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Analogous to the notion of mutually unbiased bases for Hilbert spaces, we consider mutually
unbiased unitary bases (MUUB) for the space of operators, M(d,C), acting on such Hilbert spaces.
The notion of MUUB reflects the equiprobable guesses of unitary operators in one basis of M(d,C)
when estimating a unitary operator in another. Though, for prime dimension d, the maximal number
of MUUBs is known to be d2 − 1, there is no known recipe for constructing them, assuming they
exist. However, one can always construct a minimum of three MUUBs, and the maximal number
is approached for very large values of d. MUUBs can also exist for some d-dimensional subspace of
M(d,C) with the maximal number being d.

I. INTRODUCTION

In the context of quantum information theory, one’s ability to know or manipulate a system is gen-
erally limited. The uncertainty principle as an example, limits the ability to precisely estimate values
associated to non-commuting observables. Considering quantum systems that can be represented
by elements in a finite dimensional Hilbert space, measurements made in one basis may perturb the
system and effectively result in introducing uncertainty of measurements made in another. In the
extreme scenario, where a state prepared in one basis gives maximum uncertainty when measured in
another, is captured in the notion of mutually unbiased bases (MUBs). More precisely, measuring
a quantum state belonging to a basis along a mutually unbiased basis, one obtains as the result, a
random vector of the latter basis and all the possible results are equiprobable [1]. As a quick exam-

ple, consider in a 2-dimensional Hilbert space, a state from the basis, {(|0〉+ |1〉)
√

2, (|0〉 − |1〉)
√

2},
with |0〉 and |1〉 elements of the computational basis; measurements in this latter basis would result
in either the states |0〉 or |1〉 with probability 1/2 each. The following is the standard definition for
MUB

Definition 1. Two distinct orthonormal bases for a d-dimensional Hilbert space, B(0) =
{|ϕ0〉, ..., |ϕd−1〉} and B(1) = {|φ0〉, ..., |φd−1〉} are said to be mutually unbiased bases (MUB) pro-

vided that |〈ϕi|φj〉| = 1/
√
d, for every i, j = 0, ..., d− 1.

MUBs have proven to be useful in practical applications such as quantum key distribution (QKD)[2]
and quantum state tomography[3].

We consider an analogous idea of equiprobable guesses to bases consisting of unitary operators
for some subspace of M(d,C), namely mutually unbiased unitary bases (MUUB)[4, 5].1 In short,
these are the bases such that the Hilbert Schmidt inner product for elements from different bases

1 Although M(d,C) is the set of d× d matrices with complex entries, it is regarded as the set of operators acting on
a d-dimensional Hilbert space (with d prime) because actually matrices represent such operators.

ar
X

iv
:2

00
3.

12
20

1v
1 

 [
qu

an
t-

ph
] 

 2
7 

M
ar

 2
02

0



2

would have a common value. The idea of equiprobable guesses can be understood as follows [6];
let VR be a guess for a given unknown unitary operator, V ∈ SU(d) randomly selected based on
a probability distribution uniform with respect to the Haar measure. How closely VR resembles V
(when transforming any state |υ〉 ∈ Hd) is defined by a function, G(VR,V) given by

G(VR,V) =

∣∣∣∣∫ 〈υ|V†RV|υ〉dυ∣∣∣∣2 =
1

d2
|Tr(VV†R)|2. (1)

Note that this represents the average over all pure states |υ〉. Hence, two distinct guesses for V, say,

VR and VS are equiprobable if |Tr(VV†R)|2 = |Tr(VV†S)|2. The notion of MUUB (for the entire space
of M(d,C)) was first mentioned in Ref. [4] and was used to construct a unitary-2 design relevant to
process tomography of unital quantum channels. A complete set of of MUUBs for the space M(d,C)
can at most have d2−1 number of bases and the same work provided a construction for d = 2, 3, 5, 7
and 11. This definition was further generalized in Ref. [5] to include MUUB for some subspace of
M(d,C). The definition for MUUBs is as follows,

Definition 2. Consider some n dimensional subspace, S, of the vector space M(d,C). Two distinct

orthogonal bases of S composing of unitary transformations, F (0) = {f (0)0 , ..., f
(0)
n−1} and F (1) =

{f (1)0 , ..., f
(1)
n−1}, are MUUB provided that,

|Tr(f
(0)†

i f
(1)
j )|2 = C, ∀f (0)i ∈ F (0), f

(1)
j ∈ F (1) (2)

for i, j = 0, ..., n− 1 with F (0) and F (1) ∈ S and some constant C 6= 0.

