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We investigate entanglement production by inhomogeneous perturbations over a homogeneous and
isotropic cosmic background, demonstrating that the interplay between quantum and geometric effects can
have relevant consequences on entanglement entropy, with respect to homogeneous scenarios. To do so, we
focus on a conformally coupled scalar field and discuss how geometric production of scalar particles leads
to entanglement. Perturbatively, at first order, we find oscillations in entropy correction, whereas at second
order, the underlying geometry induces mode mixing on entanglement production. We thus quantify
entanglement solely due to geometrical contribution and compare our outcomes with previous findings.
We characterize the geometric contribution through geometric (quasi)particles, interpreted as dark matter
candidates.
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I. OVERVIEW

Ascertaining entanglement in curved spacetime remains
an outstanding issue of theoretical physics [1–7]. In this
respect, the Universe expansion, predicted by Einstein’s
field equations, can plausibly generate particles [8–10],
giving rise to entanglement as due to quantum field
evolution in curved spacetime [11–17]. These models
mostly assume a homogeneous Friedmann-Robertson-
Walker (FRW) background with stationary asymptotic
regions in the past and in the future, where the notion of
particle, and therefore vacuum, is properly defined.
Spacetime expansion is responsible for the fact that asymp-
totic in vacuum is no longer seen as a vacuum state in the out
region. Instead, it evolves into an “excited” configuration,
where excitations are interpreted in terms of particle
production.1 Such production from vacuum is quantified
through the use of the Bogoliubov coefficients [13].
Quantum correlations arising from particle creation were

shown to contain information about the Universe expan-
sion, with strong qualitative differences between bosonic
[11] and fermionic fields [12,14,15,17].

The presence of anisotropies also affects entanglement
generation [16]. In particular, bosonic and fermionic
massless fields only get entangled through anisotropy.
This can be of particular relevance for weakly interacting
particles like neutrinos, which may have not completely
washed out correlations in their evolution to present time.
The anisotropic contribution to entanglement is expected to
depend upon the direction of particle momentum.
In homogeneous scenarios, the entanglement entropy

singles out only particle pairs with opposite momenta.
Thus, a natural step to generalize this framework is to
include inhomogeneities, which played a fundamental role
in the early Universe. Inhomogeneous perturbations depart-
ing from a genuine FRW lead to pair-creation probability
depending on local geometric quantities [18,19], related to
gravitational overdensities, that also modify entanglement
production, as gravity becomes locally lumpy. The usual
strategy consists in assuming the external field approxi-
mation to hold; i.e., the classical perturbed metric is given,
and the production of matter fields is studied in this fixed
background.
The presence of inhomogeneities implies mode mixing

in particle creation, providing then relevant consequences
on mode dependence over entanglement measures. We
demonstrate that by introducing a position-dependent
perturbation, which alters the geometry of the FRW
spacetime, scalar particle pairs with different momenta
can get entangled. In other words, inhomogeneities and
spacetime expansion are both responsible for entanglement
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1It is remarkable to stress that cosmic expansion does not

modify the spacetime geometry, since it is a consequence of
Einstein’s equations.
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generation, but only inhomogeneities, which we here study
for the first time in the framework of cosmological
entanglement, allow mode mixing. In this sense, the notion
(and the amount) of cosmological entanglement is theo-
retically enriched with respect to previous efforts in the
literature. Moreover, in the limit of negligible expansion, it
can be shown that a purely geometric contribution to
particle production (and thus to entanglement) is found
from local inhomogeneities of a given metric. Accordingly,
we propose a novel definition of geometric cosmological
entanglement,2 fueled by “geometric” particles, i.e.,
particles produced by a changing geometry. Geometric
particles derive then from the coupling between spacetime
perturbations and the scalar field considered. Since we
work in the external field approximation, this coupling
depends of course on the amount of inhomogeneities
prompted by the involved metric.
The limiting case of negligible expansion is discussed in

detail both for massive and massless particles. In particular,
we show that in a perturbed FRW spacetime massless
particles can get entangled only through inhomogeneities,
in close analogy with the results of [16] for anisotropies.
This suggests that deviations from homogeneous and
isotropic models may have relevant consequences on
cosmological entanglement and therefore, deserve to be
included into the scenario.
In our calculations, we select an asymptotically flat scale

