of DL), and the force parameters, F (in units of U0) and θ.

The stochastic differential Equation (2) were numerically integrated by means of a
standard Mil’shtein scheme [23]. To ensure numerical stability, numerical integration was
performed using a very short time step, 10−5–10−4. The stochastic averages reported here
were computed over at least 107 samples (trajectories). Computing the asymptotic diffusion
constants requires extra caution, because at low noise, the advected particle may take an
exceedingly long time to exit a convection roll [24]. Indeed, since the external force ~F
breaches the C4 symmetry of ψ(x, y), we compute the diffusion constants along the x and
y axes,

Dx = lim
t→∞
〈[∆x(t)]2〉/2t, Dy = lim

t→∞
〈[∆y(t)]2〉/2t, (3)

where ∆x(t) = x(t)− 〈x(t)〉, ∆y(t) = y(t)− 〈y(t)〉, and 〈. . . 〉 denotes a stochastic average.
These two diffusion constants will be investigated as distinct functions of F and θ in lieu of
the diffusion constant in the force direction, D(F), introduced in Section 1. Of course, in
view of the C4 symmetry of the stream function of Equation (1), one proves immediately
that Dx(θ) = Dx(−θ) and, more importantly, Dy(F, θ) = Dx(F, π/2− θ).

Subject to thermal fluctuations of strength D0, an unbiased advected particle with
F = 0 undergoes normal diffusion with an asymptotic diffusion constant, D = Dx = Dy.
AED takes place at high Péclet numbers, Pe = DL/D0 � 1, whereby D turns out to be
larger than the free diffusion constant, D0. This effect has been explained [19–21,25–27] by
noticing that, at low noise, an unbiased particle jumps between convection rolls thanks to
advection, which drags it along the outer layers of the convection rolls, or flow boundary
layers (FBLs), centered around the ψ(x, y) separatrices. Thermal diffusion across such
narrow FBLs favors particle roll jumping, thus enhancing spatial diffusion [24].

At zero bias, the asymptotic diffusion constant, D, changes from D = κ
√

DLD0 for
Pe � 1 to D = D0 for Pe � 1. The constant κ depends on the array geometry and
boundary conditions [19,26]. For the unbiased, square free-boundary convection array of
Equation (1), κ ' 1.07 [19], consistent with previous numerical results [24]. The crossover
between these diffusion regimes is well localized around D0 ' DL [27]; hence, AED
occurs for D0 < DL. Many numerical and experimental papers support the FBL-based
interpretation of AED [28–32].

The relevant mobility functions are computed by taking the limits:

µx = lim
t→∞
〈x(t)〉/Ft, µy = lim

t→∞
〈y(t)〉/Ft. (4)

We numerically checked that µx = µy = 1 for any choice of F and θ, as to be expected in
the notation of Equation (2).
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In a recent paper, we investigated the effect of a longitudinal force, say F = Fx, on
the trajectories of a tracer particle [22]. For small F values, the tracer is advection dragged
along the boundaries of a convection roll until, after completing several rounds, it jumps
into an adjacent one (preferably in the force direction). The FBL width, δ, is of the order
of the length diffused by a free Brownian particle during a full convection round, that
is δ = (D0/ΩL)

1/2 [19,20]. Upon increasing F, the tracer’s circulation along the roll
boundaries stops, while its trapping inside the convection rolls grows but is short lived.
The underlying FBL breakup mechanism occurs at a certain threshold value of the drive,
Fc. We estimated Fc by equating the FBL width, δ, with the net displacement undergone by
a driven tracer while being advected across a convection roll, F/4ΩL; hence [22]:

Fc/U0 = 4
√

D0/DL. (5)

More numerical evidence of the critical nature of the dynamical transition taking place at
F ∼ Fc will be provided in an upcoming full-length paper [33].