Beyond its role (as described in Ref. [4]) in ancilla assisted quantum process tomography, MUUB
has also found use in quantum cryptography[7, 8]. These are bidirectional quantum key distribution
schemes where encoding is done by using unitary operators from differing MUUBs.

One can imagine that, akin to the construction of MUBs, the search and construction of MUUBs
is a nontrivial task. While the study of MUBs has received much attention and has been understood
to quite an extent (at the very least, constructions for the maximal number of MUBs for Hilbert
spaces of prime powered dimensions has been established[9]) the study of MUUBs is very much at
its infancy. We will review to a certain extent in this paper, the current understanding of MUUBs
mainly based on Refs. [5, 10]. Representing new results in this work, we provide the minimal number
of MUUBs for M(d,C) and show that it approaches the maximal possible number for very large
d. This is done by viewing the problem of construction of MUUBs as equivalent to constructing
MUBs containing only maximally entangled states (MES); given the isomorphism between unitary
operators and maximally entangled states. Ref. [11] shows the amount of entanglement is conserved
in constructing a complete set of MUBs for bipartite states and thus some related results thereof
applies directly to our case. It should be noted that the search for MUBs consisting of MES has its
own interest. [12–14]

A brief outline of the work is as follows.We begin in Sec. 2 with a straightforward numerical
approach for constructing MUUB. This is mainly derived from Refs. [5]. Sec. 3 deals with the issue
of the minimal number of MUUB that can exist. In Sec. 4, following the work of Ref. [10], we
consider the maximal number of MUUBs for some d-dimensional subspace of M(d,C) based on an
isomorphism between the monoids defined for the underlying sets Hd and that for the subspace of
M(d,C).
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II. NUMERICAL SEARCH FOR MUUB

For d2 dimensional space of M(d,C), the maximal and minimal number of MUUBs for a subspace
of M(d,C) are d2 − 1 and max[3, d(d − 1)] respectively2. The maximal number of MUUBs for
dimensionality of d2 was derived in Ref. [4].

The minimal number on the other hand, can be derived using a relevant lemma in Ref. [11]
describing the maximal number of mutually unbiased bases consisting of product states given a
complete set of mutually unbiased bases of a bipartite systems. This will be further explained in
the next subsection.

In the absence of a proper method to construct the complete set of MUUBs, we consider a
straightforward numerical approach. Consider the d2-dimension space of M(d,C) with the canonical
basis K given by

{XrZs|r ∈ [0, d− 1], s ∈ [0, d− 1]} (3)

with X and Z as the generalized Pauli operators [15]. Define another basis, L, given by

L = {Emn = Y XmZn|m ∈ [0, a], n ∈ [0, b]} (4)

where Y ∈ L is written as

Y =
∑
r

∑
s

γrsX
rZs (5)

for r, s ∈ [0, d− 1] and for every element XrZs ∈ K, γrs ∈ C. It is obvious to note that the elements

in L are orthogonal to each other given that |Tr[(Emn)†Em′n′ ]| = |Tr[(XmZn)†Y †Y Xm′Zn
′
]| =

|Tr[(XmZn)†(Xm′Zn
′
)]| = 0. The following two conditions must then be met:

1. E†mnEmn = Id (unitary condition)

2. ∀m,n, r, s, |Tr E†mnXrZs|2 = 1 (mutually unbiased condition with the constant C of Definition
2 being equal to 1, i.e. the case of Ref. [4].)