factor [9,23] and compute the entanglement entropy up to
second order in perturbations. Our goals are (a) we inves-
tigate perturbatively the quantum and geometric effects on
entanglement generation due to inhomogeneities, (b) we
underline oscillations in particle production at first order,
due to the concurrent effects of expansion and geometry, (c)
we argue how a purely geometric contribution arises at
second order and characterize how entanglement changes
under the effects of geometric particles, (d) we interpret
dark matter’s nature in terms of geometric quasiparticles,
fueling (at least partially) the dark matter energy-momen-
tum budget of the Universe.
The manuscript is outlined as follows. In Sec. II, we

present the model and describe our perturbative approach to
inhomogeneities. In Sec. III, we discuss particle production
up to second order. In Sec. IV, we study entanglement
generation both for massive and massless particles. In
Sec. V, we draw our conclusions. Natural units, G ¼ ℏ ¼
c ¼ 1, are here used.

II. SCALAR PARTICLES IN
PERTURBED SPACETIMES

We require scalar particles with given mass m non-
minimally coupled to spacetime scalar curvature, namely R,
perturbing with small inhomogeneities the spatially flat

FRW metric, i.e., gμν ≃ a2ðτÞðημν þ hμνÞ. Here, aðτÞ is the
scale factor, τ the conformal time, ημν the Minkowski
metric, and hμν the small inhomogeneities, jhμνj ≪ 1. The
scalar field Lagrangian,

L ¼ 1

2

ffiffiffiffiffiffi
−g

p ½gμνϕ;μϕ;ν − ðm2 þ ξRÞϕ2�; ð1Þ

can be then perturbed up to the first order [18,19] as
L ≃ Lð0Þ þ Lð1Þ þOðh2Þ. Assuming conformal coupling,
namely ξ ¼ 1=6, the free modes are analytical, enabling the
expansion field in terms of in, and/or out, positive fre-
quency modes by

ϕ̂ðx; τÞ ¼ 1

a

Z
d3k

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EinðkÞ
p

× ½fink ðx; τÞâinðkÞ þ fin�k ðx; τÞâ†inðkÞ�; ð2Þ

where EinðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2a2ð−∞Þ

p
. The modes fk can be

expressed as fkðx; τÞ ¼ fkðτÞeik·x, with fkðτÞ satisfying

f̈kðτÞ þ ½jkj2 þm2a2ðτÞ�fkðτÞ ¼ 0: ð3Þ

Since we now perturb the system, we can work in the
interaction picture and express the system final state as

lim
τ→þ∞

jΨi¼N
�
j0; iniþ

X
n

1

n!
jn; inihn; injSð1Þj0; ini

�
; ð4Þ

where Sð1Þ ¼ iT̂
R
Lð1Þd4x is the first order S matrix. Here,

the vector jni symbolizes any state containing n particles,
whileN is a normalizing factor. The interaction Lagrangian
is quadratic in the field and its derivatives; thus, particles are
produced in pairs up to first order in hμν. The probability
amplitude for pair creation is given by the S-matrix element

Sð1Þkp ¼ hkpjSð1Þj0i ¼ i
R hkpjT̂Lð1Þj0id4x, where all the

states are intended as in states. This element gives the
transition from the vacuum state j0i to a two-particle state
jkpi, with momenta k and p. An asymptotically flat
spacetime is needful to guarantee vacuum uniqueness, so
we single out the widely adopted scale factor [18]
a2ðτÞ ¼ Aþ B tanh ρτ, with A andB parameters controlling
the Universe’s volume, while ρ is related to the Universe’s
expansion rapidity. We suppose the perturbation is not
negligible on a finite time interval, namely τ ∈ ½τi; τf�, with
τi and τf negative and jτij; jτfj ≫ 1. Accordingly,

hμν ¼
�
hμν; if τi < τ < τf

0; otherwise:
ð5Þ

Within this interval, we can safely assume fink ðτÞ ≃ e−iEinτ,
provided the expansion is sufficiently fast. Accordingly, in
synchronous gauge, h0ν ¼ 0, we can derive the pair creation
amplitude [19],

