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Abstract
The paper presents a Winkler-based numerical model for the analysis of the
dynamic response of caisson foundations. The model allows the evaluation of
the impedance functions and of the foundation input motion (FIM), which can
be used in the framework of the substructure approach to compute inertial soil-
foundation superstructure interaction analyses. In addition, kinematic stress
resultants due to seismic shear waves propagating into the soil can be estimated.
The caisson is modelled as a Timoshenko beam and the soil-caisson interaction
forces are derived from the analyses of the plane-strain vibration problem of an
annular rigid ring embedded into the soil. The problem solution is obtained in the
frequency domain exploiting the finite element approach and generic soil strati-
graphies can be considered in the applications. Themodel,which is characterised
by a very low computational effort, is validated by performing a parametric inves-
tigation, comparing results with those obtained from more rigorous BEM-FEM
models of the soil-caissons systems. Finally, some applications to real caisson
foundations of offshore wind turbines (OWTs) are shown to demonstrate the
model accuracy in capturing the seismic response of the foundations obtained
from more rigorous models.
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1 INTRODUCTION

A caisson foundation is a large, prefabricated box-type structure that can be sunk in soft grounds or water up to the
required level by excavating or dredging the material within the caisson. The latter are similar in form to pile foundations
but of greater diameters and smaller length-to-diameter ratios compared to piles, and can be classified depending on the
installation technique. By excluding floating caissons, which are not embedded into the soil and are not of interest for
this research, the following main typologies can be identified: open caissons, pneumatic caissons, suction caissons, and
drilled pier. Open caissons are constituted by hollow shafts (chambers) with cutting edges, opened at both the top and the
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base, that sink into place by removing the soil from inside the shaft. If the soil within the shaft cannot be excavated easily
or if water is expected to be a problem by filling in the excavated soil, pneumatic caissons can be employed; the latter are
watertight box or cylinder-like structures opened at the bottom but closed at the top. In this case, compressed air is used
to prevent the entry of water into the working chamber during the excavation. If the installation of the caisson foundation
is offshore, a suction caisson may be preferrable. A suction caisson is an inverted bucket that is embedded in the marine
sediment by creating a negative pressure inside the caisson skirt by pumping water out of the caisson; this technology is
adopted when gravity loads are not sufficient for sinking the foundation into the ground and is particularly efficient for
seabed with soft clays or low strength sediments. Finally, caissons may also be obtained by drilling a cylindrical hole of
the desired depth in the soil and by filling it with concrete; in this case, the foundation is also known as drilled pier, and
it can be characterised by a straight shaft or by a base enlargement.
The above foundation typologies have proved to be an extremely versatile solutions, able to withstand compressive, ten-

sile or lateral loading, and are often adopted in both bridge and offshore engineering. In particular, caisson foundations
can be used for bridge piers when high lateral forces and bending moments have to be faced, or when foundations are
located below the water surface of rivers. In offshore engineering, caisson foundations are largely used for offshore wind
turbines (OWTs), for which the selection of the foundation typology is determined by the water depth.1 Anyway, the pre-
vious structural typologies are both sensitive to the soil-structure interaction (SSI) problem, whichmay largely affect their
structural response when subjected to both seismic and non-seismic actions. As for bridges, SSI has been largely proven
to affect the seismic response, especially in the case of short piers and soft soils.2–7 Concerning OWTs, the main effects
of SSI is the change of the fundamental frequency and damping of the foundation-structure system with respect to the
fixed-base condition, whichmay lead to resonance problems with the rotor and the blade-passing frequencies. The former
corresponds to rotor or aerodynamic unbalance loads, while the latter is produced by the shadowing effect from the wind
of the blades passing the tower. Usually, codes recommend keeping the tower frequency outside the ±10% range of these
frequencies and suggest different design approaches depending on the ratio between the tower fundamental frequency
and the aforementioned frequencies.8–10 Thus, SSI effects should be carefully considered in the design, especially in the
case of monopile foundations. In addition, recent studies demonstrated that SSI may also play an important role on the
seismic response of OWTs, leading to beneficial or detrimental effects depending on the size of the rated power.11–16
In the framework of the substructure approach,17 SSI effects on the seismic and non-seismic response of bridges and

OWTs can be evaluated by modelling superstructures on compliant bases. For seismic actions, superstructures are sub-
jected to the foundation input motion (FIM), that is, the motion experienced by the foundation due to the propagation of
the seismic waves into the soil (kinematic interaction). The soil-foundation impedances, namely the frequency-dependent
force-displacement relationships that govern the behaviour of the compliant restraints, as well as the FIM are determined
through the analysis of the soil-foundation subdomain. The same analysis also provides kinematic stress resultants in the
foundation elements.
With both references to floating and end-bearing piles, the problem of the dynamic soil-foundation interaction analysis

has been widely addressed in the literature with the aim of providing analytical or numerical solutions for impedances
and FIM. On the contrary, caisson foundations have been primarily investigated for what concern their load vertical
and lateral capacity, while the dynamic response has received less attention. One of the first works dealing with the
vibration problem of embedded foundations is the one by Beredugo and Novak,18 in which an approximate analytical
solution was developed to predict the coupled horizontal and rocking vibration by assuming the foundation to be rigid.
Later, Veletsos et al.19 analysed the dynamic modelling and response of rigid cylinders supported by a non-deformable
rigid base and embedded in a uniform viscoelastic stratum of constant thickness and infinite extent in the horizontal
direction. Under the same assumptions, Saitoh andWatanabe20 presented a detailed investigation of the influence on the
rocking impedance of flexible sidewalls in embedded foundations. Gerolymos and Gazetas contributed to the problem in
2005, developing a Winkler model for the analysis of the static and dynamic response of rigid caisson foundations, also
addressing the problem of nonlinearities at the soil-caisson interface.21,22 In the same year, Beltrami et al.23 studied the
kinematic interaction problem of rigid large-diameter shaft foundations developing an analytical model using solutions
of rigid walls and fixed base cylinders subjected to a dynamic excitation. The above studies investigated the response of
embedded cylindrical foundations mainly through an analytical approach, by making suitable simplifying assumptions
such as the ones relevant to the soil stratigraphy, the caisson base restraints, or the analysis of some specific components
of the soil-foundation impedance matrix. The impedances of flexible caissons were studied in 2007 by Liingaard et al.24
through a three-dimensional coupled boundary element/finite element model of the soil-foundation system, assuming
the soil as a linear homogeneous viscoelastic material. The authors also compared their results with those obtained from
known analytical and numerical solutions and carried out a parametric investigation by varying the main geometric
and mechanical parameters affecting the system response. Following the approach by Liingaard et al.,24 more recently,



CARBONARI et al. 3071

a significant number of papers were published investigating the kinematic interaction of caissons foundations exploiting
a finite element modelling approach, taking advantage of the continuous IT advances leading to ever more performing
computers.25–29 However, despite high performant computers are nowadays available, finite element or boundary element
modelling strategies still remain computationally demanding procedures for the analysis of SSI problems because a
significant portion of soil (usually not only the near-field portion) must be included in the models due to the non-perfect
radiation condition at the model boundaries, which is usually simulated numerically through infinite elements or
Lysmer-Kuhlemeyer dashpots.30 Consequently, the above methods are not suitable for phenomenological or probabilistic
investigations of the dynamic response of caisson foundations on a large scale, since they imply a parametric scheme to
study the effects on impedances and on the FIM due to the variability of the geometric and mechanical parameters of
the problem, which may be very high, especially if stratified soil conditions are taken into account. For the same reasons
they are not feasible for applications in frameworks for the seismic risk assessment of structures and infrastructures on
regional scale, where fragility curves derived from the probabilistic analysis of the vulnerability of archetype structural
systems are needed. In this case, the absence of data deriving from soil in-situ and laboratory tests of a specific case study,
as well as the need to perform thousands of applications to derive fragility curves according to a probabilistic scheme,
make it impossible to perform comprehensive nonlinear soil-foundation-structure interaction analyses, and simplified
linear or linear equivalent models must be suitably adopted to include SSI effects in the fragility analyses, risk evaluation
and loss assessments. In addition, nonlinear sophisticated models are redundant for seismic verifications of structures at
damageability limit states and results of linear models are fundamental to validate those achieved from nonlinear ones.
Above considerations suggest that, despite the current computing power allow performing complex nonlinear analyses,
linear applications retain their usefulness in both research and practical applications.
In this work, a Winkler-based analytical model for the analysis of the dynamic response of caissons foundations is