From the second condition above, we note that ∀r, s, |Tr(E†mnXrZs)|2 = |γrsTr(Id)|2 and
|
∑
rs γrsTr(Id)|2 = 1 imply that ∀r, s, |γrs|2 = 1/d2. We select γrs = exp(2πi/d)grs for some

grs ∈ Zd. We set the algorithm for the computer to search for a d2 − 1 element set of {grs} given
the conditions above. This set {grs} together with Eq. (4) provides for a basis mutually unbiased
to the standard basis. This is obvious given that, if Y is mutually unbiased to all elements in the
standard basis, i.e., ∀r, s, |γrs|2 = 1/d2, then

∀a, b, |Tr(E†mnXaZb)|2 = |Tr[(XmZn)†Y †XaZb]|2

= |Tr[ωmnY
†Xa(Xm)†Zb(Zn)†]|2

= |Tr[ωmnγrsId]|2 = 1 (6)

for some rs and some |ωmn| = 13. We then proceed to search for a different set of {gtu}. We
highlight in the following subsection, an example of the numerical search for the construction of the
complete 8 MUUBs for dimension d = 3 as in Ref. [5]. Note that this search to construct MUUB
does not confirm the uniqueness of the construction.

2 a smaller number for the minimal case was given in Ref. [5]
3 this term arises due to the well known identity XZ = ωZX where ω = exp (2πi/d)
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A. Qutrit based example

We begin by letting the canonical basis for M(3,C) to be the following;

{I3, X3, X
2
3 , Z3, Z

2
3 , X3Z3, (X3Z3)2, X3Z

2
3 , (X3Z

2
3 )2} (7)

with the generalized Pauli operators of M(3,C), i.e. X3 and Z3 be represented by the following
matrices

X3 =

 0 0 1
1 0 0
0 1 0

 , Z3 =

 1 0 0
0 γ3 0
0 0 γ23

 , (8)

where γ3 = exp(2πi/3). Note that Eq. (7) is a specific example of Eq. (3) for M(3,C). We then
proceed with the following steps.

Step 1 : Consider a unitary operator, U
(1)
0 from another basis, say U (1) given by

U
(1)
0 =

1√
9

[I3 + γt13 X3 + γt23 X
2
3 + γt33 Z3 + γt43 Z

2
3

+γt53 X3Z3 + γt63 (X3Z3)2 + γt73 X3Z
2
3 + γt83 (X3Z

2
3 )2] (9)

The superscript (with parentheses) for the unitary operator refers to the basis, while the subscript
refers to element in the basis. We now search for the set of index, {ti | i = 1, · · · , 8, ti = 0, · · · , d−1}
based on the conditions (U

(1)
0 )†U

(1)
0 = I3 and U

(1)
0,0 is mutually unbiased to {Xa

3Z
b
3} i.e.,

|Tr((U
(1)
0,0 )†X3)|2 = |Tr((U

(1)
0,0 )†X2

3 )|2 = |Tr((U
(1)
0,0 )†Z3)|2

=|Tr((U
(1)
0,0 )†Z2

3 )|2 = |Tr((U
(1)
0,0 )†X3Z3)|2| = Tr((U

(1)
0,0 )†(X3Z3)2)|2

=|Tr((U
(1)
0,0 )†X3Z

2
3 )|2 = |Tr((U

(1)
0,0 )†(X3Z

2
3 ))|2 = 1 (10)

Step 2: We determine all other elements of U (1) as

U
(1)
a,b =

1√
9

[(U
(1)
0,0 ·Xa

3Z
b
3] (11)

where a, b = 0, · · · , d2 − 1 (excluding the case both a, b equal 0 as that is the case of Eq. (10)).

We reiterate the above steps for an l-th operator of an k-th basis, U
(k)
l to construct another

basis, say U (k) for a different set {ti}. Beyond condition 2, a check should also be made to ensure
that the new basis is mutually unbiased to any earlier ones found in case a different set {ti} gives
some equivalent set of operators. The numerical search thus gives the maximal number of MUUBs
(including the standard basis), eight in particular, given by

U (l) = {U (l)
0,0 ·Xa

3Z
b
3 | ∀a, b = 0, ..., d− 1} (12)
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with

