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4Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
5INFN - LNL , Viale dell’Università 2, 35020 Legnaro (PD), Italy
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Absolute angular rotation rate measurements with sensitivity better than prad/s would be ben-
eficial for fundamental science investigations. On this regard, large frame Earth based ring laser
gyroscopes are top instrumentation as far as bandwidth, long-term operation, and sensitivity are
concerned. Here, we demonstrate that the GINGERINO active-ring laser upper limiting noise is
close to 2×10−15 rad/s for ∼ 2×105 s of integration time, as estimated by the Allan deviation evalu-
ated in a differential measurement scheme. This is more than a factor 10 better than the theoretical
prediction so far accounted for ideal ring lasers shot–noise with the two beams counter–propagating
inside the cavity considered as two independent propagating modes. This feature is related to
the peculiarity of real ring laser system dynamics that causes phase cross–talking among the two
counter–propagating modes. In this context, the independent beam model is, then, not applicable
and the measured noise limit falls below the expected one.

Light based interferometers have reached n high level
of sensitivity, reliability, and robustness. In most inter-
ferometers, two separate beams are injected in two sepa-
rate paths and recombined to interfere so that differences
in path-lengths even smaller than 10−14 times the wave-
length can be resolved [1].

While such measurement scheme is possible thanks to
the wave-nature of light, that shows-up as the interfer-
ence of coherent beams, the corpuscular nature of light
sets the intrinsic limit to the sensitivity attainable by in-
terference. This limit is known as shot–noise and it is
frequency independent. It intrinsically comes from the
stochastic fluctuations in the photon number that, for
coherent beams, are Poissonian distributed and so are
the detected photo-electrons [2]. Overcoming the sensi-
tivity limit due to shot-noise is a relevant objective in
interferometry and sub-shot noise sensing schemes have
been introduced, see e.g. Refs. [3–6].

Interferometer topologies can be quite different. Paths
defined by four mirrors, located at the vertices of a
square, define a ring cavity where the two light beams
circulates in counter– and clockwise directions. In this
case, the two paths are equal, frequency jitters are negli-
gible, and the interference of the two counter-propagating
beams carries information on the non reciprocal effects
connected to the direction of circulation. If the frame
supporting the four mirrors rotates, the two counter-
propagating beams complete the path at different times.
In such a configuration, the interference measures the

time derivative of the difference in phase acquired by the
two beams, rather than the path spatial difference. This
feature is the well known Sagnac effect [7, 8].

Sagnac interferometers, in particular their active ver-
sions known as Ring Laser Gyroscopes (RLGs), are com-
monly used to measure inertial angular rotation (for a
review on RLG see Refs. [9, 10]). Moreover, RLGs with
optical cavity area typically above 10m2, when connected
to the Earth crust, can be used to measure continuously
the absolute angular rotation rate of the Earth, whose
value is embedded in the difference in frequency of the
two counter-propagating beams. The storage time of the
cavity determines the bandwidth of the instrument, typ-
ically above 1 kHz, and, being the measurement based
on frequency reconstruction, the dynamic range is very
high: RLGs can detect strong earthquakes and seismo-
logical signals in the frequency window ∼ 0.01 − 30Hz,
as well as tiny geodetic signals in the very low frequency
domain (< 10−3 Hz), showing an adequate sensitivity to
probe General Relativity (GR) effects such as the Lense-
Thirring and de Sitter [11].

Moreover, other non reciprocal effects, related to prop-
agation of the two light beams and connected to the
space time structure or symmetries, can be investigated
by RLGs. This leads to results relevant in fundamen-
tal physics [12–14] when sensitivity of 5 × 10−14 rad/s,
or better, are reached, corresponding to 1 part in 109 of
the Earth rotation rate. Sagnac interferometers are also
good candidates for investigating the interplay between
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GR and quantum systems [15–19].

Since the first model by Cresser et al. [20], devel-
oped after concepts described in [21], evaluation of the
expected sensitivity limit in actual RLGs [10, 22] has
assumed independent counter-propagating beams. This
assumption implies neglecting any mechanism that lets
the two beams exchange phase information and consid-
ering the two laser emission affected by two completely
independent phase (Wiener) diffusion processes. So do-
ing, the linewidth of each counter-propagating beam is a
Lorentzian and the width of the Sagnac frequency, with
a Schawlow–Townes form, is given by the quadratic sum
of the two Lorentzians [9]. For GINGERINO [23], a
running prototype of the GINGER RLG array [14, 24]
located inside the Gran Sasso National Laboratory of
INFN, Italy, the model evaluates a shot–noise of about
18 prad/s Hz−1/2, taking into account its operating pa-
rameters.