developed. The model is conceived to be used in the framework of the sub-structuring method for the seismic analysis of
SSI problems, providing both impedances and the kinematic response of soil-caisson systems embedded in layered soil
deposits. Thus, the model permits exploiting the well-known advantages of the sub-structuring method, including the
possibility of using different dedicated software for the analysis of the soil-foundation and the superstructure systems,
and the possibility to include the superstructure nonlinearities in the inertial interaction analysis.
The caisson is modelled as a Timoshenko beam and the soil-caisson interactions are introduced through functions

expressing the soil reactions as a function of the relative displacement between the caisson and the soil. The latter are
obtained from the solution of a rigid annular cross-section vibrating in an infinite homogeneous soil layer. The steady
or transient dynamic excitation is represented by the soil free-field displacements, which may be computed considering
a linear equivalent approach to account for the soil nonlinearities by defining secant soil shear moduli and damping
rations, consistent with strains attained during the motion, that can be also used to express the soil-caisson interaction
forces. The problem solution is obtained numerically through a finite element approach. Themodel is characterised by few
degrees of freedom since the soil is not physically included in the formulation and the solution is characterised by a very
low computational demand, which makes it consistent with the need of iterative analyses if the soil nonlinearities need
to be considered through a linear-equivalent approach. The model efficiency in capturing impedances and the kinematic
response of caisson foundations is tested through comparisons of results with those provided by a rigorousmodel based on
coupling the boundary elementmethod (BEM) and the finite elementmethod (FEM),31,37 and some limits of the developed
tool are addressed and discussed. The model revealed suitable for a large-scale phenomenological investigation of the
kinematic response of caisson foundations in homogeneous or stratifiedmedia, by varying the soil-foundation parameters
(e.g., soil stratigraphy, soil mechanical properties, caisson length, skirt thickness). Also, the reliability of the proposed
model in predicting the seismic response of these foundations is tested through some applications involving realistic
caisson foundations and real earthquakes.

2 PROPOSEDWINKLERMODEL

A single cylindrical caisson foundation embedded in a horizontally layered soil deposit and subjected to the free-
field seismic soil displacements is considered. The foundation has a diameter D and a thickness of the skirt s. The
problem is formulated in the frequency domain by assuming a linear viscoelastic behaviour for the caisson and the
soil (Figure 1A). Perfectly bonded contact conditions between soil and skirt are assumed while the soil-lid contact is
neglected.
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F IGURE 1 (A) Caisson foundation embedded in the horizontally layered soil profile, (B) foundation subjected to interaction forces, and
(C) resultants of interactions forces (red forces) at a certain depth due to the Winkler’s assumption

2.1 Kinematics

A global orthonormal reference system frame {0, x1, x2, z}, with the origin at the centroid of the top plane of the stratum
and the z axis directed downward, is defined as in Figure 1A.
According to the Timoshenko beam theory, the displacements of a generic point p of coordinates x1, x2, and z can be

expressed by the following complex valued functions, starting from the displacements of the cross-section centroids:

𝑢𝑧,𝑝 (𝜔; 𝑥1, 𝑥2, 𝑧) = 𝑢𝑧 (𝜔; 𝑧) + φ1 (𝜔; 𝑧) 𝑥2 − φ2 (𝜔; 𝑧) 𝑥1 (1a)

𝑢1,𝑝 (𝜔; 𝑥1, 𝑥2, 𝑧) = 𝑢1 (𝜔; 𝑧) − φ𝑧 (𝜔; 𝑧) 𝑥2 (1b)

𝑢2,𝑝 (𝜔; 𝑥1, 𝑥2, 𝑧) = 𝑢2 (𝜔; 𝑧) + φ𝑧 (𝜔; 𝑧) 𝑥1 (1c)

in which 𝑢𝑧,𝑝, 𝑢1,𝑝 and 𝑢2,𝑝 are the displacements along the vertical and horizontal directions x1 and x2, respectively. In
Equation (1), displacements of the cross-section centroids are expressed by u1 and u2 (horizontal displacements in x1 and x2
directions, respectively), φ1 and φ2 (rotations about x1 and x2 axes, respectively), and uz and φz (displacement and rotation
along and around the vertical z axis, respectively). The pile non-null strains are obtained from displacements (1) and are
expressed by

ε𝑧 (𝜔; 𝑥1, 𝑥2, 𝑧) = 𝑢′𝑧 + φ′
1
𝑥2 − φ′

2
𝑥1 (2a)

𝛾1𝑧 (𝜔; 𝑥1, 𝑥2, 𝑧) = 𝑢′
1
− φ′𝑧𝑥2 − φ2 (2b)

𝛾2𝑧 (𝜔; 𝑥1, 𝑥2, 𝑧) = 𝑢′
2
+ 𝜑′𝑧𝑥1 + 𝜑1 (2c)

in which prime denotes derivatives with respect to z.
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F IGURE 2 Soil reactions considered in the proposed model

2.2 The linear dynamic problem

By assuming a linear behaviour for the foundation, the dynamic problem can be expressed through the Lagrange
D’Alembert principle, assuming that the work resulting from external and inertia forces acting through every virtual con-
sistent displacement field is equal to that resulting from stresses acting through every virtual strain field. External forces
develop during the motion along the cross-section boundaries due to soil-pile interactions. Unknown interaction forces
𝑟1(𝜔; 𝑥1, 𝑥2, 𝑧), 𝑟2(𝜔; 𝑥1, 𝑥2, 𝑧) and 𝑟𝑧(𝜔; 𝑥1, 𝑥2, 𝑧) along x1, x2 and z directions, respectively (red forces in Figure 2B), are
herein defined; assuming that no gaps arise during the motion, forces at a generic depth z result from the non-local soil-
pile interaction, depending on displacements occurring over thewhole caisson lateral surface (blue forces in Figure 2B). In
addition, inertia forces develop during themotion, depending on the caisson density ρ. The Lagrange d’Alembert principle
provides the following balance condition:

∫
𝐿

0

(
EA𝑢′𝑧δ𝑢′𝑧 + EI𝜙′

1
δ𝜙′

1
+ EI𝜙′

2
δ𝜙′

2
+
GA
𝜒

[(
𝑢′
1
− 𝜙2

) (
δ𝑢′

1
− δ𝜙2

)
+
(
𝑢′
2
+ 𝜙1

) (
δ𝑢′

2
+ δ𝜙1

)]
+ 𝐺𝐼𝑝𝜙

′
𝑧𝛿𝜙

′
𝑧

)
dz

= 𝜔2 ∫
𝐿

0

(
𝜌𝐴𝑢1δ𝑢1 + 𝜌𝐴𝑢2δ𝑢2 + 𝜌𝐴𝑢𝑧δ𝑢𝑧 + 𝜌𝐼𝜙1δ𝜙1 + 𝜌𝐼𝜙2δ𝜙2 + 𝜌𝐼𝑝𝜙𝑧δ𝜙𝑧

)
dz

+ ∫
𝐿

0
∫
𝜕𝐴

(𝑟1δ (𝑢1 − 𝑥2𝜙𝑧) + 𝑟2δ (𝑢2 + 𝑥1𝜙𝑧) + 𝑟𝑧δ (𝑢𝑧 + 𝑥2𝜙1 − 𝑥1𝜙2)) dsdz, ∀δ ∙ (𝑧) ≠ 0 (3)