U
(1)
0,0 =I3 + γ3X3 + γ23X

2
3 + γ3Z3 + γ23Z

2
3 + γ3X3Z3 + γ2(X3Z3)2 + γ3X3Z

2
3 + γ23(X3Z

2
3 )2

U
(2)
0,0 =I3 +X3 + γ3X

2
3 + Z3 + γ3Z

2
3 + γ23X3Z3 + (X3Z3)2 + γ23X3Z

2
3 + (X3Z

2
3 )2

U
(3)
0,0 =I3 +X3 + γ3X

2
3 + Z3 + γ23Z

2
3 +X3Z3 + γ23(X3Z3)2 + γ23X3Z

2
3 + γ23(X3Z

2
3 )2

U
(4)
0,0 =I3 +X3 + γ3X

2
3 + Z3 + γ23Z

2
3 + γ3X3Z3 + (X3Z3)2 + γ3X3Z

2
3 + γ3(X3Z

2
3 )2

U
(5)
0,0 =I3 +X3 + γ23X

2
3 + Z3 + γ3Z

2
3 +X3Z3 + γ23(X3Z3)2 + γ3X3Z

2
3 + (X3Z

2
3 )2

U
(6)
0,0 =I3 +X3 + γ23X

2
3 + Z3 + γ3Z

2
3 + γ3X3Z3 + (X3Z3)2 +X3Z

2
3 + γ23(X3Z

2
3 )2

U
(7)
0,0 =I3 +X3 + γ23X

2
3 + Z3 + γ23Z

2
3 + γ23X3Z3 + γ23(X3Z3)2 +X3Z

2
3 + γ3(X3Z

2
3 )2 (13)

However, such a numerical search is anything but efficient and an algebraic construction is certainly
more desirable.

III. MUUB AND MUBS FOR MES

Given the equivalence between unitary operators and MES, the search for MUUBs is equivalent
to the search for MUBs consisting of MES. For a unitary Yi, its equivalent MES, |Yi〉 ∈ Hd ⊗Hd,
can be written as [16–18],

|Yi〉 = (
∑
r

∑
s

〈s|Yi|r〉|r〉|s〉)/
√
d . (14)

with |r〉,|s〉 as some basis vectors for Hd.
A basis is mutually unbiased with respect to the above could be one with elements provided that

Id ⊗ Ys|s〉 → |s′〉, where 〈s|s′〉 = 1/d.
Then, a relation has been established between a complete set of MUBs and MES [19, 20]. Ref.

[11] explained that one can always find the number of MES for MUBs. Constructions of such max-
imally entangled basis in arbitrary bipartite system, though not achieving its maximal number, has
been studied in Refs. [12, 13] (referred to therein as mutually unbiased maximally entangled bases or
MUMEB). Ref. [12] constructed MUMEBs for small d and d′ (i.e. for cases of H2⊗H4 and H2⊗H6),
which depends on known Hadamard matrices in bipartite systems with small dimensions. This has
its hurdles however as the structure of Hadamard matrices become increasingly more complicated
with the increasing of the dimension. Later, Ref. [13] constructed MUMEBs by using permutation
matrices. To date, Ref. [14] has managed to acquire completely new MUMEBs in bipartite sys-
tems with arbitrary dimensions by adding Hadamard matrices which results in constructing 2(d−1)
MUMEB in Cd ⊗ Cd for d ≥ 3. In the following, we will present a very simple approach in con-
structing MUBs consisting of MES for Hd⊗Hd with a number approaching maximal, d2− 1, as the
dimensionality, d, grows.

Given a bipartite state, Ref. [11] described that a complete set of MUBs can be formed by either

1. product states and MES.

2. solely by partially entangled states.

Note that it is not possible to have a complete set of MUBs built entirely of product states nor entirely
of maximally entangled states. In the following, we consider the MES consisting of subsystems A
and B. We refer to the following lemma from Ref. [11] on the number of bases containing only
product states, i.e. product bases,
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Lemma 3. Let dA and dB be the dimensionality of the Hilbert spaces of subsystems A and B
respectively. Assume that dA ≤ dB . In a complete set of MUBs that contains dA+1 product MUBs,
all other bases contain only maximally entangled states.

This is used to determine the maximal number of product MUBs as described in Ref. [11] (note
that dA and dB may not necessary be prime numbers). In our case, dA = dB = d with d being a
prime number. We thus have the following corollary,

Corollary 4. Let dA = dB = d. Then minimal number of MUBs consisting of MES is d(d− 1).