However, in RLGs the two beams are generated in-
side the same active medium volume that emits toward
the two opposite directions and the laser equations for
the two counter-propagating beam amplitudes are cou-
pled to each other [25]. In a recent paper, Mecozzi [26]
has shown that two of these coupling mechanisms can
play a role: back–scattering and gain–scattering, which
causes phase locking of the two beams, reducing the ef-
fect of phase diffusion in the two modes dynamics. If the
Langevin equations for the two beams include them, the
noise behaviour of RLGs appears different. Thus, the
Allan deviation for the Sagnac signal does not scale as√
t (where t is the measurement time), as expected for

the shot–noise of interfering independent beams, and the
limiting noise falls below the expected shot–noise.

Analysing the data of GINGERINO we had already
realised inconsistency with the shot–noise evaluated by
the commonly used prediction [27–29]. This was an indi-
rect evidence, since the analysis focused at low frequency,
below 30 Hz, where physical and geophysical investiga-
tions are relevant, and sources of different nature such
as, human activity, microseismicity of the crust gener-
ated by the ocean, tides and polar motion, temperature
and pressure variations, are present. At low frequency,
it is hard to directly measure the shot–noise of an in-
terferometer, and a white noise level can be induced by
shocks or electronics. The measurement is, indeed, fea-
sible by subtracting two independent measurements of
the same interferometer. In this way the physical signals
are subtracted, while the non reciprocal disturbances and
the noise of stochastic origin, summed in quadrature, are
left. When it is possible to have two independent mea-
surements, the subtraction provides an upper limit for
the limiting noise of the interferometer.

In this Letter we report such a differential measure-
ment so giving a conclusive experimental proof that the
noise limit of the instrument is well below predictions
based on the independent beam model. The noise floor

is found directly by subtracting data obtained from two
equivalent beating optical signals at the two outputs of
a single beam splitter with no data manipulation, avoid-
ing linear regressions to cancel known signals [30]. So
doing, we trace-out, in analogy with common mode re-
jection, all possible rotational signals providing an upper
limit for the resulting background noise, including quan-
tum noise sources. Before presenting and discussing this
result, we give a brief overview on the RLG signal and
on the measurement methodology and set-up. Later, we
give hints on the dominant type of noise for our RLG and
discuss the result in terms of the Allan deviation of the
time series.
RLG senses the projection of the angular velocity vec-

tor Ω⃗ [31] on the area of the closed polygonal cavity. The
relationship between the Sagnac pulse frequency ωs and
the angular rotation rate Ω reads

ωs = 8π
A

λL
Ωcos θ , (1)

where A is the area of the cavity, L the perimeter, λ the
wavelength of the light, and θ the angle between the area
versor n⃗ and Ω⃗. Let us now explain in more detail how
the signal is extracted from the cavity.
The two counter-propagating beams transmitted by

one of the mirrors at the cavity corners are combined
at a beam–splitter, as sketched in the inset of Fig. 1.
The two resulting mixed beams, observed by two iden-
tical photodiodes, embed the measured beat note ωm.
It contains disturbances induced by the non linear laser
dynamics, back–scatter and null–shift, to be eliminated
in order to reach precision and accuracy better than 1
part in 105 [32]. To recover ωs we follow a two steps pro-
cedure: in the first one, an analytical approach returns
ωs0, while the second, more refined one gives ωs, based on
statistical means and on the assumption that the losses
of the cavity (µ) change with time. Corrections between
the first and second analysis steps are below the nrad/s
range (see [30] for details on data analysis). It has been
checked that the result remains valid using raw or refined
data; in the present work the first step of the analysis is
used (ωs0). Without loss of generality, it is possible to
state that the two photodiode signals Si, with i = 1, 2,
can be expressed as

Si = Ag · (−1)i · cos [(ωs + ωn) · t+ ϕn] + Vni
, (2)

where Ag is a gain factor, ωn indicates the stochastic
noise affecting the frequency itself, ϕn is the stochastic
term of the phase, and Vni

is any noise added outside
the cavity [33]. Here we note that the two signals exiting
the two beam-splitter ports are opposite in phase. The
reconstructed frequency signal from each photodiode is
ωi = ωs + ωTni

, where ωTni
takes into account all noise

terms at once, since it is not possible to discriminate
among different noise sources, and ωTni