In Equation (3),E andG are the Young’s and shearmodulus of thematerial of the cross-section of the caisson foundation
while A and I are the area and the moment of the inertia of the circular annular cross-section around a principal axis. In
addition, Ip = 2I is the polar moment of inertia and 𝜒 is the shear corrector factor. Equation (3) cannot be solved since the
soil-caisson interaction forces depends on the unknown displacement field on the overall lateral surface of the caisson.
The problem can be simplified by introducing theWinkler’s assumption, namely by assuming that the interactions forces
at depth z depends only on displacements at the same depth (Figure 2C); by considering a linear viscoelastic behaviour for
the soil, the resultants of the interaction forces at depth z are derived in the following section considering the harmonic
vibration of an embedded rigid body with annular cross-section.
By defining with 𝑢1,𝑓𝑓(𝑧; 𝜔), 𝑢2,𝑓𝑓(𝑧; 𝜔), and 𝑢3,𝑓𝑓(𝑧; 𝜔) the translational components of the free-field motion along the

x1, x2, and z directions, respectively, the soil-pile interaction forces can be expressed exploiting impedances obtained from
the solution of the vibration problem of the rigid annular cross-section, which allows obtaining the following form for the
balance condition:

∫
𝐿

0

(
EA𝑢′𝑧δ𝑢′𝑧 + EI𝜑′

1
δ𝜑′

1
+ EI𝜑′

2
δ𝜑′

2
+
GA
𝜒

[(
𝑢′
1
− 𝜑2

) (
δ𝑢′

1
− δ𝜑2

)
+
(
𝑢′
2
+ 𝜑1

) (
δ𝑢′

2
+ δ𝜑1

)]
+ 𝐺𝐼𝑝𝜑

′
𝑧δ𝜑

′
𝑧

)
dz

−𝜔2 ∫
𝐿

0

(
𝜌𝐴𝑢1δ𝑢1 + 𝜌𝐴𝑢2δ𝑢2 + 𝜌𝐴𝑢𝑧δ𝑢𝑧 + 𝜌𝐼𝜑1δ𝜑1 + 𝜌𝐼𝜑2δ𝜑2 + 𝜌𝐼𝑝𝜑𝑧δ𝜑𝑧

)
dz
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+∫
𝐿

0

(𝑘ℎ𝑢1δ𝑢1 + 𝑘ℎ𝑢2δ𝑢2 + 𝑘𝑣𝑢𝑧δ𝑢𝑧 + 𝑘𝑟𝜑1δ𝜑1 + 𝑘𝑟𝜑2δ𝜑2 + 𝑘𝑡𝜑𝑧δ𝜑𝑧) dz

= ∫
𝐿

0

(
𝑘ℎ𝑢1,ffδ𝑢1 + 𝑘ℎ𝑢2,ffδ𝑢2 + 𝑘𝑣𝑢𝑧,ffδ𝑢𝑧

)
dz, ∀δ ∙ (𝑧) ≠ 0 (4)

It is worth observing that the soil-pile interaction forces depend on the difference between displacements of the caissons
foundations and those experienced by the soil without the caisson (i.e., the free-field motion). The balance condition can
be written in the following compact form

∫
𝐿

0

𝐊D𝐮 (𝜔; 𝑧) ⋅ δD𝐮 (𝑧) dz − 𝜔2 ∫
𝐿

0

𝐌𝐮 (𝜔; 𝑧) ⋅ δ𝐮 (𝑧) dz + ∫
𝐿

0

𝐊𝑠 (𝜔; 𝑧) 𝐮 (𝜔; 𝑧) ⋅ δ𝐮 (𝑧) dz

= ∫
𝐿

0

𝐊s (𝜔; 𝑧) 𝐮ff (𝜔; 𝑧) ⋅ δ𝐮 (𝑧) dz, ∀δ𝐮 (𝑧) ≠ 0 (5)

where

𝐮 (𝜔; 𝑧) =
[
𝑢1 𝑢2 𝑢3 φ1 φ2 φ𝑧

]𝑇
(6a)

𝐮𝑓𝑓 (𝜔; 𝑧) =
[
𝑢1,𝑓𝑓 𝑢2,𝑓𝑓 𝑢3,𝑓𝑓 0 0 0

]𝑇
(6a)

are the vectors collecting displacements of the caisson axis at depth z, and the vector of the free-field motion, respectively,
and

𝐊 =

⎡⎢⎢⎢⎢⎢⎢⎣

GA𝜒−1 0 0 0 0 0

0 GA𝜒−1 0 0 0 0

0 0 EA 0 0 0

0 0 0 EI 0 0

0 0 0 0 EI 0

0 0 0 0 0 𝐺𝐼𝑝

⎤⎥⎥⎥⎥⎥⎥⎦
(7a)

𝐌 = 𝜌

⎡⎢⎢⎢⎢⎢⎢⎣

𝐴 0 0 0 0 0

0 𝐴 0 0 0 0

0 0 𝐴 0 0 0

0 0 0 𝐼 0 0

0 0 0 0 𝐼 0

0 0 0 0 0 𝐼𝑝

⎤⎥⎥⎥⎥⎥⎥⎦
(7b)

are the stiffness and mass matrices of the caisson cross-section. In addition,

𝐊𝑠 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘ℎ 0 0 0 0 0

0 𝑘ℎ 0 0 0 0

0 0 𝑘𝑣 0 0 0

0 0 0 𝑘𝑟 0 0

0 0 0 0 𝑘𝑟 0

0 0 0 0 0 𝑘𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)
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𝐃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑

dz
0 0 0 −1 0

0
𝑑

dz
0 1 0 0

0 0
𝑑

dz
0 0 0

0 0 0
𝑑

dz
0 0

0 0 0 0
𝑑

dz
0

0 0 0 0 0
𝑑

dz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

are the soil impedance matrix and a differential operator, respectively.

2.3 Soil reactions for the rigid annular cross-section

The key ingredient of a Winkler-based model is the use of appropriate and physically relevant soil reactions due to the
foundationmovement, that is, the correct selection of types and values of distributed springs and dashpots for the problem
at hand. In this regard, there is a vast literature where these are obtained analytically or via curve fitting of numerical
results for many different foundation configurations, see for example, the literature review in.42 In the context of the
dynamic analysis of pile foundations, one of the most widely known expressions is the plane strain solution of Novak
et al.,43 where vertical, torsional, horizontal, and rotational soil reactions of an infinitely long cylinder are obtained in
closed-form formulas.Despite neglecting three-dimensional phenomena, these plane strain soil reactionswork reasonably
well for floating slender solid piles even for stratified soils,44 although, for some of them, the stiffness approaches zero
when 𝜔 → 0. A straightforward workaround of this drawback is the use a constant stiffness for frequencies below some
threshold as proposed by Novak and Sheta45 (𝑘 (𝑎0) = 𝑘(0.3)when dimensionless frequency 𝑎0 < 0.3 for the problematic
components).
In the case of caissons and short piles, it is quite reasonable to argue that the physics of the soil inside the founda-

tion may play a relevant role in the foundation response due to the relevant mass and stiffness of the inner soil column
restricted by the skirt of the caisson foundation. This inner soil column will be characterised by its own dynamic prop-
erties, and will interact with the rest of the system, Thus, the effects of the inner soil on the system dynamics should be
somehow included in a Winkler model. With this idea in mind, in this work Novak’s soil reactions are complemented
with a new set of soil reactions related to the internal soil. This means that a foundation with rigid annular cross-section
containing external and internal soil is considered, see Figure 2. Plane strain conditions allow obtaining up to four modes
of soil reactions: vertical, torsional, horizontal, and rotational; see Figure 3. The solution to each soil reaction mode can
be obtained by conveniently solving time harmonic Navier equation. Due to the geometrical nature of the problem, the
equations are decoupled by using a method of potentials and cylindrical coordinates as proposed by Pak.39 The resulting
three uncoupled wave equations, together with the appropriate boundary conditions, are used to solve tractions along
the soil-foundation interface. Soil reaction for each mode is obtained by integration of the relevant tractions along the
soil-foundation interface. The resulting closed-form formulas are presented in Table 1, where it should be noticed that the
expressions are similar to those of Novak, except for some factors and the presence of the modified Bessel function 𝐼𝑚(𝑧)
instead of 𝐾𝑚(𝑧).

