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In this work we devise a theoretical and computational method to compute the
elastic scattering of electrons from a non-spherical potential, such as in the case
of molecules and molecular aggregates. Its main feature is represented by the
ability of calculating accurate wave functions for continuum states of polycentric
systems via the solution of the Lippmann-Schwinger equation, including both the
correlation effects and multi-scattering interference terms, typically neglected
in widely used approaches, such as the Mott theory. Within this framework,
we calculate the purely elastic scattering matrix elements. As a test case,
we apply our scheme to the modelling of electron-water elastic scattering.
The Dirac-Hartree-Fock self-consistent field method is used to determine the
non-spherical molecular potential projected on a functional space spanned by
Gaussian basis set. By adding a number of multi-centric radially-arranged s-type
Gaussian functions, whose exponents are system-dependent and optimized to
reproduce the properties of the continuum electron wave function in different
energy regions, we are able to achieve unprecedented access to the description
of the low energy range of the spectrum (0.001 < E < 10 eV) up to keV, finding
a good agreement with experimental data and previous theoretical results. To
show the potential of our approach, we also compute the total elastic scattering
cross section of electrons impinging on clusters of water molecules and zundel
cation. Our method can be extended to deal with inelastic scattering events and
heavy-charged particles.

KEYWORDS

water clusters, molecular interactions, hydrogen bonds, Ab initio calculations, elastic
scattering, Dirac-Hartree-Fock self-consistent field, gaussian function basis set

1 Introduction

A complete understanding of the collision processes of charged particles with atoms,
molecules, and solids is of paramount importance in several areas of physics, chemistry,
and medicine. On the one hand, electron and ion beams are used for manufacturing
devices, such as in lithography techniques to fabricate integrated circuits or other
nanostructures (Dapor, 2020). On the other hand, scattering experiments involving
charged projectiles may represent a tool to “extend our vision”. Indeed, by tuning the
kinetic energy of the impinging particles, we can characterise the spectrum of materials
electronic and optical properties and probe different time (or frequency) and length (or
momentum) scales, such as in energy loss (Azzolini et al., 2017; Azzolini et al., 2018b;

Frontiers in Materials 01 frontiersin.org

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2023.1145261
https://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2023.1145261&domain=pdf&date_stamp=2023-03-08
mailto:taioli@ectstar.eu
mailto:stefano.simonucci@unicam.it
https://doi.org/10.3389/fmats.2023.1145261
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmats.2023.1145261/full
https://www.frontiersin.org/articles/10.3389/fmats.2023.1145261/full
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Triggiani et al. 10.3389/fmats.2023.1145261

Azzolini et al., 2020; Pedrielli et al., 2021; Pedrielli et al., 2022),
secondary electron (Azzolini et al., 2018a; Taioli et al., 2022a),
and Auger (Taioli et al., 2009; Taioli et al., 2010; Colle et al.,
2004a; Colle et al., 2004b; Taioli and Simonucci, 2015; Taioli and
Simonucci, 2021b; Taioli et al., 2015) spectroscopies. Moreover,
the modelling of charge transport and flow inside materials
(Dapor, 2020) and different media, such as stellar and interstellar
plasma (Maciel, 2013) or biological matter (Nikjoo et al., 2016), is
fundamental for the interpretation of phenomena ranging from
the nucleosynthesis of the chemical elements in evolved stars
(Simonucci et al., 2013; Morresi et al., 2018; Vescovi et al., 2019;
Palmerini et al., 2021; Taioli et al., 2022b; Mascali et al., 2022)
to hadrontherapy treatments for cancer cure (Taioli et al., 2020;
Pedrielli et al., 2021; de Vera et al., 2022b).

In all these processes the charged particles undergo scattering
events that can be classified as either elastic or inelastic. In inelastic
scattering energy is exchanged between the projectile and the target
constituents resulting in energy loss of the incident particle.The loss
pattern, which can be caused by several mechanisms, can be used
to analyse the target properties. For example, in materials science
electron beams are employed as a probe of the electronic and optical
properties, such as in analytical techniques like scanning (SEM) and
transmission (TEM) electron microscopy.The energy transferred to
the specimen produces an energy loss of the primary beam, which
leads to a range of useful signals that can be used to characterize the
material. At variance, elastic scattering occurs with no energy loss
experienced by the incident primary electron. Elastically scattered
electrons change their direction of motion without changing their
wavelength. For example, coherent elastic scattering is a common
mechanism exploited in electron diffraction to analyze the structure
of bulk crystals and surfaces, such as in the low energy electron
diffraction (LEED) technique.

Despite the recognized maturity of the experimental research
field in electron scattering and charge transport, the quality (or
nature) and the quantity of the experimental results available, the
theoretical assessment of the cross sections of scattering events
involving electrons is still essential for enabling us to resolve the
combined effects on the spectral lineshape due to the intrinsic
features of the intraband and interband transitions, the vibrational
and rotational details, and the characteristics of the incident beams
and of the electron spectrometer apparatus. To deliver such an
accurate theoretical description of the irradiation and of its role to
initiate physical-chemical processes, one must develop a framework
capable of dealing with three main issues. First, a treatment of
the electron repulsion that includes the correlation effects within
the system and between the projectile and the (ionic) system,
particularly at low energy where these effects are more significant;
second, the calculation of the continuum orbital at a given positive
energy, as the scattering matrix is rather sensitive to the quality of
such wave function; finally, a computational effort that should be
of the same order of magnitude as that of standard bound state
calculations.