> ωn. The two
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FIG. 1. ASD of the angular velocity obtained by considering
the difference between either the photodiode signals, Ωd, in
blue, or the corresponding reconstructed frequencies, Ωn12/2,
in red. The high frequency range, above 100 Hz, is plotted.
Some peaks due to electronics or environmental origin have
been removed. The cut–off occurring around 2 kHz is essen-
tially due to the sampling rate. The inset shows a simplified
sketch of the RLG setup, including the photodiodes used to
produce the S1 and S2 signals.

interferograms can be used independently or together.
Considering ωi associated with Si, and ωd with S = S1−
S2, in S the Sagnac signal is doubled while the stochastic
noise is summed in quadrature, hence ωd has a signal to
noise ratio

√
2 larger than ωi. Let us consider ωn12 =

ω1−ω2. Calling ωTnd
the noise term associated with ωd,

it is straightforward to conclude that ωn12 ∼ 2ωTnd
. So

said, ωn12/2 provides a direct upper noise limit of the
apparatus.

Fig. 1 shows the Amplitude Spectral Distribution
(ASD) above 100 Hz of the angular velocities Ωd and
Ωn12/2, corresponding to ωd and ωn12 respectively. As
the rotational signals are almost absent in the plotted
frequency range, the noise floors are in good agreement
with each other, as expected.

Figure 2, instead, compares Ωd and Ωn12/2 in the low
frequency region and it provides the most relevant result
of the paper. Above 0.1 Hz, the latter exhibits a lin-
ear growth whose nature is typical of a phase noise be-
haviour, as we will also see in the following (see Fig. 3),
and it is flat at lower frequency, with a level around 2
prad/s Hz−1/2, a factor 10 below the expected shot–noise
that is 18 prad/s Hz−1/2.
In order to understand which is the nature of the dom-

inant noise source we have used simulated noise data.
Taking into account the general definition of Eq. 2, data
have been generated at fixed frequency ωs and injecting
different stochastic noise sources as ϕn or Vn. These syn-
thetic data have been processed with the same procedure
depicted above for real ones.

FIG. 2. Same of Fig. 1 for the low frequency range, below 1
Hz, where Ωd and Ωn12/2 strongly differ with each other, as
expected. In this spectrum two hours of data around a big Mw
5.9 event have been removed (see [30]); when included, the low
frequency bump increases. Contrary to expectations for the
shot–noise, Ωn12/2 is not a flat noise and, for GINGERINO,
it shows the limit of 2− 3 prad/s in 1 s measurement time.

FIG. 3. ASDs of the injected frequency noise ωn (green) and
the corresponding reconstructed signal (purple). In red, the
ASD of the reconstructed signal obtained by injecting a phase
noise ϕn, with t̄ = 0.02 s integration time, and, in yellow, a
Wiener noise ϕW . The injected noise levels correspond to
20 prad/s Hz−1/2 at 1Hz. We note that the reconstruction
procedure at low frequency, for a white frequency noise, re-
turns a noise 20 times higher than the injected one. The dis-
continuities at the Sagnac Frequency are a feature of the fre-
quency reconstruction and are present also in real data power
spectra.

Figure 3 shows the response of the reconstruction pro-
cedure to the injection of three types of noise: white
frequency noise (ωn), white phase noise (ϕn), and phase
diffusion noise ϕW modeled as a Wiener process. In par-
ticular, we report the ASD of the injected noise ωn and
of the corresponding reconstructed signal, as well as the
ASD of the reconstructed signal injecting ϕn = ωn · t̄,
with t̄ = 0.02 s integration time, and ϕW , with standard
deviation 12.2 mrad.

The contribution of the white stochastic frequency



4

FIG. 4. ASDs of angular rotation rate obtained from ωs0 (sin-

gle signal evaluation) in rad/s Hz−1/2, for G Wettzell, GIN-
GERINO, and GP2. To compare signals from different RLGs
we use angular rotation rates instead of rotation velocities (as
in Figs. 1 and 2) that do not take into account the different
geometries. The high frequency part of the spectrum shows
the phase noise characteristic tail constantly rising with fre-
quency. G, owing to its monolithic structure, is very quiet,
GP2 is 1.6 m in side, and it is located in a rather noisy envi-
ronment, that explains the occurrence of a larger noise, and
a shorter data set has been used. Data from G are acquired
at 2 kHz, its earlier cut-off, occurring around 0.5 kHz is due
to the analysis procedure

.

noise ωn is reconstructed by the analysis process as a
white noise a factor 20 higher in the low frequency range,
then, it grows linearly at higher frequencies. At frequen-
cies above 20 Hz, its behaviour becomes indistinguishable
from the one obtained injecting a white phase noise ϕn.
The latter produces a power spectrum proportional to
frequency over the full frequency span. On the other
hand, the phase diffusion noise, simulated as a Wiener
process, produces a constant ASD, a factor of 2 higher
than the level of the injected noise. It’s worth noticing
that all ASD of the reconstructed signals show a discon-
tinuity at the Sagnac frequency.