3. Diffusion Anisotropy

The main results of this work are illustrated in Figure 2, where several Dx(F, θ) curves
are plotted versus the force intensity, F, for increasing values of the angle θ in the interval
[0, π/2]. A few properties of the longitudinal diffusion constant for Pe� 1 are noteworthy:

1 0 - 2 1 0 0 1 0 2

1 0 - 1

1 0 1

0 . 1
1 0 - 1

1 0 0

1 0 - 3 1 0 - 1
1 0 0

1 0 2

F / U 0

D x/D L

U 0 = 1 , Ω 0 = 0 , α = 1 , D θ = 0 . 0 0 1 , v 0 = 0 , D 0 = 0 . 0 1 , g = 0

0 . 0 2 5 ( D 0 / D L ) - 1

D 0 / D L

D ma
x/D L

E n F i g 2

Figure 2. Longitudinal diffusion of a driven particle in a square convection array of Equation (1):
Dx/DL vs. F/U0 for D0 = 0.01 and different drive orientations (see legend). Dashed lines on the left-
and right-hand sides are respectively the predicted AED, κ

√
DLD0, and free diffusion constant, D0.

The vertical arrows denote our estimates for the FBL breakup threshold, Fc = 0.4, Equation (5), and
the position of the excess diffusion peak, Fm = 0.64, Equation (6). Inset: power-law fit of Dmax vs. D0

for θ = 0; see Equation (8). The flow parameters are U0 = 1, L = 2π, with DL = 1.

(i) The limits F → 0 and F → ∞ of all curves coincide respectively with the AED,
Dx = κ

√
DLD0, and the free diffusion constant, Dx = D0. While the former limit was

anticipated and discussed in Section 2, the horizontal asymptotes for F � U0 set in when
advection grows negligible with respect to the external drive, so that the driven particle
diffuses effectively advection-free [34].

(ii) Most Dx(F, θ) curves exhibit huge excess diffusion peaks for values of F ranging
between Fc, Equation (5), and:

Fm/U0 = 2/π. (6)
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Fm denotes the position of the diffusion peak for θ = 0 and can be estimated by equating
the drag time across a ψ(x, y) unit cell, τF = L/F, with the advection drag time around a
roll, i.e., a circle of radius L/4, τψ = (πL/2)/U0 [22].

We also observe that the height of the excess diffusion peaks in Figure 2, Dmax, is
inverse proportional to the noise strength, D0 (see the inset), and diminishes with increasing
θ from zero to π/2.

(iii) The profile of the Dx curves described in (ii) holds for all force orientations with
three remarkable exceptions: (1) θ = 0, where the diffusion peak is the most pronounced
and so broad that Dx overshoots D0 also for F � U0. (2) θ = π/2, where Dx bridges the
AED and free-diffusion constants smoothly, without going through a maximum. Its step-
like profile is centered at Fc. We recall that Dx(π/2) = Dy(0) is the transverse diffusion
constant corresponding to the longitudinal diffusion peak for θ = 0. (3) θ = π/4, where
longitudinal and transverse diffusion constants coincide and grow monotonically with F
until they level off to form a plateau, which can be higher than the diffusion peak at θ = 0.

With these exceptions, the diffusion peaks illustrated in Figure 2 can be regarded
as a manifestation of the so-called excess diffusion mechanism [35–37]. Let us consider
diffusion in the x direction. The applied force, ~F, has a twofold action. Its transverse
component, Fy = F sin θ, helps break up the advection FBL, thus forcing the particle to
diffuse along easy flow paths represented by the horizontal ψ(x, y) separatrices, y = ±nπ,
with n an integer. Its longitudinal component, Fx = F cos θ, pulls the particle along the
above horizontal paths, contrasted by advection. Longitudinal diffusion is then modeled
by the effective Langevin equation ẋ = U0〈cos(2πy/L)〉 sin(2πy/L) + Fx + ξx(t); see
Equation (2). This approximate equation holds good under the assumption that after FBL
breakup, the x and y coordinates can be regarded as decoupled. At low noise, Pe � 1,
the particle thus moves in the longitudinal direction subject to the advection washboard
potential of amplitude DL〈cos(2πy/L)〉. Depinning occurs for F & U0〈cos(2πy/L)〉 and
is marked by a conspicuous enhancement of the relevant diffusion constant, Dx. Along the
easy flow paths, |〈cos(2πy/L)〉| = 1. The magnitude of this effect, termed excess diffusion,
in a washboard potential is inversely proportional to the noise strength, D0 [37]. In the
present case, this argument is necessarily restricted to drive intensities with Fc < F < U0,
in agreement with our simulation results.

The case of an advected particle driven diagonally across the convection rolls is rather
unique and is treated in Section 4. The broad diffusion peak of a particle dragged parallel
to the main axes of the square convection array is the focus of Section 5.