In this work we focus on these three aspects by developing
a theoretical and computational method for modelling the elastic
collision of electrons from non-spherical potentials, which we apply
as a test case to electron-water molecules scattering, a well-known
and much studied problem. Water is indeed the main constituent of
biological tissues, and electron-water collisions are crucial events e.g.

in the hadrontherapy techniques for cancer cure that aim to induce
unrecoverable bio-damage to tumor cells. Surprisingly, the radiation
damage is mostly due to low-energy electrons, generated upon
collisions of impinging hadrons, such as protons or charged ions,
with biological tissue rich in water (Gorfinkiel et al., 2005; Taioli
and Tennyson, 2006b; Taioli and Tennyson, 2006a; de Vera et al.,
2022b; Taioli et al., 2020). However, the mechanisms underlying the
radiation-based killing of tumor cells in cancer therapies have not
yet been fully understood, especially at low energy where quantum
effects are dominant (Signorell, 2020; Song et al., 2021). In fact, in
our analysis we were driven by the lack of reliable experimental
and theoretical data in low-energy (below 10 eV) electron-water
elastic scattering, despite the study of electron scattering in
liquid water being a very active field of research (Gianturco
and Scialla, 1987; Gianturco et al., 1998; Gorfinkiel et al., 2002;
Faure et al., 2004; Gorfinkiel et al., 2005; Itikawa and Mason, 2005;
Taioli and Tennyson, 2006b; Zhang et al., 2009; Kadokura et al.,
2019; Signorell, 2020; Song et al., 2021). Theoretical analysis is in
particular hindered by the intrinsic difficulty to fully account for
the physical properties of water assemblies from first principles,
such as the existence of a permanent dipole moment, the electron-
electron exchange-correlation interaction between the incoming
electron and the scattering center, the numerous electronic excited
configurations coupled with roto-vibrational states, and the inter-
and intra-molecular multiple scattering effects.

Indeed, it was immediately understood that the elastic scattering
cross section for a polar molecule diverges at all impinging electron
energies within the Born approximation, where nuclei are fixed
(Altshuler, 1957; Garrett, 1972) (as in the case of a bare Coulomb
potential generated by a point-particle, see e.g. the Rutherford
elastic cross section), and that rotations should be taken into
account to achieve a finite value. Moreover, it was also realised
that the electron elastic scattering is dominated by small scattering
angles (Fabrikant, 2016; Fedus and Karwasz, 2017). In fact, also in
currently and widely used approaches based on the Mott’s theory
(Salvat et al., 2005) these effects are included semi-empirically, while
the inter-atomic potential is treated as a mere superposition of
atomic contributions neglecting the overlapping tails of the atomic
potentials. More recently, Tennyson and coworkers used the R-
matrix approach to study the electron and positron collisions with
polar molecules, such as water, at low energy (Gorfinkiel et al.,
2002; Faure et al., 2004; Gorfinkiel et al., 2005; Taioli and Tennyson,
2006b; Zhang et al., 2009; Kadokura et al., 2019; Song et al., 2021).
The R-matrix approach to scattering consists in dividing the system
into an asymptotic region, where the non-interacting wave function
is analytically known, and a scattering region, where the electron-
molecule interaction is accounted for by high-accuracy quantum-
mechanical methods, such as configuration interaction or coupled
cluster. The matching of the inner and outer solutions at the
boundary leads to important scattering information, such as phase
shift and transmission probability. Nevertheless, these analyses were
related to a single water molecule for impinging electron kinetic
energies larger than 10 eV, also due to the lack of experimental
data, typically carried out in water vapour, in this energy range.
Furthermore, the R-matrix approach makes use of a partial wave
expansion to represent the scattering electron inside the inner
sphere, whereby the presence of large dipole moments means that
such expansion is only slowly convergent (Tennyson, 2010).
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With this in mind, our primary goal is to develop a method that
does not suffer the limitations of the previous approaches and allows
one to reproduce accurately the experimental results; moreover it
is sufficiently general to be applied not only to the analysis and
interpretation of the elastic scattering cross sections of electrons
colliding with (polar) molecular aggregates but also to be extended
to the study of other inelastic scattering processes, such as excitation
and ionization, since its central feature is the ability of calculating
accurate wave functions for continuum states of polycentric systems.