2.4 Finite element solution

The solution of the problem may be achieved numerically by the FEM in the displacement-based approach, by dividing
the caisson axis into e elements and approximating the displacements within the elements by interpolating those of the
end nodes. An interdependent interpolation element is considered for the Timoshenko beammodel while linear interpo-
lating functions are adopted for axial and torsional displacements. According to the FEM, the pile displacements may be
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F IGURE 3 Internal soil reaction modes and their corresponding boundary conditions

TABLE 1 Closed-form formulas of soil reaction modes

Mode Internal soil External soil43

Vertical (𝑘𝑣) 2𝜋𝐺𝑎𝑠
𝐼𝑠
1

𝐼𝑠
0

2𝜋𝐺𝑎𝑠
𝐾𝑠
1

𝐾𝑠
0

Torsional (𝑘𝑡) 2𝜋𝐺𝑅2
(
𝑎𝑠
𝐼𝑠
0

𝐼𝑠
1

− 2

)
2𝜋𝐺𝑅2

(
𝑎𝑠
𝐾𝑠
0

𝐾𝑠
1

+ 2

)
Horizontal
(𝑘ℎ)

−𝜋𝐺𝑎2𝑠
𝑎𝑠𝐼

𝑠
0
𝐼
𝑝

1
+ 𝑎𝑝𝐼

𝑝

0
𝐼𝑠
1
− 4𝐼𝑠

1
𝐼
𝑝

1

𝑎𝑠𝐼
𝑠
0
𝐼
𝑝

1
+ 𝑎𝑝𝐼

𝑝

0
𝐼𝑠
1
− 𝑎𝑠𝑎𝑝𝐼

𝑠
0
𝐼
𝑝

0

𝜋𝐺𝑎2𝑠
𝑎𝑠𝐾

𝑠
0
𝐾
𝑝

1
+ 𝑎𝑝𝐾

𝑝

0
𝐾𝑠
1
+ 4𝐾𝑠

1
𝐾
𝑝

1

𝑎𝑠𝐾
𝑠
0
𝐾
𝑝

1
+ 𝑎𝑝𝐾

𝑝

0
𝐾𝑠
1
+ 𝑎𝑠𝑎𝑝𝐾

𝑠
0
𝐾
𝑝

0

Rotational (𝑘𝑟) 𝜋𝐺𝑅2
(
𝑎𝑠
𝐼𝑠
0

𝐼𝑠
1

− 1

)
𝜋𝐺𝑅2

(
𝑎𝑠
𝐾𝑠
0

𝐾𝑠
1

+ 1

)
Note: 𝜆, 𝐺 and 𝜌 are the Lamé’s first parameter, shear modulus and density of the soil, respectively. 𝑅 = 𝐷∕2 is the radius of the foundation. S-wave dimensionless
frequency is 𝑎𝑠 = 𝑖𝜔𝑅∕𝑉𝑠 , where 𝑉𝑠 =

√
𝐺∕𝜌 . P-wave dimensionless frequency is 𝑎𝑝 = 𝑖𝜔𝑅∕𝑉𝑝 , where 𝑉𝑝 =

√
(𝜆 + 2𝜇)∕𝜌 . Hysteretic damping is introduced

via the usual complex 𝜆 and 𝐺 in the previous equations. Modified Bessel functions of 𝑚-th order are denoted as 𝐼𝑠𝑚 = 𝐼𝑚 (𝑎𝑠), 𝐼
𝑝
𝑚 = 𝐼𝑚 (𝑎𝑝), 𝐾𝑠

𝑚 = 𝐾𝑚 (𝑎𝑠)

and 𝐾
𝑝
𝑚 = 𝐾𝑚 (𝑎𝑝).

approximated as

𝐮 (𝜔; 𝑧) ≅ 𝐍 (𝑧) 𝐝𝑒 (𝜔) (10)

where

𝐝𝑒 (𝜔) =
[
𝑢1ℎ 𝑢2ℎ 𝑢zℎ φ1ℎ φ2ℎ φzℎ 𝑢1𝑘 𝑢2𝑘 𝑢z𝑘 φ1𝑘 φ2𝑘 φz𝑘

]𝑇
(11)
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is the nodal displacement vector of the generic element having end nodes h and k and

𝐍 (𝑧) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑛1 0 0 0 −𝑛2 0 𝑛3 0 0 0 −𝑛4 0

0 𝑛1 0 𝑛2 0 0 0 𝑛3 0 𝑛4 0 0

0 0 𝑛8 0 0 0 0 0 𝑛9 0 0 0

0 𝑛5 0 𝑛6 0 0 0 −𝑛5 0 𝑛7 0 0

−𝑛5 0 0 0 𝑛6 0 𝑛5 0 0 0 𝑛7 0

0 0 0 0 0 𝑛8 0 𝑛5 0 0 0 𝑛9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

is the matrix of the interpolating polynomials. In Equation (12)

𝑛1 (𝑧,Ω) =
1

1 + 12Ω

[
2

(
𝑧

𝐿𝑒

)3

− 3

(
𝑧

𝐿𝑒

)2

− 12Ω

(
𝑧

𝐿𝑒
− 1

)
+ 1

]
(13a)

𝑛2 (𝑧,Ω) = −
𝐿𝑒

1 + 12Ω

(
𝑧

𝐿𝑒

)[(
1 −

𝑧

𝐿𝑒

)2

+ 6Ω

(
1 −

𝑧

𝐿𝑒

)]
(13b)

𝑛3 (𝑧,Ω) =
1

1 + 12Ω

[
3

(
𝑧

𝐿𝑒

)2

− 2

(
𝑧

𝐿𝑒

)3

+ 12Ω
𝑧

𝐿𝑒

]
(13c)

𝑛4 (𝑧,Ω) =
𝐿𝑒

1 + 12Ω

(
𝑧

𝐿𝑒

)[(
𝑧

𝐿𝑒

)
−

(
𝑧

𝐿𝑒

)2

+ 6Ω

(
1 −

𝑧

𝐿𝑒

)]
(13d)

𝑛5 (𝑧,Ω) =
6

𝐿𝑒 (1 + 12Ω)

(
𝑧

𝐿𝑒

)(
1 −

𝑧

𝐿𝑒

)
(13e)

𝑛6 (𝑧,Ω) =
1

1 + 12Ω

[
1 + 3

(
𝑧

𝐿𝑒

)2

− 4

(
𝑧

𝐿𝑒

)
+ 12Ω

(
1 −

𝑧

𝐿𝑒

)]
(13f)

𝑛7 (𝑧,Ω) =
1

1 + 12Ω

[
3

(
𝑧

𝐿𝑒

)2

− 2

(
𝑧

𝐿𝑒

)
+ 12Ω

(
𝑧

𝐿𝑒

)]
(13g)

𝑛8 (𝑧) =

(
1 −

𝑧

𝐿𝑒

)
(13h)

𝑛9 (𝑧) =
𝑧

𝐿𝑒
(13i)

where Le is the length of the finite element, and

Ω =
𝐸𝐽𝜒

𝐺𝐴𝐿2𝑒
(14)

By considering the approximation (10) and the contribution of all the elements, the global balance condition (5) becomes

𝐸∑
𝑒=1

∫
𝐿𝑒

0

(𝐃𝐍)
𝑇
𝐊𝐃𝐍𝐝𝑒 ⋅ δ𝐝𝑒dz − 𝜔2

𝐸∑
𝑒=1

∫
𝐿𝑒

0

(𝐍)
𝑇
𝐌𝐍𝐝𝑒 ⋅ δ𝐝𝑒dz +

𝐸∑
𝑒=1

∫
𝐿𝑒

0

(𝐍)
𝑇
𝐊𝑠𝐍𝐝

𝑒 ⋅ δ𝐝𝑒dz

=

𝐸∑
𝑒=1

∫
𝐿𝑒

0

(𝐍)
𝑇
𝐊s𝐮ff ⋅ δ𝐝

𝑒dz, ∀δ𝐝𝑒 ≠ 0 (15)
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By suitably assembling the node displacements in a unique displacement vector d(ω), standard considerations make it
possible to obtain the complex linear equation system(

