
University of Camerino
School of Science and Technologies

Non-linearities in Economics
by

Giuseppe Orlando

Ph.D. in Mathematics

DOTTORATO DI RICERCA

in Science and Technology

Curriculum Mathematics

10 February 21, 2020

Supervisor:

Prof. Carlo Lucheroni



Acknowledgements

I would like to express my sincere gratitude and appreciation to my advisor, Prof.

Carlo Lucheroni, for the time and patience he showed when we were going through all

the drafting stages. I would like, also, to express my special thanks to my colleagues

at the University of Bari - Prof. Michele Mininni and Prof. Giovanni Taglialate1a at

Department of Economics and Finance - for their invaluable suggestions and advices.

As this thesis is the result of several joint publications (of which I am corresponding

and �rst author), I am thankful to my co-authors in nonlinear dynamics, Prof. Gio-

vanna Zimatore and Dr. Fabio Della Rossa. Last but not least, I express my profound

obligation to my parents, because without their support and love I would not have

been able to accomplish much in my life.



Contents

Introduction 15

I Chaos and non-linearities . . . . . . . . . . . . . . . . . . . . . . . . . 15

II Summary of research during the PhD course . . . . . . . . . . . . . . 16

III Scheme of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

I Mathematical background 19

1 Dynamic systems 21

1.1 Dynamic systems and their classi�cation . . . . . . . . . . . . . . . . 21

1.1.1 An example of continuous dynamic systems . . . . . . . . . . 24

1.1.2 Continuous dynamic system associated to a system of ordinary

di�erential equations . . . . . . . . . . . . . . . . . . . . . . . 26

1.1.3 An example of a discrete time dynamic system . . . . . . . . . 29

1.2 Attractors and repellers for discrete time dynamic systems . . . . . . 31

1.3 Existence of periodic points . . . . . . . . . . . . . . . . . . . . . . . 36

1.3.1 Schwarz derivative . . . . . . . . . . . . . . . . . . . . . . . . 36

1.3.2 Singer theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.3.3 Sarkovsky theorem . . . . . . . . . . . . . . . . . . . . . . . . 38

1



1.4 Logistic map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.4.1 Fixed points for the Logistic Map . . . . . . . . . . . . . . . . 41

1.4.2 Feigenbaum universal constant for the Logistic Map . . . . . . 47

1.4.3 Schwarz derivative for the Logistic Map . . . . . . . . . . . . . 47

1.4.4 Application of the Singer's theorem to the Logistic Map . . . 48

1.4.5 Cobweb or Verhulst diagram for the Logistic Map . . . . . . . 48

1.5 Cycles and limit cycles . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.6 Embedding dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1.6.1 Time lag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.7 Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1.8 A measure of sensitive dependence on initial conditions . . . . . . . . 58

1.9 Measure of an attractor . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.9.1 Geometry of the attractor . . . . . . . . . . . . . . . . . . . . 60

1.9.2 Measures of information . . . . . . . . . . . . . . . . . . . . . 63

2 Signal analysis: Spectral analysis, Recurrence Plot and RQA mea-

sures 67

2.1 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.1.1 Power spectrum of the Logistic Map . . . . . . . . . . . . . . 73

2.2 Recurrence Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.3 Recurrence Quanti�cation Analysis . . . . . . . . . . . . . . . . . . . 77

2.3.1 RQA measures . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.3.2 RQE correlation index . . . . . . . . . . . . . . . . . . . . . . 78

2.3.3 RQE correlation index on a sample signal . . . . . . . . . . . 80

2



II Non-linearities in economics 85

3 On business cycles and growth 87

3.1 Non-linearities in economics . . . . . . . . . . . . . . . . . . . . . . . 87

3.2 Business cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2.1 Background and de�nition . . . . . . . . . . . . . . . . . . . . 88

3.2.2 Literature and investigation on the root causes of business cycles 91

3.2.3 Detecting non-linearities in data . . . . . . . . . . . . . . . . . 94

3.3 Recurrence quanti�cation analysis on the business cycles . . . . . . . 96

3.4 Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 The Kaldor model 101

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.1.1 Keynes multiplier and Hansen�Samuelson model . . . . . . . . 101

4.1.2 Literature on Kaldor business cycle model . . . . . . . . . . . 102

4.2 The Kaldor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 The Harrod's model 109

5.1 A mathematical speci�cation of the Harrod's model . . . . . . . . . . 109

5.1.1 The Harrod knife-edge . . . . . . . . . . . . . . . . . . . . . . 110

5.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

III A contribution to economic theory 117

6 A new form of Kaldor-Kalecki model on business cycles 119

6.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1.1 Shocks in the economy . . . . . . . . . . . . . . . . . . . . . . 128