4. Diagonal Diffusion

Driven diffusion in the diagonal directions across the convection rolls, θ = ±π/4, is
characterized by a unique F-dependence of the diffusion constant. As shown in Figure 3,
the curves Dx(F, π/4) = Dy(F, π/4) grow asymptotically independently of F, up to a
very high plateau. This points to a specific diffusion mechanism, which only holds in a
narrow θ interval centered around θ = ±π/4. In particular, we checked that this effect
does not occur along any other axes of the square convection array, that is for tan θ = m/n,
with m and n coprime integers different from one. What makes the diagonal directions so
special? Let us consider a couple of parallel straight paths, y = αx± y0, with α = tan θ and
0 ≤ y0 ≤ L/4 (Figure 1a), and take the average, ūθ , of the advection velocity along them,
uθ = ux(x, αx± y0) cos θ + uy(x, αx± y0) sin θ, with ux and uy defined in Equation (2). A
simple integration with respect to x yields ū/U0 = ± sin(2πy0/L)/

√
2, for α = ±1, and

ū/U0 = 0 otherwise.
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Figure 3. Diagonal diffusion constants of a driven particle in a square convection array of
Equation (1): (a) Dx/DL and (b) Dy/DL vs. F/U0 for θ close to zero and π/4 (legend split between
the two panels) and D0 = 0.01. Dashed lines on the left- and right-hand sides and all remaining
simulation parameters are as in Figure 2. The topmost dashed line is the predicted asymptote of
Equation (7).

This result suggests that the particle is advected in the opposite direction along any
two parallel paths with offset±y0. Accordingly, upon neglecting advection for F � U0 and
low noise, D0 � DL, diffusion in the diagonal direction is mostly due to path switching.
Indeed, propelled by thermal noise, the particle switches paths by diffusing the distance
y0/
√

2 between them in a time of the order of [34] τ(y0) = y2
0/4D0. This results in

a contribution Dx(y0) = ū(y0)
2τ(y0)/4 to the longitudinal diffusion constant. Finally,

averaging Dx(y0) with respect to y0 in the interval [0, L/4] yields:

Dx

DL
= Kd

(
DL
D0

)
, (7)

with Kd = π2/32(1/6 + 1/π2) ' 0.083. Of course, our average applies to any pair of
adjacent diagonal paths vertically spaced by multiples of L/2.

Our estimate, Equation (7), for the asymptote of Dx(F, π/4) is in close agreement with
the simulation data of Figure 3. In Figure 4, we plot the curves of Dx(F, π/4) obtained
for the same parameter values, except the noise strength was lowered by one order of
magnitude. As expected, Dx(F, π/4) approaches a plateau ten times higher as an effect of
the path switching mechanism advocated above.

Such a mechanism should not be mistaken for the excess diffusion mechanism recalled
in Section 3. Indeed, the latter requires that the transverse component of ~F is large enough
to pull the particle out of the top (bottom) longitudinal FBL branches, which happens
for |θ| > θc with θc = Fc/U0 and Fc given in Equation (5) [33]. On the contrary, the path
switching mechanism dominates in a small θ interval around θ = ±π/4, ∆θ < Fc/U0. Our
estimate for ∆θ is consistent with the data of Figures 3 and 4, where ∆θ appears to shrink
with increasing D0.
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Figure 4. Same as Figure 3, except D0 = 0.001.

5. Longitudinal and Transverse Diffusion

Advection impacts longitudinal (θ = 0) and transverse diffusion (θ = ±π/2), in a
distinct manner, as illustrated in Panels (a) and (b) of Figure 5. Simulation data for Dx(F, 0)
and Dy(F, 0) at high Péclet numbers are plotted versus F/U0, for different values of D0. A
few remarkable properties are apparent by inspection [22]:
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1 0 1
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1 0 0
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0 . 0 0 1
0 . 0 0 3
0 . 0 1

U 0 = 1 , = 0 , = 1 , D = 0 . 0 0 1 , v 0 = 0 , D 0 = 0 . 0 1 , g = 0 ,
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D y/D L

F / U 0

( b )