𝐊𝑝 − 𝜔2𝐌𝑝 + 𝐊𝑓

)
𝐝 = 𝐟 (16)

where

𝐊𝑝 =

𝐸∑
𝑒=1

∫
𝐿𝑒

0

(𝐃𝐍)
𝑇
𝐊𝐃𝐍dz (17)

𝐌𝑝 =

𝐸∑
𝑒=1

∫
𝐿𝑒

0

(𝐍)
𝑇
𝐌𝐍dz (18)

𝐊𝑓 =

𝐸∑
𝑒=1

∫
𝐿𝑒

0

(𝐍)
𝑇
𝐊𝑠𝐍dz (19)

are the global stiffness matrix and the global mass matrix of the foundation, and the global impedance matrix of the soil,
obtained by assembling the relevant contributions of all the elements, and

𝐟 =

𝐸∑
𝑒=1

∫
𝐿𝑒

0

(𝐍)
𝑇
𝐊s𝐮ffdz (20)

is the vector of the external loads due to the free-field motion.

2.5 Impedances and kinematic response functions

System (16) can be partitioned as follows to highlight displacements of the head node of the caisson, collected in the
vector 𝐝ℎ, from those of the remaining embedded nodes 𝐝𝑒:[

𝐊ℎℎ 𝐊ℎ𝑒

𝐊𝑒ℎ 𝐊𝑒𝑒

] [
𝐝ℎ

𝐝𝑒

]
=

[
𝐟ℎ

𝐟𝑒

]
(21)

In Equation (21), 𝐟ℎ and 𝐟𝑒 collects soil-caisson interaction forces acting at the head, and at the embedded nodes,
respectively, and [

𝐊ℎℎ 𝐊ℎ𝑒

𝐊𝑒ℎ 𝐊𝑒𝑒

]
=
(
𝐊𝑝 − 𝜔2𝐌𝑝 + 𝐊𝑓

)
(22)

After simple manipulations, the following equation is obtained(
𝐊ℎℎ − 𝐊ℎ𝑒𝐊

−1
𝑒𝑒 𝐊𝑒ℎ

)
𝐝ℎ = 𝐟ℎ − 𝐊ℎ𝑒𝐊

−1
𝑒𝑒 𝐟𝑒 (23)

from which

ℑ (𝜔) = 𝐊ℎℎ − 𝐊ℎ𝑒𝐊
−1
𝑒𝑒 𝐊𝑒ℎ (24)

is the complex valued foundation impedance matrix. Finally, the motion of the head node (FIM) may be expressed as

𝐝ℎ (𝜔) = ℑ−1
(
𝐟ℎ − 𝐊ℎ𝑒𝐊

−1
𝑒𝑒 𝐟𝑒

)
(25)
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3 MODEL VALIDATION

This section provides a validation of the proposedmodel through an extensive comparison of the model results with those
resulting from a rigorous BEM-FEMmodelling of the soil-caisson interaction problem. Comparisons are aimed to provide
an overview of the model ability in capturing both the impedances and the kinematic response of caisson foundations,
discussing its applicability as a function of the system parameters and the relevant degree of accuracy.

3.1 Reference BEM-FEMmodel

For the sake of validation, the proposed model is compared against a previously developed model based on coupling
the BEM and the FEM.31,37 Within the context of linear dynamic analyses, this numerical model is a rigorous physical
representation of the problem. On one hand, the foundation skirt and lid aremodeled throughwell-established shell finite
elements.38 On the other hand, the soil is modeled using the BEM, where boundary elements and body load elements are
coupled with shell finite elements under perfectly welded conditions. As it is well known, themain ingredient of the BEM
is Green’s functions, and, in this case, the Green’s function of Pak and Guzina39 for a stratified viscoelastic half-space is
used. In the following, a summary of the formulation is given.
Shell FEM modeling of the foundation is based on the usual element equilibrium equation,40 which for an element 𝑒

can be written as: (
𝐊(e) − 𝜔2𝐌(𝑒)

)
⋅ 𝐚(𝑒) − 𝐐(𝑒) ⋅ 𝐩(𝑒) = 𝐪(𝑒) (26)

where𝐊(𝑒) and𝐌(𝑒) are the stiffness and mass matrices, 𝐚(𝑒) gathers the element degrees of freedom (displacements and
rotations for each element node),𝐐(𝑒)is thematrix that transformsmid-surface distributed loads 𝐩(𝐞) into equivalent nodal
loads, and 𝐪(𝑒)is the element equilibrating load vector. Element stiffness matrix is obtained from the locking-free MITC
methodology,38 while the rest of the matrices result from the standard shell, obtained from the degeneration of the solid
approach. Global FEM equations are obtained from the usual assemblage procedure.
Soil is modeled by using the BEM. BEM equations are built by appropriate collocation of boundary integral equations41:

𝑐𝑖
𝑙𝑘
𝑢𝑖
𝑘
+ ∫

Γlid

𝑡∗
𝑙𝑘
𝑢𝑘𝑑Γ = ∫

Γlid

𝑢∗
𝑙𝑘
𝑡𝑘𝑑Γ + ∫

Γskirt

𝑢∗
𝑙𝑘
𝑏𝑘𝑑Γ (27)

where indicial notation 𝑙, 𝑘 = 1, 2, 3 and Einstein summation is implied. The free-term 𝑐𝑖
𝑙𝑘
is related to the local geometry

around the collocation point, while 𝑢𝑖
𝑘
is the displacement at the collocation point. Green’s function in terms of displace-

ments and tractions are 𝑢∗
𝑙𝑘
and 𝑡∗

𝑙𝑘
, respectively. Displacements and tractions along the domain boundaries are 𝑢𝑘 and 𝑡𝑘,

which, due to the use of the stratified half-space Green’s function, is reduced only to the foundation lid Γlid (if present).
Likewise, the discretization of the free-surface and the interfaces between soil layers are no longer required. Foundation
skirt can be represented through displacements 𝑢𝑘 and surface body loads 𝑏𝑘 along its mid-surface Γskirt. Finally, perfectly
welded contact conditions between soil and foundation are established by imposing compatibility and equilibrium at
each node 𝑛: [

𝑢
(𝑛)

𝑘

]
foundation

=
[
𝑢
(𝑛)

𝑘

]
soil

(28)

[
𝑝
(𝑛)

𝑘

]
foundation−lid

+
[
𝑡
(𝑛)

𝑘

]
soil−lid

= 0 (29)

[
𝑝
(𝑛)

𝑘

]
foundation−skirt

+
[
𝑏
(𝑛)

𝑘

]
soil−skirt

= 0 (30)

This model is built in two flavors: foundation with lid (typical of suction caissons, where lid interaction may occur),
and foundation without lid (typical of short monopiles, where lid interaction is not present). Figure 4 shows a graphical
summary of the resulting BEM-FEM coupled model, where the geometrically coincident elements are exploded for the
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F IGURE 4 Graphical summary of the
BEM-FEMmodel

F IGURE 5 Scheme of the soil deposits

sake of clarity. As shown in the figure, due to the symmetry of the problem only one quarter of the domain needs to be
discretized.