Our approach to assess the elastic scattering cross section (ESCS)
of electrons (in general applicable to charged particles) is fully
ab initio and consists in the following steps. First, we solve self-
consistently the Dirac-Hartree-Fock (DHF) equations for the single
water molecule or the water clusters, thus taking into account
relativistic effects that may include spin-flip and polarization of
the beam spin. We expand the electronic wave functions and the
Coulomb potential for fixed nuclear positions using an Hermite
Gaussian function (HGF) basis set, which is enlarged and optimized
with more or less diffuse functions to reproduce the properties
of the continuum electron orbital in different energy regions. We
then build the scattering cross section by computing the solution
of the Lippmann-Schwinger (LS) equation for the scattering state
(Taioli et al., 2010) with the Coulomb potential term projected into
the functional space spanned by the Gaussian basis set.

At first, we benchmark our method by comparing the results
obtained using finite differences with one- and two-dimensional
model potentials, where exact solutions for the scattering phases can
be computed by accurately integrating the Schrödinger (or Dirac)
equations. Moreover, we discuss elastic scattering on a single water
molecule, and we further extend the investigation to clusters of
water molecules in liquid phase and water aggregates, such as the
zundel cation, to mimic the presence of surrounding molecular
environment in order to rigorously determine the effect of multiple
scattering on the elastic scattering cross section.

This article is organised as follows: in Section 2 we will discuss
the basics of our theoretical and computational method, such as the
projected potential method using HGF basis set in connection with
the LS equation, and its benchmark with a toy model potential in
one and two dimensions; to show its capabilities and accuracy, in
Section 3 we apply our framework to the calculation of the total
elastic cross section of electrons colliding with a single, a cluster,
and an aggregate of water molecules. In Section 4 we present final
remarks and conclusions.

2 Theoretical and computational
methods

2.1 Differential and total elastic scattering
cross sections

The ESCS, which we aim to compute in this work, is defined as
follows:

σel (T) = ∫
Ω

dσel (T,Ω)
dΩ

dΩ, (1)

where T is the kinetic energy of the primary beam, and
dΩ = sin θdθdϕ defines the differential solid angle. The differential

elastic scattering cross section (DESCS) appearing in Eq. 1 can be
obtained by following two different routes. On the one hand one can
apply the relativistic Mott theory (Mott, 1929), whereby the DESCS
of electrons impinging on a single molecule can be computed as
(Salvat et al., 2005; Dapor, 2020):

dσel (T,θ)
dΩ
=N ∑

m,n
e(iq⋅rmn) [ fm (θ) f

*
n (θ) + gm (θ)g

*
n (θ)] , (2)

where rmn = rm − rn is the distance between the atoms m and n
within the molecule, N is the target atomic number density, and q
and θ are the momentum transfer and the scattering angle; finally
fm,n(θ) and gm,n(θ) are the direct and spin-flip scattering amplitudes
of the atomic species m,n, respectively. fm,n(θ) and gm,n(θ) can be
obtained by solving the Dirac equation in a central atomic potential
for the single atomic constituent.

To take into account the presence of bonded interactions
between different chemical species in Eq. 2 the sum is carried out
using atomic scattering amplitudes weighted by an exponential
displacement (rather than probabilities), allowing for interference
and intramolecular scattering. Nevertheless, within this approach
the calculation of the molecular scattering potential and of the
continuum electron wave function is carried out as a mere
superposition of independent atomic centers, thus neglecting the
overlapping tails of the long-range part of the Coulomb interaction
and the relevant multiple scattering effects. In this framework,
consequently, the presence of the electrical polarity due to charge
separation, such as the permanent dipole moment of liquid water
that has a dramatic effect on theDESCS, is superimposed and treated
semi-empirically.

The presence of surrounding water molecules in the liquid
phase, which are randomly oriented can be taken into account by
averaging Eq. 2 over all the possible spatial orientations, which leads
to the following relation:

dσel
dΩ
= ∑

m,n

sin(krm,n)
krm,n

( f *m (θ) fn (θ) + g
*
m (θ)gn (θ)) . (3)

Again, Eq. 3 does neglect both multiple scattering effects, as
atoms are treated as independent scattering centers, and the overlap
between the long-range parts of the intermolecular potential.

To overcome these issues, we have developed an approach
based on the full ab initio treatment of the electron-electron
(intermolecular and intramolecular) interaction. Within our
approach, the DESCS is assessed by:

dσel
dΩ
= m2

4π2
|〈ϕkn̂|T

+ (E) |ϕk〉|
2 = m2

4π2
|〈ϕkn̂|V|ψ

+
k〉|

2, (4)

where m is the mass of the impinging particle, ϕkn̂ and ϕk are
the asymptotic electron wave-function long after and long before
the scattering, respectively, characterised by the modulus of the
momentum k, which is scattering invariant (elastic scattering),
the scattering angle identified by the unit vector n̂, and incident
orientation defined by k̂; T is the on-shell T-operator, V is the
self-consistent potential and ψ+k(E) is the scattering wave function.
For liquid water, to account for haphazard molecular orientation,
we have equivalently decided to span several different incident
directions θ,ϕ of the impinging electron by clamping down
molecular rotations.
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The scattering wave function can be obtained by following two
different, while equivalent routes. The first approach is the direct
solution of the many-body Schrödinger Hamiltonian (or Dirac in a
fully relativistic treatment of the electronmotion) for positive energy
eigenvalues E:

Hψ+k (E) = (H0 +V)ψ
+
k (E) = Eψ

+
k (E) , (5)

where H0 and V are the kinetic energy and the electron-electron
Coulomb repulsion operators, respectively. Furthermore, it has
been proved (Taioli et al., 2010) that such many-body problem
can be reduced to an effective single-particle problem, in which
the scattering states can be obtained from the resolution of the
following LS equation for the continuum orbital that can be solved
exactly using a Green’s function approach with the proper boundary
condition:

ψ+k (E) = ϕ
+
k (E) +G

+
0 (E)Vψ

+
k , (6)

where

G+0 (E) = limϵ→0 (E−H0 + iϵ)
−1 (7)

is the Green’s function of the free particle at the same energy E
of the interacting Hamiltonian of Eq. 5, and ϕ+k(E) is the eigenvector
of the free Hamiltonian H0. This expression holds in both non-
relativistic and relativistic theories, notwithstanding wave functions
are 4-components spinors in the latter framework (Reiher andWolf,
2014). In this work we adopt the Green’s function method of Eq. 6
by projecting both the Coulomb potential and the continuumorbital
using HGFs (for details on the use of HGFs with the LS equation see
the following Section 2.3).

The DESCS in Eq. 4 is computed by solving either the
Schrödinger or theDirac equationwithin a numerical schemewhere
the electron-electron Coulomb repulsion is approximated. In our
approach, we use a mean-field approximation based on the Hartree-
Fock (or Dirac-Hartree-Fock (DHF) in a fully relativistic treatment)
method, where the orbital wave function and the scattering potential
are obtained by the self-consistent solution of the relevant equations
(see the Appendix for further details).

2.2 Benchmark system: 1D multichannel
scattering from toy model potentials

Prior moving to the discussion of the results on water and
water aggregates, as a test we benchmark our method against a
model system. In particular, we consider the following two-channels
problem (ℏ = 1):

− 1
2m

∇2ψj (r) +∑
k
Vjk (r)ψk (r) = Eψj (r) , (8)

where j,k label the indices of the two channels.TheHamiltonian
in Eq. 8 is intentionally non-relativistic avoiding thus the description
of the electrons in terms of spinors and total angular momentum,
as our goal is to resort to the simplest model in order to test the
validity of the LS approach in connection with HGFs as a basis set
to expand continuum scattering states. In fact, in a non-relativistic
approximation to scattering we rely on the use of wave functions

(instead of spinors) and a good quantum number is represented
by the orbital angular momentum l (instead of the total angular
momentum j). We also limit our test for the sake of simplicity to
the modelling of two s-orbitals channels, as the additional basis
functions that we include in the simulation of the electron-water
scattering contain only s-type HGFs. By considering a spherically
symmetric potential V(r), the wave function can be conveniently
factorised in radial and angular parts, i.e. ψj (r) =Rjl (r)Ylm (ϑ,φ),
which specifically for the s-channels case reads ψj (r) =Rj0/√4π.
From Eq. 8 one writes the following system of coupled differential
equations:

− 1
2m

d2

dr2
u1 (r) +V11 (r)u1 (r) +V12 (r)u2 (r) = Eu1 (r)

− 1
2m

d2

dr2
u2 (r) +V21 (r)u1 (r) +V22 (r)u2 (r) = Eu2 (r) ,

(9)

whereuj (r) = rRj (r), andu:ℝ+→ℂ2 fulfills the conditionuj (0) = 0.
We solve these equations by further assumingm = 1 for the following
(Yukawa-type) model potentials:

V11 (r) = −V22 (r) = −14
e−0.5r

r
+ 7 e
−0.2r

r

V12 (r) = V21 (r) = 2
e−0.3r

r
.

(10)

In Figure 1 we show the phase shifts (panel a) and the T-matrix
elements (panel b) calculated in the auto-channels, identified as
those channels in which both the incoming and outgoing wave
funtions are in the same channel.

In particular, we compare the numerical solution obtained by
integrating Eqs. 9 via a fourth-order Runge-Kutta method (ODE
in Figure 1 represented by the colored continuous lines), which
is almost exact, with the results obtained using the LS equation
(points inFigure 1) inwhich the potential is projected using 40well-
tempered s-type Gaussian functions (Huzinaga and Klobukowski,
1993), which deliver the best convergencewith theODE calculations
(for details on the use of Gaussian functions with the LS equation
see the following section 2.3). We observe that the phase shifts in
Figure 1A) in the auto-channels are well reproduced apart from
a small region around 10 Hartree where the LS solutions deviate
from the exact ones. This is reflected in the T-matrix elements of
Figure 1B), where the resonance in the channel two to two around
the energy of 10 Hartree is shifted towards larger energies in the LS
solution. This can be rationalized by recognizing that the 40 HGFs
basis set is not well suited to describe accurately this energy region,
while it works very well in the low energy part. It is worth to notice
that, of course, the resolution achievable by a given basis set depends
upon the number and type ofGaussian functions.Wewill come back
and solve this issue in the calculation of the ESCS of water.