Proof. The proof is rather straightforward. From Lemma 3, the maximal number of product bases
would be d+ 1. The minimal number of MUBs for MES thus will be

(d2 + 1)− (d+ 1) = d(d− 1) (15)

We note that this will not give the maximal number of MUBs for MES which is d2 − 1 (assuming it
exists). However the maximal number is approached for very large values of d. Let R be the ratio
of the maximal number of MUBs for MES to that of Eq. (15)

R =
d2 − 1

d(d− 1)
=

(d+ 1)(d− 1)

d(d− 1)
=
d+ 1

d
(16)

FIG. 1: Quantity R against the prime number d

Figure 1 depicts the quantity R against the first 24 prime numbers, d (excluding d = 2). We can
observe that R approaches unity (horizontal dashed line) for very large values of d; i.e. limd→∞R =
limd→∞ (d+ 1)/d = 1.

Note that the case d = 2, Ref. [5] gave the number of MUBs as three. Therefore, coupled
with corollary 4, we can conclude that for Hd ⊗Hd with d being a prime number, one can always



7

construct at least 3 MUBs consisting of MES (or equivalently, 3 MUUBS for the d2-dimensional
space of M(d,C)). We should stress that, Eq. (15) gives us the minimum number of such MUBs,
and exceeds that of Ref. [14] which gives only 2(d − 1), namely by a factor of d/2. We refer to
the details of constructing such MUBs in Ref. [11]. The construction itself is somewhat interesting
given its simplicity, i.e. it makes use of some entangling (control phase) operator acting on product
bases. However, despite the guaranteed existence of such operators, the precise operator to be used
for a given d is not dimensional independent nor is it a known function of d.

IV. MUUB FOR d-DIMENSIONAL SUBSPACE OF M(d,C)

Consider a d-dimensional subspace of M(d,C), spanned by the basis

{Z0, Z1, ..., Zd−1} (17)

with Z0 = Id, the identity operator and ZiZj = Zi⊕j . These operators may correspond to the
generalised Pauli matrices. In what follows, we shall refer to such a subspace as KS . A unique
isomorphism, G, defined by,

G(
∑
i

mi|i〉) =
∑
i

miZ
i , ∀ai ∈ C, i = 0, ..., d− 1. (18)

would map MUBs for Hd to bases for KS . Though the absolute value of the inner product on Hd,
for any two states in Hd, |〈ψ|Φ〉|, is proportional to the absolute value of the inner product on
KS , this ensures that the bases concerned for M(d,C) would be mutually unbiased to one another.
However, this provides no guarantee that the elements in each MUB for Hd is mapped to unitary
operators. As the unitarity of operators is defined based on multiplication between operators, a
binary operation on the underlying set of Hd can be defined accordingly. The resulting monoid is
then shown to be isomorphic to the monoid for KS . Define the binary operation, •, on the set Hd
as follows.

Definition 5. For all |φ〉, |ψ〉 ∈ Hd given as

|φ〉 =
∑
i

mi|i〉 , |ψ〉 =
∑
j

nj |j〉 (19)

with mi, nj ∈ C and i, j = 0, ..., d− 1, we let • : Hd ×Hd → Hd be defined as∑
i

mi|i〉 •
∑
j

nj |j〉 =
∑
q

αq|q〉 (20)

where αq =
∑
i,jminj and q = i⊕ j.

It can be shown that Hd with the operation, •, defines a monoid and is isomorphic to the monoid
of the subspace of C defined with multplication[10]. Consider next the following definition.

Definition 6. The conjugate transpose of a state |φ〉 =
∑
imi|i〉 ∈ Hd is given as |φ〉† =

∑
im
∗
i |d−

i〉.

This is different from the conventional definition in terms of the dual of a ket, i.e. |φ〉† = 〈φ|.
Our definition of such a state is in fact motivated by the conjugate transpose of the operator, say,
K =

∑
miZ

i. In other words, if G−1(K) =
∑
imi|i〉 = |φ〉, then G−1(K†) =

∑
im
∗
i |d − i〉 = |φ〉†.