3.2 Definition of the parametric investigation

Themodel validation is achieved through a parametric analysis performed by varying thematerial of the caisson, which is
assumed to be made of reinforced Concrete (C) or Steel (S), the length/diameter ratio (L/D), the skirt thickness/diameter
ratio (s/D), and the shear wave velocity (Vs(z)) profile of the soil deposit. Two models are considered for the latter: a
constant shear wave velocity profile to represent a Homogeneous (H) deposit, or a model characterised by an exponential
trend (E) of the shear wave velocity profile, to simulate the progressive increase of the soil dynamic properties with depth
(Figure 5). The soil stiffness is expressed in terms of the shear wave velocity 𝑉𝑠,𝐷 , which is assumed to be 100, 175, and
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TABLE 2 Parameters adopted for the investigation

Caisson material s/D L/D Soil profile 𝑽𝒔,𝑫

Steel (S) 0.01 2, 4, 6 H, E 100, 175, 250
Reinforced concrete (C) 0.1 2, 4, 6 H, E 100, 175, 250

250 m/s. In detail, the following formulation is defined for the shear wave velocity profile:

𝑉𝑠 (𝑧) = 𝑉𝑠,𝐷

(
𝑧 + 0.2

𝐷 + 0.2

)𝛼

(31)

where 𝑉𝑠(𝑧) is the depth-dependent shear wave velocity, z is the vertical abscissa of the soil measured from the surface,
and 𝑉𝑠,𝐷 is the reference shear wave velocity at a depth z = D. 𝛼 is a parameter governing the shape of the velocity
profile: for 𝛼 = 0 a homogeneous soil with constant shear wave velocity 𝑉𝑠,𝐷 is obtained while 𝛼 = 0.25 provides an
exponential trend characterised by a shear wave velocity 𝑉𝑠,𝐷 at depth of one diameter. It is worth noting that the expo-
nential trend is characterised by a non-null value of the shear wave velocity at 𝑧 = 0, to simulate a realistic soil condition
(Figure 5).
The skirt thickness/diameter ratio (s/D) is fixed to 0.01 for steel caissons (S) and to 0.1 for concrete caissons (C), while the

length/diameter ratio (L/D) is varied between 2, 4 and 6. All the parameters of the parametric investigation are summarised
in Table 2.
The parameter combination generates a total number of 36 case studies that cover a wide range of possible situations

(short to medium steel or reinforced concrete caissons in very soft or medium-stiff soils). In the sequel, each case study is
labelled according to the following rule: Material_L/D&soil profile_ Vs so that, for example, the case S_2H_100 identifies
a steel caisson of length equal to 2 diameters embedded in a homogeneous soil characterised by a shear wave velocity
of 100 m/s, while the case C_4E_250 indicates a reinforced concrete caisson of length equal to 4 diameters embedded in
a non-homogeneous soil deposit characterised by a shear wave velocity of 250 m/s at depth of one pile diameter. Some
parameters, deemed to have aminor effect on the variability of impedances and on the kinematic response,32 are assumed
to be constant; in detail, a density 𝜌𝑠 = 2.0 t/m3 and a Poisson’s ratio 𝜈𝑠 = 0.4 are considered for the soil. As for caissons,
densities 𝜌𝑐 equal to 2.5 and 7.85 t/m3, and Poisson’s ratios 𝜈𝑐 equal to 0.2 and 0.3 are considered for reinforced concrete
and the steel skirts, respectively.
By defining the non-dimensional frequency 𝑎0 = 𝜔𝐷∕𝑉𝑠,𝐷 , analyses are performed within the frequency range 0÷6,

which covers, for all the investigated cases, the frequency range of interest for engineering applications (0÷10 Hz). The
lid mass is not considered, consistently with a conventional application of the substructure approach. Finally, in order to
make applications repeatable by a reader and for the sake of completeness, analyses are performed considering an elastic
modulus E for the caisson material of 30 and 210 GPa for the concrete and the steel, respectively. By defining with 𝐸𝑠 the
elastic modulus of the soil, the latter generate an 𝐸∕𝐸𝑠 ratio ranging between 536 and 86 for the concrete caissons and
between 3750 and 600 for the steel caissons.
Firstly, an overview of the overall performance of the proposed model is presented by defining an error parameter to

quantify discrepancies with respect to the benchmark model’s results in terms of frequency-dependent impedances and
kinematic response factors; then, starting from the information obtained from the overall errors, selected results of some
specific configurations are shown to illustrate the performance of the model and to provide a visual correlation between
the error parameter and the model behaviour.

3.3 Overview of the overall errors

In order to provide an overview of the discrepancies between the results obtained from the proposed model and the
benchmark, the following overall error parameters are defined in the investigated frequency range to quantify differences
between the two functions (frequency-dependent impedances and kinematic response factors):

𝜀𝑖 = 1 − 𝜙𝑖 (32)
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F IGURE 6 Errors computed for the real parts of all impedance and FIM components. Homogeneous (H) profile. BEM-FEMmodel
without lid

where

𝜙𝑖 =
∫ 𝑓𝑢𝑝
0

□𝑚
𝑖
(𝑓)□𝑏

𝑖
(𝑓) 𝑑𝑓

∫ 𝑓𝑢𝑝
0

(
□𝑏

𝑖
(𝑓)

)2
𝑑𝑓

(33)

In Equation (33), subscript i identifies the generic quantity for which the parameter is computed, f is the frequency,
□ is the generic component of the impedance matrix or one of the kinematic response factors, and superscriptsm and b
identify results obtained from themodel and the benchmark results, respectively. Parameters𝜙 are 1 if the generic quantity
obtained from the model superimpose to the relevant one of the benchmark data; thus, the error parameters 𝜀 tends to 0
by reducing differences between the computed quantities and the benchmark data. The error parameters are computed
considering different values of the upper bound of the integral 𝑓 ; in detail, 2, 5 and 10Hz are considered. It is worth noting
that the parameters are referred to the dimensional frequency ranges to make the overview of the model accuracy directly
comparable with the frequency content of an earthquake or the fundamental frequency of the superstructure.
In order to illustrate how the distribution of errors vary among the different configurations, Figures 6 and 7 present the

value computed for the real and imaginary parts, respectively, of all impedance functions and both kinematic factors for
all the foundation cases in the homogenous profile without including the lid in the BEM-FEMmodel used as reference.
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F IGURE 7 Errors computed for the imaginary parts of all impedance and FIM components. Homogeneous (H) profile. BEM-FEM
model without lid

It can be remarked that very low values of the error parameters are obtained for all the real parts of the impedance
functions and the kinematic response functions; in detail, parameters are all below 0.4 for the translational, rotational,
coupled roto-translational and torsional impedances, with a great number of cases presenting values lower than 0.2. In
addition, the rotational and coupled-roto translational components show a very goodmatching with the benchmark data,
as documented by a numerous set of cases characterised by an error parameter below 0.1. Slightly higher values of the
errors are obtained for the real parts of the vertical impedance, while the kinematic response parameters arewell captured,
with errors almost always below 0.2. As for imaginary parts, slightly higher values of the errors can be observed; anyway,
errors are always below 0.5-1.0 for impedanceswhile sensibly higher parameters can be observed for the imaginary parts of
the kinematic response factors. The latter are due to peculiar trends of the results with frequency that will be commented
in the sequel with respect to some selected case studies.
The distribution of errors for the non-homogeneous soil profile (E) follows, in general, the same trends, although aver-

age differences are higher, and large differences can be found for some individual cases. The same can be said if the results
from the proposedmodel are compared against the benchmarkmodel that considers the presence of the lid in contact with
the ground surface, case in which differences are larger (these results are not shown here for the sake of brevity). These
distributions of errors are synthesised below in order to show the main trends more clearly.
In order to determine more clearly how the accuracy and applicability of the proposedWinkler model is affected by the

different parameters, Figures 8 and 9 present a statistical analysis of the errors. Each box plot presents the median, 25th
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F IGURE 8 Evolution of errors with respect to shear wave velocity, slenderness ratio, skirt material and soil profile. On the left, errors
computed from differences in the range 0–2 Hz. On the right, errors computed from differences in the range 0–10 Hz. Outliers are not plotted.
Benchmark results from the BEM-FEMmodel are computed without lid