2This has not to be confused with geometric measures of
entanglement [20–22].
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Sð1Þkp ¼ ih̃μνðkþpÞ
2ð2πÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EinðkÞEinðpÞ
p

�
kμpν−

1

6
ðkþpÞμðkþpÞν

−
1

12
ημνðkþpÞσðkþpÞσ−

1

2
ημνm2a2ðτ→−∞Þ

�
: ð6Þ

From the amplitude (6), we can numerically get the
amount of created particles. So, it behooves us to thor-
oughly specify hμν components. In the synchronous gauge,
the metric components g00 and g0i are unperturbed, and so

ds2 ¼ a2ðτÞ½dτ2 − ðδij þ hijÞdxidxj�; ð7Þ

where i, j ¼ 1, 2, 3. We focus here on scalar modes,

portrayed by h and by the traceless part hkij. Scalar perturba-
tions are easier to compute in conformal Newtonian gauge,
as the metric is diagonal and one can recognize the

gravitational potential, ψ , in Newtonian limit [24]. So, we
have

ds2 ¼ a2ðτÞ½ð1þ 2ψÞdτ2 − ð1 − 2ϕÞdxidxi�; ð8Þ

where the second scalar, ϕ, is required only if the energy-
momentum tensor contains a nonvanishing traceless and
longitudinal component. At a first glance, wemay set ψ ¼ ϕ
and consider nearly Newtonian perturbation source, i.e.,
ψ ¼ −M=r, where M is the mass which generates the
perturbation and r the radial coordinate. The corresponding

scalar perturbation in synchronous gauge, hij ¼ h=3þ hkij,
can be derived easily following Ref. [24], with the prescrip-
tion _a=a ≃ 0 in ½τi; τf�. The details are reported in
Appendix A, giving

hμνðxÞ ¼ −M

0
BBBBBBBB@

0 0 0 0

0
h
2
r þ

�
3x2−r2

r5
− 4π

3
δðrÞ

�
τ2
i

3τ2
�
xy
r5

�
3τ2

�
xz
r5

�

0 3τ2
�
xy
r5

� h
2
r þ

�
3y2−r2

r5
− 4π

3
δðrÞ

�
τ2
i

3τ2
�
yz
r5

�

0 3τ2
�
xz
r5

�
3τ2

�
yz
r5

� h
2
r þ

�
3z2−r2

r5
− 4π

3
δðrÞ

�
τ2
i

1
CCCCCCCCA
: ð9Þ

We remark that our assumption of vanishing perturbation
outside ½τi; τf� can be interpreted in terms of particle
backreaction on the spacetime structure [25–30]. In fact,
it has been pointed out that the reaction of particle creation
back on the gravitational field is able to reduce the creation
rate, damping out initial perturbations on timescales of the
order of Planck’s time. Even if our work is based on the
usual external field approximation, a backreaction may in
principle justify the transient nature of the perturbation.
Bearing hμν in mind, we can now derive particle produc-
tion, as we report below.

III. PARTICLE PRODUCTION

At first perturbation order, pair production is due to the
combined effect of the expansion and inhomogeneities,
whereas at second order the two contributions give instead
distinct effects. Hence, the production rate is nonzero even
if the homogeneous background does not produce par-
ticles; i.e., as the in and out vacua are identical. At first
order, the asymptotic out state (4) takes the form,

jΨiout ≡ lim
τ→þ∞

jΨi ¼ N
�
j0; ini þ 1

2
Sð1Þkp jkp; ini

	
; ð10Þ

with N ¼ 1þOðh2Þ a normalization factor. Introducing
Bogoliubov transformations, that relate in and out ladder

operators between them [13], we get the first order number
density [18,19],

nð1Þðk; pÞ ¼ ð2πafÞ−3δ3ðkþ pÞRe½Sð1Þkp ðα�kβk þ α�pβpÞ�;
ð11Þ

where af ≡ aðτ → þ∞Þ and αk, βk are the Bogoliubov
coefficients. It is clear from Eq. (11) that particles are
created in pairs with opposite momenta. We introduce now
a generic lower bound rmin and a factor e−ϵr, in order to