This definition is useful in determining which states in Hd is mapped to uniatries in the subspace
of C. More precisely, ∀|φ〉 ∈ Hd, G(|φ〉) is a unitary operator if and only if |φ〉 • |φ〉† = |0〉.
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A. Maximal number of MUUB for KS

Before describing the maximal number of MUUBs that can be constructed, we take a quick detour
again to the equivalent search for MUBs consisting of MES. Considering only the d-dimensional
subspace of Hd ⊗ Hd, Ref. [10] subscribes to the same notion of deriving the maximal number of
MUBs for a d-dimensional space. One needs to consider the space of d2 − 1 traceless Hermitian
operators and MUBs then span subspaces orthogonal to one another. However in considering only
MES, the dimensionality of the space of traceless Hermitian operators concerned was shown to be
lesser than d2 − 1, eventually resulting in the maximal number of such MUBs to be lesser than
d + 1. The following theorem then, shows how we can construct d MUUBs and therefore provides
the maximal number possible.

Theorem 7. The maximal number of MUUBs for the d dimensional subspace KS is d.

Proof. The isomorphism between the vector space Hd and KS maps between the bases of the vector
spaces; The first part of the proof however establishes the fact at least one of the d + 1 MUBs for
Hd would be mapped to a basis of KS which would contain a non-unitary operator.

Beginning with the the computational basis, {|0〉, ..., |d − 1〉} for Hd, the t-th state from any of
the remaining d MUBs can thus be written as

|γ(k)t 〉 =
1√
d

d−1∑
h=0

(γt)d−h(γ−k)αh |h〉 (21)

where γ is dth root of unity, γ = exp(2πi/d), t = 0, ..., d − 1, k = 0, ..., d − 1 (the index k and t
indicating the k-th basis and element of basis respectively) and αh = h+ ..+ (d− 1) as in Ref. [1].
It is instructive to note that γiγj = γi⊕j with ⊕ as addition modulo d.

Then, consider its conjugate transpose according to definition 6, |γ(k)t 〉†, as

|γ(k)t 〉† =
1√
d

d−1∑
h=0

[(γt)d−h(γ−k)α(h) ]∗|d− h〉. (22)

Thus to determine if |γ(k)t 〉 would be mapped to a unitary operator, we consider the following,

|γ(k)t 〉 • |γ
(k)
t 〉† =

1

d

d−1∑
q=0

[
d−1∑
h=0

(γt)d−h((γt)b
(q)
h )∗ · (γ−k)α(h)((γ−k)

α
(d−b

(q)
h

))∗

]
|q〉

=
1

d

d−1∑
q=0

[
d−1∑
h=0

(γt(d−h−b
(q)
h )) · (γ 1

2k(d−b
(q)
h −(d−bh)

2+(h−1)h))

]
|q〉 (23)

with the integer b
(q)
h ∈ [0, d− 1] such that h⊕ b(q)h = q. We made use of the fact, α

(d−b(q)h )
− α(h) =

[(d− b(q)h )− (d− b(q)h )2 + (h− 1)h]/2. As q = h⊕ b(q)h , thus b
(q)
h = q+ kd−h for some integer k ≥ 0.

As h and b
(q)
h are both lesser than d− 1, thus k cannot be greater than 1. With γd = γb

(q)
h d = 1 and

γd/2 = γd
2/2 = −1, we can further simplify the above into

|γ(k)t 〉 • |γ
(k)
t 〉† =

1

d

d−1∑
q=0

[
d−1∑
h=0

γhkq · γ− k
2 (q

2+q)−qt

]
|q〉. (24)
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Consider the coefficient for the ket |q〉 is given by[
γ−

k
2 (q

2+q)−qt

d

]
d−1∑
h=0

γhkq , (25)

in the case of k = t = 0, we have, the coefficients for every ket (irrespective of q) being 1. This
implies

|γ(0)0 〉 • |γ
(0)
0 〉† =

d−1∑
q=0

|q〉 6= |0〉 . (26)

Thus, the element |γ(0)0 〉 cannot be mapped to a unitary transformation under G, hence at least 1
MUB of Hd cannot be mapped to a unitary basis for KS .