and 75th percentiles and the nonoutlier minima and maxima of the absolute values of all errors relevant to the indicated
case. For instance, the first box plot (corresponding to Vs,D = 100 m/s) of the first plot, is computed using all the errors
corresponding to all cases with such representative shear wave velocity, that is, it is representative of 84 individual cases
(7 response quantities, i.e., 5 impedance functions and 2 kinematic response factors, times 3 slenderness ratios times 2
materials times 2 profiles). Furthermore, the statistical analysis is performed considering values of errors obtained within
two frequency ranges, 0–2 Hz and 0–10 Hz; these have been selected considering the application fields of caisson foun-
dations (e.g., OWTs and bridges) and taking into account the seismic problem. Indeed, for particularly slender cantilever
structures, such as OWTs, the seismic response is largely dominated by the first fundamental frequency, usually lower
than 2 Hz; on the other hand, for structures characterised by a more complex response, such as bridges, the frequency
range of interest is usually limited to 0–10 Hz, where the earthquakes have the highest energy content and the resonance
frequencies of the structure fall.
Figure 8 analyses the errors computed with respect to the BEM-FEMmodel that does not include the lid, while Figure 9

reports the errors with respect to the BEM-FEMmodel that considers the presence of the lid. As previously observed, real
parts of all the response quantities are characterised by lower errors with respect to the imaginary parts.
As for real parts, the accuracy of the model is almost independent on the shear wave velocity in the range 0–2 Hz, while

it increases if the range 0–10 is considered. Furthermore, for both frequency ranges, an increase of the model accuracy is
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F IGURE 9 Evolution of errors with respect to shear wave velocity, slenderness ratio, skirt material and soil profile. On the left, errors
computed from differences in the range 0–2 Hz. On the right, errors computed from differences in the range 0–10 Hz. Outliers are not plotted.
Benchmark results from the BEM-FEMmodel are computed with lid

observed by increasing the slenderness ratio. In addition, slightly better results are obtained for concrete foundations in
homogeneous profiles, both in the 0–2 and 0–10 Hz frequency ranges. Concerning imaginary parts, the model accuracy
worsens by increasing the shear wave velocity (especially in the range 0–2 Hz) while it still increases with the slenderness
ratio (as before, the accuracy increment is more evident in the range 0–2 Hz). Finally, considerations similar to those of
the real parts hold for what concerns the error dependency on the skirt material and the soil profile. Comparing data
obtained for the two frequency ranges, it appears evident that discrepancies between results of the proposed model and
the benchmarks are frequency-dependent; higher errors are obtained for low frequency ranges, as a consequence of the
intrinsic drawbacks of the adopted expressions for the soil reactions, which, as already stated, collapse for 𝜔 → 0, and for
which the correction proposed in45 has been adopted.
Comparing data from the two figures, it is clear that greater errors are obtained if the lid is considered in computing

results from the BEM-FEMmodel.

3.4 Impedance functions and kinematic response

According to Figures 8 and 9, it can be said that the configuration for which the proposed Winkler model reaches, in
average, a higher level of agreement with respect to the reference BEM-FEM model is for a concrete foundation with a
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F IGURE 10 Comparison between impedance functions: concrete foundation, homogenous soil, L/D = 6, Vs,D = 250 m/s

slenderness ratio L/D = 6, embedded in a homogenous profile withVs,D = 250m/s. On the contrary, the worst agreement
is found for the case of a steel foundation with a slenderness ratio L/D = 2, embedded in the non-homogenous profile
with Vs,D = 100 m/s. In order to facilitate the reader to correlate the error parameters with the actual discrepancies of the
model results with the benchmark data, differences found in all individual functions (i.e., the impedances and kinematic
interaction factors) are illustrated for these two representative cases. In addition, results obtained from a Winkler model
implementing the closed-formexpressions obtained byNovak from the plane strain solution of an infinitely long cylinder43
are added. For these applications, the soil inside the caissons is considered to contribute in terms of mass and inertia
through a simple homogenization of the cross-sections. Comparisons of results obtained from the proposed model with
the latter applications provide a clear overview of the role of the interactions arising between the caisson and the soil
inside.
Figures 10 and 11 present the comparisons between the impedance functions yielded by the proposed Winkler model

(red continuous lines) and the reference BEM-FEM model including the lid or not (black continuous and dashed lines,
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F IGURE 11 Comparison between impedance functions: steel foundation, non-homogenous soil, L/D = 2, Vs,D = 100 m/s

respectively), for the two representative cases mentioned above. In the same plots, results obtained from the Winkler
model implementing only the Novak’s closed-form expressions for the external soil reactions are shown with dashed red
lines. As for Figure 10, relevant to a slender concrete caisson in homogeneous soil profile of medium stiffness, a good
matching between the impedances obtained from the proposed model and the benchmark data, disregarding the lid, are
obtained, except for the torsional impedance. In addition, it is worth noting the model capability in capturing the peak
of maximum impedance of the soil-caisson system. On the contrary, the benchmark impedances obtained by considering
the lid are sensibly different from those obtained with the proposed model. Overall, peaks occur at lower frequencies
and become evident in the selected non-dimensional frequency range also for the translational, rotational and coupled
roto-translational terms of impedances; the latter are not captured by the proposed model. The soil-caisson interactions
triggered by the internal soil do not affect sensibly the impedance components, excepting for the vertical one, for which
the soil vibrating inside the caisson produces peaks that cannot be captured by disregarding the stiffness of the internal
soil.
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F IGURE 1 2 Comparison between kin. interaction factors: concrete foundation, homogenous soil, L/D = 6, Vs,D = 250 m/s

Concerning Figure 11, referred to a steel caissonwith a low slenderness ratio in a non-homogenous loose soil deposit, an
overall capability of the proposed model in capturing the impedance functions can be observed up to a non-dimensional
frequency of about 3.5. For higher frequencies, peaks of impedances highlighted by the reference BEM-FEMmodel, with
or without the lid contribution, cannot be captured by the proposed model. In addition, the comparison between the
responses provided by the Winkler models that consider, or neglect, the internal soil reactions (solid and dashed red
curves) highlights the relevance of the contribution of the soil inside the caisson in all the terms of the impedance matrix,
being the proposed model (that includes the internal soil reactions) more prone to reproduce the reference BEM-FEM
results (particularly for the rotational and coupled roto-translational terms).
As already shown by Liingaard et al.,24 and by the present results from the reference BEM-FEM model, the lid has

an important impact on all impedance components except the torsional one. This strong influence is explained by the
fact that the lid imposes a kinematic constraint to the soil surface, whereas the soil surface is traction-free when no lid is
considered. The corresponding soil reaction at the lid triggers a complex three-dimensional wave field inside the caisson.
Signs of this are captured by the relevant impedance components where peaks presumably related to modes of vibration
of the internal soil appear. The present proposedWinkler model includes only the part of the physical phenomena related
to the two-dimensional plane strain soil-skirt interaction. This is quite evident when comparing the peaks in the vertical
impedances from all the models considered. Including soil-lid interaction in the present Winkler model is not a straight-
forward matter since there is a strong interdependence between soil-lid reaction and soil-skirt reaction, leading to a fully
three-dimensional phenomenon. Thus, approaches such as using a single spring-dashpot with the impedance of a sur-
face foundation for modelling the lid do not work. Probably, a Winkler model including soil-lid interaction would require
depth-dependent soil reactions, which very likely ban the main two advantages of Winkler models: simple formulation
and low computational cost. Therefore, the present proposedWinkler model is able to represent physical situations where
the lid (if present) has a small influence over the response.
Figures 12 and 13 present the comparisons between the kinematic interaction factors

Iu =
𝑢𝑖
𝑢𝑖,𝑓𝑓

(34a)

I𝜙 =
φ𝑖
𝑢𝑖,𝑓𝑓

(34b)
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F IGURE 13 Comparison between kin. inter. factors: steel foundation, non-homogenous soil, L/D = 2, Vs,D = 100 m/s

TABLE 3 Selected real earthquakes

Earthquake Name Wave form ID Country Station ID Date [dd/mm/yy] Δ [km] Magnitude [Mw] PGA [m/s2]
Etolia 428ya Greece ST169 18.05.1988 23 5.3 1.730
Umbria-Marche 601xa Italy ST224 26.09.1997 27 5.7 0.452
Pasinler 7089xa Turkey ST557 10.07.2001 32 5.4 0.192

computed with the proposedWinkler model and the reference BEM-FEMmodel including the lid or not, for the same two
cases. In Equation (34a, 34b) ui and ui,ff are the pile head and the free-field displacements in the i-th direction, respectively,
while φ𝑖 is the pile head rotation around the i-th axis. Also in this case, results obtained by using only Novak’s expressions
are reported for comparison. For both the selected case studies, a very good matching is observed concerning the real
parts of the functions while important discrepancies can be noted, especially for the slender concrete caisson, for the
imaginary parts, consistently with results presented in the previous sections. Interactions arising between the caissons
and the internal soil largely affect the imaginary components of the kinematic response parameters while a less evident
impact is observed in the real parts. Unlike impedances, kinematic interaction factors are quite unaffected by soil-lid
interaction. Therefore, for all the presented cases, the proposed Winkler model behaves better than that implementing
only the Novak’s expressions.