Comparison of the simulated behaviours with that of
Ωn12/2 plotted in Fig. 2 shows that GINGERINO noise,
at least above 0.1 Hz, is dominated by a phase noise
source.

To understand if the above is a common feature of dif-
ferent large frame RLGs, we have analysed experimental
data produced by four distinct RLGs where a single sig-
nal is acquired. As said, the frequency range below 0.1
Hz is affected by laser systematics and contains signals
of geophysical origin, thus for this purpose we analyse
higher frequencies.

We report in Fig. 4 the ASD relative to ωs0 (see [30]
for details) for G–Wettzell [10], GINGERINO, and GP2
[34], while the ASD of ROMY [35], that shows a very
similar behaviour, is not reported for the sake of clar-
ity. The minimum of the ASD is in the frequency win-

dow 0.1 − 1Hz, where microseismicity originated by the
oceans is present. The region above 5Hz contains regu-
lar signals but also a characteristic tail linearly growing
with frequency for all RLGs. Despite evident differences,
due to the different structure and location (GP2 is lo-
cated in a noisy environment), all three ASDs linearly
grow with frequency, already for frequency above few Hz
for G and GINGERINO. Comparing this feature with
the behaviour obtained with simulated data (see Fig. 3)
we can conclude that, in these RLGs, phase noise pre-
vails, at least above 0.1Hz, while below the noise level is
rather flat, but very low, and further work is required to
investigate the origin of this flat noise level.

We stress that the plots of Fig. 4 do not allow an esti-
mation of the intrinsic noise of the RLG. Indeed, ωs0 con-
tains all the possible signal and noise sources so that the
ASD minimal values are biased. On the contrary, the dif-
ferential detection scheme developed in the present work
gives a reliable estimation of the noise floor. In such a
case the ASD reports only noise sources, quantum noise
included, that independently affect the two outputs of
the beam splitter.

In order to systematically compare the sensitivity
reached in GINGERINO with the estimation of its noise
limit given by the independent beam model, we used Al-
lan deviation of the time series. We report in Fig. 5 the
Overlapped and Modified Allan Deviations; for sake of
completeness, we remark that the Overlapped Allan De-
viation, evaluated by using ωm2−ωm1, provides very sim-
ilar results [30]. The GINGERINO noise drops to 4 and
2.63 frad/s in approximately 2.4 days of integration time,
respectively, corresponding to 1.23 and 1.87 in 1010 the
Earth rotation rate, a level sufficient for detecting fun-
damental physics effects with an array of RLGs [13, 14].
In the plot, the red-dashed line represents the shot-noise
level expected for GINGERINO using the independent
beam model.

It is proved that, below 0.1 Hz, the large RLG GIN-
GERINO shows a limiting noise floor in the prad/s
Hz−1/2 range, well below what expected for the shot–
noise in this type of apparatus taking for granted the
independent beam model [20]. This experimental noise
limit has been obtained by subtracting two independent
rotation signals. These signals come from the two out-
puts of a single beam–splitter placed at one of the cavity
corners. So doing, the estimated noise level represents an
upper limit to the inherent noise affecting the apparatus.
While this experimental finding suggests that a complete
model of the system should take into account the com-
plex interdependent dynamics of the counter-propagating
beams, it gives a conclusive proof of the feasibility of fun-
damental physics measurements once an array of RLGs
is available.

In the complex dynamics of RLG, there are physical
mechanisms whose effect is to couple the two beam dy-
namics, so establishing some sort of correlation in time



5

FIG. 5. Overlapped and Modified Allan Deviation of Ωn12/2
expressed in rad/s. Plotted data have been obtained by us-
ing STABLE32 [36]. The red dashed line represents the ex-
pected shot–noise for GINGERINO using the independent
beam model. The points at 1 Hz give values in the range of 2
prad/s in agreement with the ASD presented in Fig. 2. Then,
the Modified Allan Deviation reaches the value of 2.1 ± 0.01
frad/s in 2.5 days of integration time, that corresponds to
4.3× 10−11 the Earth rotation rate.

that an independent beam model cannot account for. As
suggested by Mecozzi in [26], locking-mechanisms decou-
ple “noise of the beat note from the frequency noise of the
individual modes, thus allowing the realization of sub-
shot–noise laser gyros”.