obtain a convergent probability amplitude Sð1Þkp . The param-
eter ϵ−1 can be then interpreted as a cutoff length. This
strategy is commonly adopted in field theory, when one
consider regularization techniques [31]. In such situations,
not the whole configuration phase space is considered in
view of the fact that the domain is not a priori infinite.3 In
our calculations, we set ϵ ¼ 1 for the sake of simplicity,
obtaining

h̃ijð2Ein;0Þ¼−8πMe−rminð1þ rminÞ
Z

τf

τi

e2iEinτdτδij; ð12Þ

3Similar approaches are widely used in several contexts, e.g.,
when dealing with the Casimir effect [32], in renormalization
schemes [33], and so on.
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Equation (12) can be used to derive the probability
amplitude (6) and then the number density (11). We notice
that massless particles are not produced at first order,
since jβkj ¼ 0. At second order the number density reads
instead

nð2Þðk; pÞ ¼ N 2ð2πafÞ−3jSð1Þkp j2ðjβkj2 þ jβpj2 þ 1Þ; ð13Þ

where we exploited the normalization condition
jαqj2 − jβqj2 ¼ 1 (q ¼ k, p), and N is straightforwardly
computed from hΨjΨi ¼ 1. We notice that at second order
there is a purely geometric contribution; i.e., particles are
produced even if βq ¼ 0. As perturbations live where the
Universe’s expansion is almost negligible, the probability

jSð1Þkp j2 can be computed explicitly. We separately discuss
the massive and massless cases.

A. Massive particles

For slow expansion rate, or Minkowskian background,
pair production probability for massive conformally
coupled particles is given by

Wð1Þ ¼
Z

d3k d3pjSð1Þkp j2

¼
Z

d4q
ð2πÞ4

θðq0Þθðq2 − 4m2Þ
960π

�
1 −

4m2

q2

	
1=2

×

�
C̃μνρσðqÞC̃μνρσð−qÞ

�
1 −

4m2

q2

	
2

þ 20

3

m4

q4
R̃ðqÞR̃ð−qÞ

�
; ð14Þ

where in the last equality, we introduced the four momen-
tum q, i.e., q ¼ ðq0;qÞ ¼ ðk0 þ p0;kþ pÞ. In Eq. (14),
C̃μνρσðqÞ and R̃ðqÞ are the Fourier transforms of the Weyl
tensor and the scalar curvature, respectively. These quan-
tities are derived in Appendix B, as functions of the
perturbation tensor hμν. Accordingly, pair production prob-
ability can be written in terms of local geometric quantities.
In order to compute the hμνðxÞ Fourier transform, we
assume that the particle momenta are along the z direction,
without losing generality, having

h̃μνðqÞ ¼
Z

dτ eiq
0τ

Z
d3r eiqzr cos θe−rhμνðxÞ; ð15Þ

where qz is the total momentum.
Within the framework of massive particles, we can

speculate on the fact that the interaction between curvature
and scalar field implies a promising scenario toward the
existence of geometric quasiparticles of dark matter.
Gravitational dark matter production has been recently
explored, focusing both on scalar and vector candidates,

(see, e.g., Ref. [10] for a recent review). We here conjecture
the geometric production enables quasiparticle candidates
for dark matter. The scalar field ϕ can be treated as a
suitable dark matter contributor [34,35] and, as no inter-
actions are provided with external fields, the field can be
constrained according to recent experiments.4

Here, we focus on indicative values for m, just to reach
our primary goal, i.e., to compare the amount of geometric
entanglement with previous findings in homogeneous
scenarios. A more realistic interpretation of dark matter
in terms of quasiparticles would also require a more
meaningful ansatz for the scale factor. For this reason, it
will be subject of future investigations that go beyond the
purpose of this work.