4 ACCURACY OF THE SEISMIC RESPONSE PREDICTION

The accuracy of the proposed model in capturing the seismic response of real caisson foundations (e.g., displace-
ments, accelerations and stress resultants) is studied in this section considering foundations of real OWTs. In detail,
foundations of the NREL 5MW,33 the IEA-10.0-198-RWT,34 and the IEA-15-240-RWT35 reference wind turbines are con-
sidered and subjected to 3 real earthquakes characterised by different intensities and frequency content. The adopted
accelerograms, taken from the European Strong Motion Database,36 are detailed in Table 3. Figure 14 shows the time
histories and the Fourier amplitude spectra of the strong-motion of each registration, which is applied at the surface
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F IGURE 14 Time histories and Fourier amplitude spectra of the three selected accelerograms

of the soil deposit; it is worth observing the different frequency content of the selected earthquakes (up to 10 Hz) that
makes it possible to investigate the ability of the proposed approach in capturing displacements, accelerations and stress
resultants on caissons taking into account the different performance of the model with the frequency of the input exci-
tation (as demonstrated in previous sections). The properties of the considered OWT caisson foundations are shown in
Table 4.
Figure 15 shows the non-null components of the impedance matrix of the caissons foundations of the three OWTs.

Continuous lines refer to data obtained with the proposed approach while dashed lines are used for the benchmark data
(the contribution of the lid is considered), provided by the BEM-FEM model. In addition, for the generic component,
real and imaginary parts are reported in the same graph with red and blue lines, respectively. It can be observed that
all impedances are closely reproduced in the frequency range 0–10 Hz, particularly the rotational, torsional and coupled
roto-translational terms. Translational and vertical components present some discrepancies in the range 0–2 Hz while are
very good captured for higher frequency ranges.
Figure 16 presents the kinematic response factors of the three foundations by adopting the same representative rules;

the kinematic response obtained from the proposed model is sensibly different from that obtained from the BEM-FEM
model (including the lid contribution), especially forwhat concern the imaginary parts. The response that is approximated
better is that of the 10MWOWT for which the real parts of both the translational and rotational kinematic response factors
obtained from the BEM-FEMmodel is very well captured.
Figure 17 shows the time histories of the caissons head displacements and rotations obtained for the three earthquakes;

these correspond to the FIM and constitute the input to the superstructure in the framework of SSI analyses performed in
the spirit of the substructure approach. The selected accelerograms are assumed to be applied at the soil surface. Despite
discrepancies observed in Figure 16 between the kinematic response factors computed with the proposed model and with
the BEM-FEM one, caisson head displacements and rotations superimpose with a very good accuracy, even if the peak
rotations are slightly underestimated by the proposed model.
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TABLE 4 Geometry of caissons and dynamic properties of the soil deposits

NREL 5MW IEA-10.0-198-RWT IEA-15-240-RWT
Caisson diameter (D) [m] 6 9 10
Skirt thickness (s) [mm] 60 101.5 55.3
Pile depth (L) [m] 36 42.6 45
L/D 6 4.73 4.5
Young’s modulus, Ec [GPa] 210 210 200
Shear modulus, Gc [GPa] 80.8 80.8 79.3
Density ρc [t/m3] 8.5 8.5 7.85
Soil profile Layered Single layer Single layer
Soil type Sand Sand Dense sand or Gravel
Soil Poisson’s ratio νs [-] 0.35 0.3 0.4
Density ρs [t/m3] 2 2 2
Shear modulus Gs [GPa] 42.6 (0 < z < 5 m) 92.3 (0 < z < ∞) 140 (0 < z < ∞)

61.9 (5 < z < 14 m)
87.4 (14 < z < ∞)

Shear wave velocity Vs [m/s] 145.9 (0 < z < 5 m) 214.8 (0 < z < ∞) 264.5 (0 < z < ∞)
175.9 (5 < z < 14 m)
209 (14 < z < ∞)

Soil damping ratio ξs [-] 0.05 0.05 0.05

F IGURE 15 Computed impedances for the three foundations



3092 CARBONARI et al.

F IGURE 16 Computed kinematic response factor for the three foundations

Finally, Figure 18 shows the maximum and minimum envelops of the kinematic stress resultants along the caissons
due to the propagation of the seismic shear waves inside the deposits. The proposed model accurately reproduces results
of the BEM-FEMmodel with some minor differences relevant to shear forces at the caisson base.

5 CONCLUSIONS

A Winkler-based numerical model for the analysis of the dynamic response of caissons foundations has been presented
in this paper. A Timoshenko beammodel is used for the caisson and the soil-caisson interactions are introduced through
functions expressing the soil reactions as a function of the relative displacements between the soil and the caisson.Winkler
models usually consider only the reactions of the soil outside the foundation. In this case, the reactions from the soil inside
the foundation are also included. Specific functions are derived to this end using the same approach and simplifying initial
assumptions used to obtain the widely used Novak’s expressions for the reactions of the soil outside a pile. The problem
is solved numerically through a finite element approach. The model capabilities in capturing the dynamic response of a
wide set of concrete and steel caisson foundations embedded in homogeneous and non-homogeneous soil deposits are
investigated through comparisons with data obtained by a rigorous BEM-FEMmodel.
The following main conclusions can be drawn:

∙ the model is characterised by few degrees of freedom since the soil is not physically included in the formulation and
the solution is characterised by a very low computational demand;

∙ the consideration of the reactions of the soil within the foundation contributes to significantly improve the accuracy of
the solution for this type of problems.
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F IGURE 17 Comparison between time-history responses in terms of caisson head displacements and rotations

∙ the model capability in capturing impedances and kinematic response factors of caisson foundations obtained through
more rigorous approaches is quite good; accuracy in predicting the real parts of the response quantities increases by
increasing the shear wave velocity of the soil and the slenderness ratio of the caisson; on the contrary, the accuracy of
the imaginary parts decrease by increasing the shear wave velocity and are overall characterised by a lower degree of
precision with respect to the real parts;

∙ the model seems to provide better results in case of homogeneous soil deposits;
∙ despite discrepancies observed with results of rigorous approaches in terms of impedances and kinematic response
factors, applications to realistic caisson foundations subjected to real earthquakes demonstrate that the model is able
to predict very well the foundation input motion (FIM) and the maximum stress resultants arising along the shaft due
to the propagation of the seismic waves;

∙ overall, the model behaves better than a Winkler one in which the soil inside the caisson only contributed in term
of mass and inertia propertied (through a cross-section homogenization) and in which the soil interactions with the
external soil are captured exploiting the Novak’s closed-form expressions.

In conclusion, the proposed model revealed suitable for applications in realistic engineering contexts, and, in view of
its low computational effort, it is a versatile tool for large scale phenomenological or probabilistic investigations on the
kinematic response of caisson foundations in homogeneous or stratified media.
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F IGURE 18 Comparison between envelopes of kinematic shear forces and bending moments
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