2.3 Our method: Gaussian projection of
the Lippmann-Schwinger equation

The numerical solution of the DHF equation (or Schrödinger
equation in non-relativistic approximation) can be found by
expanding the wave functions and the potential using HGFs, which
represent one of the most suitable basis set to study non-spherical
polyatomic systems, such aswater, water cluster andwatermolecular
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FIGURE 1
Results of the toy model potential problem of Eq. 9. (A) Phase shifts for the auto-channels obtained through the integration of the differential equation
(ODE) and through the projection on a Gaussian basis set by solving the corresponding Lippmann-Schwinger equations. The Gaussian basis set is
composed by 40 well tempered s-Gaussian functions. (B) Comparison of the T-matrix elements for the auto-channels using the LS and ODE
approaches.

aggregates (for more details on this procedure see Ref. (Taioli and
Simonucci, 2021a)). The HGFs are defined as follows:

g (r) = g (u,v,w;a,R;r) = N ∂u+v+w

∂Xu∂Yv∂Zw (
2a
π
)
3/4

× exp[−a(r−R)2] , (11)

whereR ≡ (X,Y,Z) is the center of theHGF (which can or cannot
coincide with the nuclei positions), a determines the HGF width,
and (u,v,w) represent the order of derivation that determines the
symmetry of theHGF (e.g. first derivative represents a p-type orbital,
the second derivative a d-type orbital …); finally, N is a coefficient
set to normalize the HGFs. The mono- and bi-electronic integrals
of the fully relativistic many-body Hamiltonian are evaluated by
including several HGFs characterised by different derivation orders
and centers (Taioli et al., 2010; Taioli and Simonucci, 2021a).

Our approach relies on the semi-projected potential method
(Taioli et al., 2010; Taioli and Simonucci, 2021a), where the
Coulomb potential is projected in HGFs, while the kinetic energy
term H0 = cα ⋅ p+ βmc2 (α and β are the Dirac matrices, see Eq. 15
of the Appendix) is unprojected so as to recover the asymptotic
continuum after the Coulomb potential dies off.Within this method
the LS Eq. 6 for the scattering wave function identified by the
quantum number γ reads:

ψ+γk (r) = e
ik⋅r +G+0 (ε)V

t
γ (r)ψ
+
γk (r) , (12)

where Vt
γ = ∑λμντ|λ > S

−1
λμ < μ|V̂γ|ν > S

−1
ντ < τ|, Sλμ =< λ|μ > is the

approximate DHF self-consistent potential represented by a set
of HGFs, which includes both the Coulomb and static dipole
components of the potential. By replacing Vγ with Vt

γ the LS
equation 12 can be solved as follows:

ψ+γk ( ⃗r) = e
ik⋅r +G−0 (ε)Tγ (ε)eik⋅r, (13)

whereTγ is the transition operator defined by the equationTγ = Vt
γ +

Vt
γG
−
0 (ε)Tγ.Within this approachwemake use of the Static Exchange

Approximation, in which one neglects the effects of the continuum

orbital on the bound orbitals. The elements of the HGF basis set are
chosen to minimize the difference (Vγ −Vt

γ)ψ
+
γk(r) inside the region

of interest.
As in this work we aim to assess the total elastic scattering

cross section for a range of electron kinetic energies, which can
span several orders of magnitudes (from 0.001 to 103 eV), one can
guess that it is cumbersome to find a unique HGF basis set able
to reproduce the behaviour of the scattering wave function in such
a large energy region. In particular, we have found that the basis
set for different energy ranges cannot be one and the same, owing
to the difficulty of reproducing the continuum orbital in different
regimes with the same basis set. In our simulations of the liquid
water we use thus two sets of HGFs. The first basis set is centered
on the oxygen and hydrogen atoms and is common to all the test
cases, independent of the number of water molecules included in
the calculation of the elastic scattering cross section. In particular,
the basis sets used to expand the bound and continuum orbitals
are made of totally uncontracted HGFs, that is of (12s,8p,6d,4f)
Gaussian functions centered on each hydrogen nucleus and of
(20s,12p,8d,6f,4g) Gaussian functions centered on the oxygen
nuclei. These uncontracted basis functions must be optimized so as
to reproduce orbital eigenfunctions of the DHF Hamiltonian at the
energies of interest starting e.g. from standard tabulated Gaussian
basis sets (Pritchard et al., 2019).

Depending on the electron kinetic energy range, we have found
that the inclusion of a second set of HGFs is critical to reproduce
the elastic scattering experimental data. This observation is in
agreement with the toy model potential calculations previously
presented, where a small number of HGFs was not sufficient to
reproduce the accuracy of the exact solution at all energies (see
Figure 1 around 10 Hartree). This finding can be rationalized by
noticing that the insertion of this further s-symmetry basis set
delivers enough flexibility to reproduce the scattering wave function
behaviour in different energy regions: narrower HGFs (that is larger
exponential coefficients a in Eq. 11) can more accurately represent
the highly oscillating behaviour of the scattering wave function at
high energy, while more diffuse HGF (that is smaller exponential
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coefficients a in Eq. 11) can better reproduce the slowly varying
behaviour of the scattering wave function at low energy. The values
of a are thus intimately connected to the wavelength of the scattering
wavefunction. This further HGF basis set is uniformly distributed
within a sphere, roughly centered on the center of mass of the water
molecule, and characterised by a variable radius R = 1.25/√a (in a.
u.), where a is the exponent of the HGF.