B. Massless particles

Massless particles can be produced at second order in
perturbation, since inhomogeneities break the conformal
symmetry of the theory. If m ¼ 0, the probability (14) only
depends on deviations from conformal flatness, quantified
by the Weyl tensor. This result is valid in any FRW
spacetime; i.e., it is not strictly request a slowly expanding
background.5

IV. GEOMETRIC COSMOLOGICAL
ENTANGLEMENT

Up to first order, particles are produced in pairs with
opposite momenta; i.e., there is no mode mixing. We
write the in vacuum in a Schmidt decomposition of out
states [11],

j0k; 0−kiin ¼
X∞
n¼0

cnjnk; n−kiout; ð16Þ

where cn is a normalization constant and nk labels the
number of excitations in the field mode k as seen by an
inertial observer in the out region. The in state containing
one pair,

j1k; 1−kiin ¼ â†inðkÞâ†inð−kÞj0k; 0−kiin; ð17Þ

can be written in the out region exploiting the inverse
Bogoliubov transformations, as described in Appendix C.
To evaluate the entanglement amount, we consider the first
order density operator ρoutk;−k ¼ jΨiouthΨj and Eq. (10) with
p ¼ −k. Performing a partial trace over one subsystem, we
obtain the reduced density operator,

4For instance, in previous efforts, a benchmark mass around
m ¼ 1 MeV can be assumed for geometric dark matter contri-
bution [34,36,37].

5This is due to the fact that the Weyl tensor Cμ
νρσðxÞ is

invariant under conformal transformations.
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ρoutk ¼ Tr−kðρoutk;−kÞ: ð18Þ

The coefficients cn are derived from the normalization
hΨjΨiout ¼ 1. Introducing the quantity γ ¼ jβ�k=αkj2, after
some algebra, we arrive to the final expression for the
density operator,

ρoutk ¼ ð1 − γÞ2
1 − γ þ ð1þ γÞReðSð1Þk;−kα

�
kβkÞ

×
X∞
n¼0

γnð1þ ReðSð1Þk;−kα
�
kβkÞð2nþ 1ÞÞjnikhnj: ð19Þ

The corresponding von Neumann entropy is then

Sðρoutk Þ ¼ −Trðρoutk log2ρoutk Þ ¼ −
X∞
n¼0

λnlog2λn; ð20Þ

where λn are the ρoutk eigenvalues, say

λn ¼
ð1 − γÞ2

1 − γ þ ð1þ γÞReðSð1Þk;−kα
�
kβkÞ

× γnð1þ ReðSð1Þk;−kα
�
kβkÞð2nþ 1ÞÞ: ð21Þ

We notice that in the limit of vanishing perturbation

(Sð1Þk;−k ¼ 0) the well-known zero order eigenvalues are
recovered,

λð0Þn ¼ ð1 − γÞγn; ð22Þ

leading to the usual expression for the entropy [11],

Sð0Þ ¼ log2

�
γγ=ðγ−1Þ

1 − γ

	
: ð23Þ

In Fig. 1, we show the entropy shift, ðS − Sð0ÞÞ=Sð0Þ, for
given values of A. The perturbation parameters are chosen
so that jhμνðxÞj ≪ 1, with the time parameters sufficiently
large to fulfill the requirements of Sec. II. Remarkably, the
first order contribution turns out to be quite small, whereas
entanglement entropy oscillates. This means that kinds of
expansion and spacetime geometry can, in principle,
decrease the amount of entanglement, turning to be more
relevant for small Universe volumes, i.e., small A. On the
other hand, the correction is larger at small momenta, due to
the fact that at first order particles are mainly produced as k
is small. We expect first order corrections to be more
relevant if the hypothesis of spherically symmetric pertur-
bation is released.
We now turn to second order, where particles are

produced in pairs with generic momenta k and p, with a
robust purely geometric contribution. The corresponding
entanglement generation is summarized below.