The second part of the proof addresses the case for the MUBs with k 6= 0; where it is
shown that only in the case for q = 0, the coefficient becomes 1 (irrespective of k) and zero
otherwise. The former is straightforward and can be seen by setting q = 0. One can rewrite the
index of γ in the summation of Eq. (25), hkq simply as hp with p = kq. It is obvious that p is an
integer. Writing l = hp mod d, for every integer value of h ∈ [0, d − 1], l will take on a unique
integer value in [0, d− 1]. Thus, for q 6= 0,

d−1∑
h=0

γ(hp) =

d−1∑
l=0

γl = 0 . (27)

Thus, |γ(k)t 〉 • |γ
(k)
t 〉† = |0〉 for r 6= 0. Given the maximal number of MUUBs to be lesser than d+,

one thus concludes that only d number of MUBs of Hd are mapped to MUUBs of KS .

B. Recipe for constructing MUUBs for KS

The proof in the previous section is a constructive one, i.e. it provides a way to construct the
maximal number of MUUBs for the subspace, KS . Writing a basis for the subspace as Z(0) =

{Id, Z, Z2, ..., Zd−1}, the t-th operator of the k-th basis, Z
(k)
t , which is mutually unbiased to Z(0) is

given by

Z
(k)
t =

1√
d

d−1∑
i=0

(γt)d−i(γ−k)α(h)Zi (28)

with k = 1, ...d − 1, t = 0, ..., d − 1, and α(h) = h + ... + d − 1. The bases constructed thus are
also pairwise mutually unbiased. We provide an explicit example for the 3-dimensional subspace of
M(3,C). Beginning with say a basis, Z(0) = {I3,Z3,Z2

3} where Z3 is the generalised Pauli matrix for

3 dimensions, the other two sets of MUUBs, {Z(1)
0 ,Z(1)

1 ,Z(1)
2 } and {Z(2)

0 ,Z(2)
1 ,Z(2)

2 } are described
by the operators,

Z(1)
m =

1√
3

[I3 + γ2mZ3 + γm+1Z2
3]

Z(2)
n =

1√
3

[I3 + γ2nZ3 + γn+2Z2
3] (29)

The above gives a total of 3 MUUBs; we note that this corresponds to the result of the numerical
search in Ref.[5].
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V. CONCLUSION

The study of MUUB for M(d,C) and MUBs for Hd ⊗ Hd consisting of only MES are equivalent;
conclusions drawn from one can be used for the other, at least in the context of its construction.
Phenomenologically however, they are very different as one addresses unitary operators acting on
quantum states while the other are entangled states.

As the minimal number of MUUBs that can be constructed is d(d − 1) and the case for d = 2
is known from Ref. [5] to be 3, therefore we can safely conclude that one can construct at least
3 MUUBs for the d2-dimensional space of M(d,C) for any prime number d. To date however, no
known recipe exists for constructing the maximal number d2 − 1. Nevertheless, referring to the
equivalent problem of MUB for MES, any construction for the d2 + 1 maximal number of MUBs
for a Hd ⊗Hd, one can consider bases exclusively consisting either of product states or MES. The
minimal number one can achieve in this way for MUBs consisting of MES (equivalently MUUBs)
would approach the maximal number, for very large values of d.

In terms of the d-dimensional subspace, KS , i.e. spanned by a basis as that of Eq. (17), the max-
imal number of MUUB is d. A recipe for the construction of such bases is based on an isomorphism
between the monoids defined for Hd and that defined for KS .

MUUBs suggests an analogous structure for unitary operators as MUBs are for quantum states.
With much understanding of it is wanting, immediate directions of study should address the is-
sues of constructing the maximal number of MUUBs possible for M(d,C), equivalences of possible
families of MUUBs or even MUUBs for non-prime d. In the context of application, MUUBs have
played an important role in quantum process tomography and quantum cryptography. In the latter
for example, the choice of encoding from differing MUUBs was shown[8] to naturally suppress an
eavesdropper information gain. It has also recently been shown to be related to maximal entropic
bounds for pairs of setups in distinguishing between unitary processes not unlike the case of MUBs
in entropic bounds for observables[21]. A more thorough study should provide not only further
development of the field in its fundamental context, but also its practical implications.
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