D 0 / D L =
E n F i g 5

Figure 5. Longitudinal and transverse diffusion constants of a particle driven in the convection array
of Equation (1) at θ = 0: (a) Dx/DL and (b) Dy/DL vs. F/U0 for different D0 (legend split between
the two panels). Dashed oblique curves are drawn by fitting Equation (8) with K0 = 0.025± 0.005
and F∗ = 0.60± 0.01 (denoted by a vertical dashed line). Dashed horizontal lines represent the
limits F → 0 and F → ∞, like in Figure 2, for two different values of D0; the relevant estimates of Fc,
Equation (5), are marked in (b) by vertical arrows of the same color. Other simulation parameters are:
L = 2π, U0 = 1, with DL = 1.
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(i) Both diffusion curves approach the respective limits κ
√

D0DL for F → 0 and D0
for F → ∞, as already noticed in Figure 2. The curves of the transverse diffusion constant,
Dy(F, 0), exhibit a smooth, step-like profile centered at F = Fc, whereas the longitudinal
diffusion peaks are much broader than the excess diffusion peaks observed for θ 6= 0, π/4
in Figure 2.

(ii) As anticipated in Section 3, the curves Dx(F, 0) peak around the same value of
the force intensity, Fm, for a wide interval of the noise strength, D0. Indeed, based on the
definition of Fm, Equation (6), for F = Fm, advection and external drag would nullify each
other along one horizontal FBL branch, while doubling their action along the opposite
one. Under this condition, the longitudinal diffusion constant is expected to attain a
maximum [38]. Moreover, at low noise, the peak height, Dmax, is inverse proportional to
D−1

0 , as reported in the inset of Figure 2.
(iii) The profiles of the Dx(F, 0) peaks are symmetric: Their left (right) sides rise (decay)

proportional to F2 (F−2). A working fitting formula for the longitudinal diffusion peaks of
Figure 5 is:

Dx

DL
= K0

(
DL
D0

)[
2F/F∗

1 + (F/F∗)2

]2
, (8)

where K0 and F∗ are fitting parameters. Our best fits in Figure 5 are obtained for F∗ =
0.60± 0.01, which is close to the expected value of Equation (6). The small discrepancy
can be attributed to the action of thermal noise, which, at high Péclet numbers, differs
significantly in the weak and strong drive regimes.

The fitting formula in Equation (8) can be interpreted by means of a heuristic argument.
The advection flows along the top and bottom array edge are spatially modulated with
period L and opposite in phase. Moreover, when trying to apply the edge switching
approach leading to Equation (7), we notice that the average of the advection drag, ū(±y0),
taken along the edges of a longitudinal channel of width 2y0, with 0 ≤ y0 ≤ L/4, vanishes
(see, e.g., Figure 1b). The ensuing edge switching process can then be regarded as an
alternating renewal process [39]. Accordingly, to calculate Dx for θ = 0, we need to
replace [22]:

uθ

U0
→ (F + ux)2 − (F− ux)2

(F + ux)2 + (F− ux)2 .

Finally, the spatial averages over a channel unit cell yield a result qualitatively consistent
with the fitting formula of Equation (8).

6. Conclusions

The response of an overdamped Brownian particle driven-advected in a 2D square
convection array shows large deviations from the predictions of the linear response theory.
While the mobility is independent of the drive orientation, its diffusion turns out to
be strongly anisotropic. Depending on the drive orientation, the diffusion constants
along the main array’s axes exhibit distinct peaks for advection and external drags of
comparable magnitude.

The anisotropic diffusion process investigated in this work should not be mistaken
with the anisotropic dynamics of a driven Brownian particle suspended in a fluid at rest in
a 2D lattice of obstacles of a given shape [13–15] or in other constrained geometries [40,41].
In the present case, the response of a tracer particle is strongly affected by the stationary
advection currents. Measuring its diffusion constants along special directions, parallel and
diagonal to the array axes, allows a direct characterization of the convection pattern at hand.
As mentioned in the Introduction, the generalizations of the fluctuation-dissipation theorem
have been proposed [3], which allow, at least in principle, a more refined analytic treatment
of this problem. Interesting, in this respect, also is the multiscale scheme developed in [42].

As a natural extension of the approach presented in this paper, we plan to investigate
the anisotropic response of active Brownian particles next, either biological or synthetic, in



Entropy 2021, 23, 343 9 of 10

convection arrays [27,43,44]. We are confident that a better understanding of the diffusion
of self-propelling particles in patterned convection flows is likely to play an important role
in controlling the driven transport of active matter in microfluidic devices.
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