3 Results and discussion

3.1 Single water molecule

Using the approach presented in the methodological section, we
carried out the calculation of the total elastic scattering cross section
of electrons impinging on i) a single water molecule; ii) a cluster of
2 and 3 water molecules to address the multiple scattering problem
in the liquid phase; iii) the zundel cation.

In Figure 2 we show the results obtained for the single
water molecule, which is well studied both experimentally and
theoretically. Our ab initio results (continuous multi-colored line)
are compared with other theoretical and experimental approaches
summarized in Ref. (Song et al., 2021) (see the figure caption for
details on the different points). We notice that our calculations are
performed in the fixed-nuclei approximation, i.e. we do not account
for rotational and vibrational degrees of freedom.We also stress that
unfortunately a single set of HGFs cannot accurately describe the
elastic cross section in the full spectrum, that is to say that one needs
to include more or less diffuse HGFs in order to be able to describe
the oscillations of the continuum wave function (and, ultimately,
of the Coulomb potential tail) in different energy ranges. Thus, we
decided to add further s−symmetry HGFs to the bound state basis
set of water, whose width a depends on the energy region. Each
colour of the line represents thus a different Gaussian width (see
the legend in Figure 2, reporting in bohr−2 the seven a coefficients
used to accurately reproduce the experimental data). We notice
that while these coefficients were optimized by comparison with
experimental results, their physical meaning is clear: at low energies
the variance of the Gaussian functions should capture the long
wavelengths related to low energies; on the other hand at higher
energies the dependence on the a coefficient is less stringent; in
general, larger values of a describe better the higher oscillations.
Interestingly, above 4 eV our results are in excellent agreement
with those by Khakoo et al. (Khakoo et al., 2013), while below 4 eV
our data, although following the same trend, are slightly outside
the error bars. This is in accordance with the fact that the results
of Ref. (Khakoo et al., 2013) were obtained using the Schwinger
multichannel method (Takatsuka and McKoy, 1981), employing
extensive basis sets and considering both polarization and dipole-
scattering effects. In ourDHF framework, of course we also take into
account them, and our LS solutions must be stationary points of the
Schwinger variational principle. We also notice that at energies >
10 eV, both our and Ref. (Khakoo et al., 2013) results fit better the
total cross section trend (green triangles in Figure 2A), than the
recommended elastic one (full purple circles (Song et al., 2021)).
This point can be understood by noticing that our approach is
based on the inclusion in our model of the elastic channel only,
while the total cross section contains the contributions of both

FIGURE 2
Theoretical elastic scattering cross section (continuous multi-colored
line) of electrons impinging on a single water molecule with different
kinetic energies compared to mixed experimental/theoretical results
from Ref. (Khakoo et al., 2013) (full blue squares with error bars), with
the recommended elastic (full purple circles) and total (green triangles)
cross sections from Ref. (Song et al., 2021). The recommended elastic
cross section of Ref. (Song et al., 2021) is based on the results given in
Ref. (Gorfinkiel et al., 2002) up to 6 eV and by interpolating the cross
sections obtained with different methods (Itikawa and Mason, 2005).
The recommended total cross section is obtained at energies between
0.1 and 7 eV via R-matrix calculations (Faure et al., 2004; Zhang et al.,
2009), at 7–50 eV is based on experiments from Refs. (Szmytkowski,
1987; Szmytkowski and Mozejko, 2006; Kadokura et al., 2019) and
above 50 eV on experimental measurements from Ref. (Muñoz et al.,
2007). The cyan points report the results obtained by using the Elsepa
code (Salvat et al., 2005). In the inset we show the statistical error bar
of the cross section compared to the total cross section
recommended by Ref. (Song et al., 2021). Data in the x and y axes are
reported in log scale, a is in bohr−2.

elastic and inelastic scattering events. However, we have previously
demonstrated (see Refs. (Taioli et al., 2010; Taioli and Simonucci,
2015)) that the total probability is not significantly modified by the
opening ofmultiple channels; rather such total transition probability
is redistributed among several channels, while keeping constant the
total value. Thus, it is not surprising that our ESCS actually follows
closely the experimental data. Finally, in Figure 2 we also compare
our ab initio calculations with the Elsepa (Salvat et al., 2005) model
(cyan points), which is similarly fully relativistic but considers
the atomic (rather than the molecular) interaction potential and
includes the dipole moment semi-empirically. The discrepancy
between our and Elsepa results can be thus attributed to the different
treatment of the interaction potential. In order to test the robustness
of the elastic scattering cross section calculations by varying the
values of awithin a reasonable range related to the wavelength of the
scattering wavefunction, we carried out the simulations to estimate
the statistical error. In the inset of Figure 2 we report the statistical
error bars for the different impact kinetic energies by using seven
different HGFs basis sets. We notice that this error is overestimated,
as the different values were equally weighted across the
spectrum.