3



6.1.2 Consumptions, savings and economic recessions . . . . . . . . 128

6.2 Proof of the chaotic behaviour of the model . . . . . . . . . . . . . . 129

6.2.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.2 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.3 Correlation integral . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.4 Correlation dimension . . . . . . . . . . . . . . . . . . . . . . 135

6.2.5 Lyapunov exponents . . . . . . . . . . . . . . . . . . . . . . . 137

6.2.6 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2.7 Embedding dimension . . . . . . . . . . . . . . . . . . . . . . 138

6.2.8 Chaotic attractor . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7 Recurrence Quanti�cation Analysis of Business Cycles 147

7.1 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.1.1 Data on capital . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.1.2 Data on income, investment and saving . . . . . . . . . . . . . 150

7.1.3 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2.1 Recurrence Quanti�cation Analysis (RQA) . . . . . . . . . . . 151

7.2.2 Principal Component Analysis (PCA) on RQA . . . . . . . . . 156

7.2.3 Statistical analysis on RQA . . . . . . . . . . . . . . . . . . . 157

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8 An empirical test on Harrod's model 161

8.1 Calibration of the Harrod's model . . . . . . . . . . . . . . . . . . . . 161

8.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4



9 Final Remarks 169

A The dataset 171

A.1 USA Recessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.2 World GDP data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.3 BEA data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.4 Levy and Chen data - USA . . . . . . . . . . . . . . . . . . . . . . . 176

A.5 OECD data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.6 RQA tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5



6



List of Figures

0-1 Changes in US Real Disposable Personal Income (i.e.the personal in-

come net of income taxes) (blue - DSPIC96) and Real Personal Con-

sumption Expenditures (red - PCECC96) 1959 (Q1) - 2014 (Q2).

Source: St. Louis Fed, FRED database. Greyed areas correspond

to periods of economic recessions as reckoned by FRED (Table A.1). . 17

1-1 Convergence to the attractor. Panel (a) represents f(x) = −x3 that is

a mirror image of f(x) = x3 and Panel (b) corresponds to the graph

of f ◦2(x) = x9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1-2 Logistic for di�erent values of µ. The critical point is c = 1/2. . . . . 40

1-3 Second iteration for the Logistic Map. . . . . . . . . . . . . . . . . . . 46

1-4 Period doubling for the Logistic Map. Ref. H.W. Lorenz [113]. . . . . 47

1-5 Cobweb diagram for the Logistic Map. Source [4]. . . . . . . . . . . . 49

1-6 A limit cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1-7 Convergence to the limit cycle. On the boundary of D, the vector

�eld points inwards the set, therefore once a trajectory enters in D it

will stay forever. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1-8 In R3 Poincaré-Bendixon is invalid. Ref. H.W. Lorenz [113]. . . . . . 52

1-9 Lyapunov exponents of the Logistic Map from H. W. Lorenz [113]. . . 60

7



1-10 Figure on top: Logistic Map versus µ. Figure below: Lyapunov expo-

nents versus µ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1-11 Sierpinski triangle. Ref. Devaney [53]. . . . . . . . . . . . . . . . . . 62

1-12 A partition of the phase space in the plane with hypercubes. Source

H.W. Lorenz [114] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2-1 Power spectrum of ei(ω0t+θ) with frequency ω0 = 0.126π obtained from

a time series of length = 8 and with steps ∆ = 0.25. Source Ref. [48]. 72

2-2 Power spectrum of the Logistic Map. Figure on the left displays re-

gular peaks corresponding to the period doubling bifurcations. Figure

on the right shows the power spectrum in the chaotic region where it

is not possible to isolate dominating frequencies. Source H. W. Lorenz

[114]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2-3 Recurrence plots coupled with its time series. From left to right it is

shown the time series and the related RP for a white noise, a harmonic

oscillation with two frequencies, the Logistic Map and data from an

auto-regressive process. Source [5]. . . . . . . . . . . . . . . . . . . . 76

2-4 Clockwise: original sample signal N(0, 1), sample signal with changes

in mean, sample signal with changes in variance and resulting �nal

signal with changed mean and variance. . . . . . . . . . . . . . . . . . 82

2-5 Spearman correlations (below) versus the original test signal (above).

RQE absolute correlation (in blue) is displayed next to correlation

(red). Di�erence in the x-axis numbering between the picture above

and below, is due to the windowing mechanism. . . . . . . . . . . . . 83

8



2-6 Spearman correlations (below) versus the �nal test signal (above).