A. Massive particles

Here, nð2Þðk; pÞ is mainly settled by ∝ jCμνρσðqÞj2 and
∝ jRðqÞj2, as evident from Eq. (14). It is then possible to set
βk ¼ βp ¼ 0, neglecting expansion effects, getting the state
(10) in terms of the out basis as

jΨi ¼ N
�
j0k; 0pi þ

1

2
Sð1Þkp j1k; 1pi

	
; ð24Þ

wherewe remove the out subscript since the in and out vacua
coincide if the β coefficients vanish. We remark that second
order S-matrix elements can be neglected in Eq. (24). This
happens because the interacting Lagrangian is still quadratic
in the field at second order in perturbations, and no j00i
components for Sð2Þ have been found in our computation.
Hence, this implies that particles are again produced at least
as pairs. Any further order would therefore contribute to the
density operator from third or higher perturbative order and
may be easily neglected. Equation (24) shows up a bipartite
pure state. In order to quantify the corresponding entangle-
ment entropy, we trace out the “p” or “k” contribution.
Accordingly, we are left with the following reduced density
operator:

ρk ¼ N 2

�
j0ikh0j þ

1

4
jSð1Þkp j2j1ikh1j

	
; ð25Þ

where the probability of pair production jSð1Þkp j2 is given by
Eq. (14). The subsystem entropy, following from Eq. (25), is
plotted in Fig. 2 as function of k. Inhomogeneous perturba-
tions break space translation symmetry; thus, linear momen-
tum is no longer conserved in particle creation processes.
Accordingly, second order entropy is characterized by
notable mode mixing. This is an impressive property of
geometric cosmological entanglement, never put forward.
We also notice that second order corrections to entanglement

FIG. 1. Entropy shift as function of the momentum k, for
different values of the parameter A. The other parameters are
B ¼ 2,ρ ¼ 1,m ¼ 0.01,n ¼ 40,M ¼ 10−5, rmin ¼ 5, τi ¼ −104,
and Δτ≡ τf − τi ¼ 100.
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are typically larger than first order ones. As anticipated, this
effect is related to our choice of a spherically symmetric
perturbation, which makes the first order contribution
negligible.

B. Massless particles

Here, βk ¼ βp ¼ 0 is naturally fulfilled, due to the
conformal symmetry. Starting from the state in Eq. (24),
the reduced density operator takes again the form (25), and
pair creation probability is determined by the Weyl tensor
only. In Fig. 3, we display the entanglement entropy as
function of the momentum k, assuming the same parameters
as in the massive case. The amount and mode dependence of
entanglement closely resemble the massive case, thus show-
ing that geometric effects on entanglement production turn
out to be similar in both the aforementioned cases.

V. OUTLOOKS

We computed the entanglement amount in curved
spacetime as due to inhomogeneous perturbations over a

homogeneous FRW and confronted our findings with
previous results developed in the literature. In particular,
we demonstrated how geometric cosmological entangle-
ment may arise in the framework of negligible spacetime
expansion, i.e., when particles are produced only due to
perturbations of the underlying spacetime geometry.
Geometric entanglement is thus interpreted as due to
geometric quasiparticles that arise from the interacting
contribution between geometry and fields. We also dis-
cussed the main differences in entanglement generation
between massive and massless scalar particles. We then
expect the matching between quantum and geometric
effects drastically alter the entanglement measures. From
the one hand, we showed at first perturbative order
oscillations in entropy corrections occurred, while at
second order a non-negligible entropy, featured by non-
vanishing mode mixing, arises in entanglement generation.
To interpret this scheme, we noticed geometrical dark
matter can be reviewed as a suitable benchmark scenario
where dark matter emerges under the form of quasipar-
ticles. We proposed ϕ as a suitable dark matter contributor
since no interactions are provided with external fields,
discussing possible mass values, in agreement with recent
observations. This paves the way for further investigations
deepening the interconnections between the notions of
entanglement and dark matter. According to our findings,
we also expect geometry to exhibit relevant consequences
on entanglement extraction protocols, e.g., entanglement
harvesting. Consequently, this would open novel strategies
to deduce cosmological parameters, to interpret dark matter
under a new promising way, or to depict primordial
quantum gravity stages.
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APPENDIX A: SCALAR PERTURBATIONS IN
THE SYNCHRONOUS AND CONFORMAL

NEWTONIAN GAUGES

We here briefly recall the gauge transformation between
the synchronous and conformal Newtonian gauges [24].
We focus on scalar perturbations only. Let us consider a
general coordinate transformation from a system xμ to
another x̂μ,

xμ → x̂μ ¼ xμ þ dμðxνÞ: ðA1Þ

We write the time and the spatial parts separately as

x̂0 ¼ x0 þ αðx; τÞ ðA2Þ

FIG. 2. Entanglement entropy Sð2Þðk; pÞ as function of the
particle momentum k, with p ¼ −0.1 and p ¼ −0.001. The other
parameters are the same of Fig. 1, with A ¼ 3.