3.2 Water clusters

To show the potential of our method to deal with polycentric
systems, we have studied the electron scattering with small clusters
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FIGURE 3
Water clusters employed in this work as scattering centers. In panels (A) and (B) we report two different configurations of water molecules in the liquid
phase. In panel (C) we show the zundel cation minimum configuration as reported in Ref. (Huang et al., 2005).

FIGURE 4
ESCS of electrons colliding at different kinetic energies with the two
water clusters (3 [H2O]1,2, multi-colored points) reported in Figure 3A,
B, in comparison to the results for the single water molecule (1 H2O,
multi-colored line). Cyan points report the values computed with the
Elsepa code (Salvat et al., 2005) on the water cluster A of Figure 3. The
total cross sections of the water clusters have been divided by three,
i.e. to normalize them with the number of molecules within the
clusters. Data in the x and y axes are reported in log scale, a is in
bohr−2.

of water molecules, which are shown in Figure 3. In particular, in
the panels A and B of Figure 3we report two different clusters made
of three molecules, which were obtained by trimming a large cubic
cell of liquid water (i.e. density is 1 g/cm3), whose configuration
was optimized using Density Functional Theory implemented with
a PBE functional (Giannozzi et al., 2017). The two clusters are
meant to describe the different environment in which electrons
travel inside liquid water, having the dipole moments pointing
towards different directions. In Figure 4 we show the ESCS of these
two water clusters resulting from our simulations (upper multi-
colored points) in comparison to both experimental data (symbols),
single water molecule (lower multi-colored line) and Elsepa (cyan
points) calculations. Each colour of the points represents a different
Gaussian width (see the legend in Figure 4, reporting in bohr−2

the a coefficients used in different energy ranges). Of course, the

ESCSs of the water clusters have been normalized by the number
of molecules in the simulation cell. We notice that the ESCS of
the two water clusters characterised by different water molecule
configurations are similar. However, by comparing our simulations
of the single water molecule with water clusters, we find a very
good match in the low (E < 1 eV) and high (E > 30 eV) energy
range; at odds, we obtain a diverging behaviour in the intermediate
regime (1 < E < 30 eV) with ESCS differing by almost 100% at
around 3 eV. As the basis set we use is comparable in both size
and diffuseness for the three cases investigated, we attribute such
a discrepancy in the ESCS at intermediate energy due to multiple
scattering and a more accurate representation of the inter- and
intra-molecular potential. Indeed, Elsepa simulations of ESCS on
cluster one of Figure 3 follow closely the single water molecule
behaviour. We stress that experimental measurements are carried
out on water vapour in different conditions of relative humidity,
while our simulations are carried out using the standard density
of liquid water. This finding highlights the importance of an
accurate treatment of the interatomic potential for dealing with
liquid phases as compared to vapour phase, where molecules are
far apart and, thus, more closely resembling the single molecule
calculations.

3.3 Elastic scattering from the zundel
cation

Finally, to show the flexibility of our approach to deal with
charged system we calculate the ESCS of electrons impinging on
protonated water (zundel cation), in which hydrogen ions bondwith
water molecules and form loosely bound structures (see panel C) of
Figure 3). In particular, in Figure 5 we compare the results for the
zundel cation (upper multi-colored empty squares) obtained using
our relativistic ab initio method with those of the water clusters (of
course all ESCSs have been normalized with respect to the number
of water molecules within the systems). Each colour represents a
different Gaussian width (see the legend in Figure 5, reporting in
bohr−2 the a coefficients used in different energy ranges). We notice
that the presence of different environments dramatically changes the
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FIGURE 5
ESCS of electrons colliding at different kinetic energies with the
zundel cation (multi-colored empty squares) in comparison to the
water clusters (3 [H2O]1,2, multi-colored points) reported in Figure 3.
Cyan points report the values computed with the Elsepa code
(Salvat et al., 2005) on the zundel molecule, where the charge of the
shared proton is compensated by an extra electron to achieve charge
neutrality. The total cross section of the water clusters has been
divided by three, i.e. to normalize it with the number of molecules
within the clusters, and by two for the zundel cation. Data in the x and
y axes are reported in log scale, a is in bohr−2.

ESCS, particularly in the intermediate to low energy region (<100
eV). This again shows up the importance of accurately modelling
the intra- and inter-molecular potential, as the different behaviour of
the curves in Figure 5 can be attributed to the different environment
and multiple scattering effects more than to a deficiency of the HGF
basis set. Finally, we also report the Elsepa simulations carried out for
the zundel cation configuration (cyan points), even though we stress
that within this approach molecular cross section are calculated by
means of a single-scattering independent-atom approximation in
which the electron density of a bound atom is approximated by that
of the free neutral atom.