A full quantitative comprehension of the actual limit
to RLG noise goes beyond the scope of the present paper
and requires a detailed model that considers both locking
mechanisms in a unified frame, that could be applied to
a large range of frequencies.

This result paves the way to the use of high sensitivity
RLG in general relativity and beyond, as well as quantum
physics research where tiny effects are expected [37].
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[16] S. Restuccia, M. Toroš, G. M. Gibson, H. Ulbricht, D.

Faccio, and M. J. Padgett, Phys. Rev. Lett. 123,110401
(2019).

[17] M. Toroš, S. Restuccia, G. M. Gibson, M. Cromb, H.
Ulbricht, M. Padgett, and D. Faccio, Phys. Rev. A 101,
043837 (2020).
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J. Padgett, and D. Faccio, Phys. Rev. Res. 5, L022005
(2023).

[20] J.D. Cresser, W.H. Louisell, P. Meystre, W. Schleich, and
M.O. Scully, Phys. Rev. A 25, 2214 (1982); J.D. Cresser,
D. Hammonds, W.H. Louisell, P. Meystre, and H. Risken,
Phys. Rev. A 25, 2226 (1982); J.D. Cresser, Phys. Rev.
A 26, 398 (1982).

[21] T. Dorschner, H. Haus, M. Holz, I. Smith, and H. Statz,
IEEE J. Quantum Electron. 16, 1376 (1980).

[22] W.W. Chow, J. Gea-Banacloche, L.M. Pedrotti, V.E.
Sanders, W. Schleich, and M.O. Scully, Rev. Mod. Phys.
57, 61 (1985).

[23] Jacopo Belfi, et al., Rev. Sci. Instrum. 88, 034502 (2017).
[24] C. Altucci, et al., AVS Quantum Sci. 5, 045001 (2023).
[25] J.R. Wilkinson, Prog. Quant. Electr. 11, 1 (1987).
[26] Antonio Mecozzi, Optica 10, 1102-1110 (2023).
[27] A.D.V. Di Virgilio, et al., Phys. Rev. Res. 2, 032069(R)

(2020).
[28] A.D.V. Di Virgilio, et al., Eur. Phys. J. C 81, 400 (2021);

A. Basti, et al., Eur. Phys. J. Plus, 136, 537, (2021).
[29] A.D.V. Di Virgilio, N. Beverini, G. Carelli, D. Ciampini,

F. Fuso, and E. Maccioni, Eur. Phys. J. C 79, 573 (2019);
A.D.V. Di Virgilio, N. Beverini, G. Carelli, D. Ciampini,
F. Fuso, U. Giacomelli, E. Maccioni, and A. Ortolan,
Eur. Phys. J. C 80, 163 (2020).

[30] See Supplemental Materials for details.
[31] A table of all the relevant symbols used in the paper

is included in the Supplemental Materials. In particular,
capital Ω, given in rad/s, will always indicate angular
rotation rates while small ω, measured in Hz, will indi-
cate electrical signal pulse frequencies experimentally ob-
tained from the time dependent Sagnac interferograms.

[32] J. Belfi, N. Beverini, G. Carelli, A. Di Virgilio, U. Gi-
acomelli, E. Maccioni, A. Simonelli, F. Stefani, and G.
Terreni, Appl. Opt. 57, 5844–5851 (2018).



6

[33] The last term includes noise equivalent power of the pho-
todiode, or amplitude fluctuations of the light at the de-
tector, etc.

[34] E. Maccioni, N. Beverini, G. Carelli, G. Di Somma, A.
Di Virgilio, and P. Marsili, Appl. Opt. 61, 9256–9261
(2022).

[35] H. Igel, et al., Geophys. J. Int. 225, 684–698 (2021).
[36] STABLE 32 is a program for frequency stability analysis

freely available at: http://www.stable32.com/.
[37] Francesco Giovinetti, et al., Front. Quantum Sci. Tech-

nol. 3 (2024); doi:10.3389/frqst.2024.1363409.

http://www.stable32.com/

	Noise level of a ring laser gyroscope in the femto-rad/s range
	Abstract
	Acknowledgement
	References