FIG. 3. Entanglement entropy Sð2Þðk; pÞ for massless particles,
as function of the momentum k with p ¼ −0.1 and p ¼ −0.001.
The other parameters are the same as in Fig. 1, with A ¼ 3.
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x̂ ¼ xþ ∇⃗βðx; τÞ þ ϵðx; τÞ; ∇⃗ · ϵ ¼ 0; ðA3Þ

where the vector d has been divided into a longitudinal

component ∇⃗β and a transverse component ϵ⃗. Let x̂μ denote
the synchronous coordinates and xμ the conformal
Newtonian coordinates, with x̂μ ¼ xμ þ dμ. It is easy to
see that

αðx; τÞ ¼ _βðx; τÞ; ðA4Þ

ϵiðx; τÞ ¼ ϵiðxÞ; ðA5Þ

hkijðx; τÞ ¼ −2
�
∂i∂j −

1

3
δij∇2

	
βðx; τÞ; ðA6Þ

∂iϵj þ ∂jϵi ¼ 0; ðA7Þ

and

ψðx; τÞ ¼ −β̈ðx; τÞ − _a
a
_βðx; τÞ; ðA8Þ

ϕðx; τÞ ¼ þ 1

6
hðx; τÞ þ 1

3
∇2βðx; τÞ þ _a

a
_βðx; τÞ: ðA9Þ

Assuming an asymptotically flat spacetime as described in
Sec. II, we can safely conclude that _a=a ≃ 0 in the region
½ti; tf�. Accordingly, (A8) would give

βðr; τÞ ≃þM
2r

τ2: ðA10Þ

Subtractingnow(A9)from(A8),with theassumptionψ ¼ ϕ,
we obtain

hðr; τÞ ¼ −6β̈ − 2∇2β ¼ −2M
�
3

r
− 2πτ2δðrÞ

�
: ðA11Þ

Finally, from (A6), we get

hkijðr; τÞ ¼ −Mτ2
�
∂i∂j

�
1

r

	
−
1

3
δijð−4πδðrÞÞ

�
: ðA12Þ

Recalling the well-known result,

∂i∂j

�
1

r

	
¼ 3xixj − r2δij

r5
−
4π

3
δðrÞδij; ðA13Þ

and the expression for scalar perturbations in synchronous
gauge, we finally arrive at the tensor hμν, namely Eq. (9).

APPENDIX B: CURVATURES AND WEYL
TENSOR IN LINEARIZED GRAVITY

As discussed in Sec. III, pair production probability
at second order depends on local geometric quantities.

Here, we recall the main results from linearized gravity,
which are useful in order to derive the probability of pair
creation (14). Starting from the perturbed Minkowski
metric,

gμν ¼ ημν þ hμνðxÞ; ðB1Þ

the connection coefficients are

Γρ
ρμν ¼

1

2
ηρσð∂μhνσ þ ∂νhμσ − ∂σhμνÞ: ðB2Þ

Accordingly, the first order Riemann curvature is

Rμνρσ ¼ ημλð∂σΓλ
λνρ − ∂ρΓλ

λνσÞ
¼ ∂ρ∂½νhμ�σ þ ∂σ∂½μhν�ρ; ðB3Þ

where square brackets denote antisymmetrization, as usual.
The Ricci curvature follows as