4 Conclusion

In this work we propose a first-principles method to compute
elastic scattering cross sections of electrons impinging on
polycentric systems, such as water and water aggregates. Our
approach does not require approximations, beyond the chosen
many-body method (that is systematically improvable), on the
channels involved in the process. Indeed, the latter are inherently
included in the formalism by solving the LS equations for the
scattering wave function. Furthermore, the projection of the
potential onto a functional space spanned by HGFs allows one to
deal with polycentric systems of increasing complexity and different
charge states, and to achieve a computational cost similar to that of
bound state calculations.

The modelling of the electron elastic scattering in (polar)
molecules is typically carried out by methods either based
on the ab initio R-matrix approach (Faure et al., 2004;
Gorfinkiel et al., 2005) or by following the Mott theory (Mott,

1929). Our method differs from the latter ones in several
respects.

With respect to the Mott theory, in our scheme the scattering
potential is not a mere sum of atomic contributions, and thus fully
accounts for the polycentric nature of the target system, including
dipole moments and multiple scattering arising from the accurate
treatment of the inter- and intra-molecular potential. This is at odds
with the Mott theory, where the elastic scattering by different atoms
belonging to the same molecule is considered independently and
the total cross section is obtained as a weighted sum of the atomic
cross sections. We have demonstrated that both the inclusion of
re-scattering and the accurate calculation of the inter- and intra-
molecular potentials are crucial to the assessment of the elastic cross
section.

On the other hand, ab initio methods so far used to calculate
the ESCS of electrons do not account for relativistic effects and
are typically limited to the modelling of a single water molecule.
At variance, our scheme clearly shows how the consideration of
the liquid phase nature of water emerges as a significant deviation
from the single molecule case; moreover, it is fully relativistic, so
important effects present in the elastic scattering of unpolarized
electrons, such as spin polarization and flip, are taken fully into
account. While we recognize that relativistic effects are not of
primary importance in water systems, our framework paves the
way towards a full understanding and the accurate treatment of the
electron scattering also from targets characterised by heavy-nuclei
or heavy-element nanoparticles (NPs), such as gold clusters, where
the inclusion of relativistic effects is of paramount importance. For
example, gold NPs are particularly interesting in hadrontherapy for
cancer cure to increase the relative biological effectiveness of ion and
electron beams. Moreover, the use of polarized electron beams is
becoming increasingly important in quantum information theory,
whichmust deal with the decoherence of qubits fromquantumnoise
to protect information. Only a quantum-relativistic approach to the
elastic scattering of electron beams by atoms and molecules makes
it possible to determine the polarization degree upon scattering and
to deliver an accurate account of experimentally produced polarized
ensembles of electrons.
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Appendix

The many-particle Dirac equation for particles of mass m,
interacting via a generic scalar/vector potential is the following:

{∑
i
(cαipi + βimc2 +Vi) +∑

i<j
[βiβjgS,ij + (1− αi ⋅ αj)gV,ij]}

×ψ (r1,…,rN) = Eψ (r1,…,rN) , (14)

where Vi is the external potential, αi and βi are the following 4× 4
Hermitian matrices

α = (
0 σ
σ 0
), β = (

I 0
0 −I
), (15)

with I the 2× 2 identitymatrix and σ the Paulimatrices; gV and gS are
respectively the vector and scalar potentials. In second quantization,
we can use the Hartree-Fock (HF) approximation to the electron
exchange-correlation interaction by assuming:

⟨Ψ̂†s1 (r) Ψ̂
†
s′1
(r′) Ψ̂s′2
(r′) Ψ̂s2 (r)⟩

= ⟨Ψ̂†s1 (r) Ψ̂s2 (r)⟩⟨Ψ̂
†
s′1
(r′) Ψ̂s′2
(r′)⟩

− ⟨Ψ̂†s1 (r) Ψ̂s′2
(r′)⟩⟨Ψ̂†s′1 (r

′) Ψ̂s2 (r)⟩ , (16)

where the density matrix

ρs′2,s1 = ⟨Ψ̂
†
s1 (r) Ψ̂s′2

(r′)⟩ (17)

is the bloc matrix

ρ(r′,r) = (
ρLL (r
′,r) ρLS (r

′,r)
ρSL (r
′,r) ρSS (r

′,r)
), (18)

in which LS denote the large and small component of the Dirac
bispinor, while s1, s2, s

′
1 and s′2 label the upper and lower bispinor

components. For a many-body systems of electrons interacting only
via Coulomb repulsion V, the DHF equation can be rewritten as
(Taioli and Simonucci, 2021a; de Vera et al., 2022a):

(
mc2 +V−E −cσ ⋅ i∇

cσ ⋅ i∇ −mc2 −V−E
)(

ΨL

ΨS
) = 0. (19)

where V = VH +Vexc is written in HF approximation as the
sum of the Hartree potential and the exchange interaction.
Please notice the different sign in front of the interaction term
acting on the upper and lower parts of the spinor. This matrix
equation was used to calculate the electronic structure, and in
particular to obtain the relativistic interaction potential of water
aggregates.
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