Rμν ¼ Rρ
μρν ¼ 1

2
∂
ρ
∂ρhμν − ∂

ρ
∂ðμhνÞρ þ

1

2
∂μ∂νh; ðB4Þ

and the Ricci scalar as

R ¼ ημνRμν ¼ ∂
μ
∂μh − ∂

μ
∂
νhμν: ðB5Þ

Introducing now the Fourier transform of the perturbation,

h̃μν ¼
Z

d4q eiqxhμνðxÞ; ðB6Þ

it is straightforward to obtain

R̃ðqÞ ¼ qμqνh̃μνðqÞ − q2h̃ðqÞ: ðB7Þ

Assuming a real perturbation, one finds

jRðqÞj2 ¼ RðqÞRð−qÞ
¼ qμqνqρqσhμνðqÞhρσð−qÞ þ q4hðqÞhð−qÞ
− q2qμqν½hμνðqÞhð−qÞ þ hμνðqÞhð−qÞ�; ðB8Þ

jRμνðqÞj2 ¼
1

2
qμqνqρqσhμρðqÞhνσð−qÞ

−
q2

2
qρqμhμνðqÞhνρð−qÞþ

1

4
q4hμνðqÞhμνð−qÞ

−
1

4
q2qμqρ½hμρðqÞhð−qÞþhμρð−qÞhðqÞ�; ðB9Þ

jRμνρσj2 ¼
1

4
q4hμνðqÞhμνð−qÞ − 2q2qμqνhνσðqÞhμσð−qÞ

þ qμqνqρqσhμρðqÞhνσð−qÞ: ðB10Þ

From Eqs. (B8)–(B10), it can be shown that
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jRμνρσj2 − 4jRμνj2 þ jRj2 ¼ 0: ðB11Þ

In four dimensions, the Weyl conformal tensor takes the
form,

Cμνρσ ¼ Rμνρσ þ
1

3
Rgμ½σgρ�ν þ ðgν½ρRσ�μ − gμ½ρRσ�νÞ; ðB12Þ

that gives

jCμνρσðqÞj2 ¼ CμνρσðqÞCμνρσð−qÞ

¼ jRμνρσj2 − 2jRμνj2 þ
1

3
jRj2: ðB13Þ

Now, exploiting Eq. (B11), we can rewrite Eq. (B12) as

jCμνρσðqÞj2 ¼ 2jRμνj2 −
2

3
jRj2: ðB14Þ

The probability of pair production at second order in the
perturbation, both for massive and massless particles, can
be computed starting from the result (B14), as discussed
in [18,19].

APPENDIX C: FIRST ORDER
DENSITY OPERATOR

Here, we derive the explicit form of the reduced density
operator (18), which is required in order to quantify first
order corrections to entanglement entropy. In the out
region, the two-particle state (17) reads

j1k; 1−kiin ¼ ðα�kâ†outðkÞ þ βkâoutð−kÞÞðα�kâ†outð−kÞ þ βkâoutðkÞÞ
X∞
n¼0

cnjnk; n−kiout

¼ ðα�kÞ2
X∞
n¼0

ðnþ 1Þcnjnþ 1; nþ 1iout þ α�kβk
X∞
n¼0

ncnjnk; n−kiout

þ α�kβk
X∞
n¼0

ðnþ 1Þcnjnk; n−kiout þ β2k
X∞
n¼0

ncnjn − 1; n − 1iout; ðC1Þ

where we have exploited the Bogoliubov transformations relating asymptotic ladder operators, which has the general
form [13],

âoutðkÞ ¼ α�kâinðkÞ − β�kâ
†
inð−kÞ; ðC2Þ

âinðkÞ ¼ αkâoutðkÞ þ β�kâ
†
outð−kÞ: ðC3Þ

From the state (10) and the expansion (16), we can then write the density operator ρðoutÞk;−k ¼ jΨiouthΨj up to first order, and
performing a partial trace over antiparticles, we are left with

ρoutk ¼ Tr−kðρoutk;−kÞ

¼
X∞
n¼0

jcnj2jnikhnj þ
1

2
Sð1Þk;−kα

�
kβk

�X∞
n¼0

ðnþ 1Þjcnj2jnikhnj þ
X∞
n¼0

njcnj2jnikhnj
�

þ 1

2
Sð1Þ�k;−kαkβ

�
k

�X∞
n¼0

ðnþ 1Þjcnj2jnikhnj þ
X∞
n¼0

njcnj2jnikhnj
�
: ðC4Þ
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