RQE absolute correlation (in blue) is displayed next to correlation

(red). See how the RQE correlation calculated as in Equation 2.28 is

closer than the other and it is able to detect more �nely changes in

the times series. Di�erence in the x-axis between the picture above

and below, is due to the windowing mechanism. . . . . . . . . . . . . 84

3-1 Fluctuation of prices and quantities in the cobweb model. . . . . . . . 88

3-2 Business cycle phases where recession (through) follows expansion

(peak). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4-1 Investment (blue curve) and saving (green curve) versus income (x-

axis). Equilibrium is for the level of income corresponding to I = S.

For example if income lays between YB and YC , the imbalance between

investment and saving pushes the economy towards a higher level of

income until when I = S in C. . . . . . . . . . . . . . . . . . . . . . . 106

4-2 Representation of investment I, and saving S - dynamic analysis: be-

cause of declining productivity investment shift downwards and the

ensuing price's reduction move saving upwards. . . . . . . . . . . . . 108

5-1 The Harrod knife-edge or unstable equilibrium. When G = Gn = Gw

there is sustainable full employment. A departure from that may lead

to recession (G′) or booming periods (G′). . . . . . . . . . . . . . . . 111

5-2 Supply side policy to raise the natural growth path. When G = Gw <

Gn there is a permanent unemployment equilibrium. Policy-makers

may employ supply side policies in order to increase both: the actual

growth and G and the natural growth Gn. . . . . . . . . . . . . . . . 111

9



6-1 Graph of the inverse function. Source Wolfram [192] . . . . . . . . . . 122

6-2 Graph of the hyperbolic tangent showing how the parameter τ deter-

mines the knee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6-3 Graph of g(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6-4 A simulation displaying a steady growth. Y = 4, I, S,K . . . . . . . . 127

6-5 A simulation displaying a steady fall. Y, I, S,K . . . . . . . . . . . . 128

6-6 Cobweb diagram and periodograms for the Logistic Map (mu=3). . . 131

6-7 Cobweb diagram and periodograms for the Logistic Map (mu=3.5). . 131

6-8 Cobweb diagram and periodograms for the Logistic Map (mu=4). . . 132

6-9 Power spectrum with rectangular window for K, I, C, Y . The irre-

gularity of the spectrum hints at the possibility that the series are

chaotic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6-10 Power spectrum with Hamming window for K, I, C, Y . The irregula-

rity of the spectrum shows that the series are chaotic. . . . . . . . . . 134

6-11 Correlation integral trend versus r. . . . . . . . . . . . . . . . . . . . 135

6-12 Log-log plot where the slope approximates the correlation integral. . . 135

6-13 Correlation dimension when r → 0. . . . . . . . . . . . . . . . . . . . 136

6-14 Embedding Cao Dimension (τ = 1, data points=10,000). . . . . . . . 139

6-15 Embedding Dimension Symplectic Geometry Method. Ordinate is

log
σi

tr(σi)
, abscissa is i). The kink in the �gure corresponds to the

embedding dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6-16 Embedding Dimension Symplectic Geometry Method (data points=10,000,

ordinate is log
σi

tr(σi)
, abscissa is i). The kink in the �gure corresponds

to the embedding dimension. . . . . . . . . . . . . . . . . . . . . . . . 142

6-17 Strange attractor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10



7-1 Changes in US GDP (above) and its Recurrence Plot (below). Data

range: 01-01-1947 - 2016-01-01. ID: A191RP1Q027SBE. Gross Do-

mestic Product, Percent Change from Preceding Period, Quarterly,

Seasonally Adjusted Annual Rate. Source: St. Louis Fed, FRED

database. Note the alignment between shocks and vertical lines in RP. 152

7-2 Dynamical analysis in the sliding window mode (RQE) where percent

of laminarity (LAM) and percent of determinism (DET) refer to the

same time series as in Fig. 7-1. Overlapping sliding windows of 50

data points shifted by 1 point (49 data point overlaps) were taken.

Variables are plotted in central position in standardized units (su), i.e.,

after subtracting the average value from absolute values and dividing

by standard deviation in each window. . . . . . . . . . . . . . . . . . 154

7-3 Maximum correlations (in blue) between RQE measures versus re-

cession periods (in grey) on the USA GDP [134]. As shown in the

�gure a change in the index is often linked to a recession. Spearman

correlations (below) versus the �nal test signal (above). RQE absolute

correlation (in blue) is displayed next to correlation (red). See how the

RQE correlation calculated as in Equation 2.28 is more reactive than

the other and it is able to detect more �nely changes in the original

times series. Di�erence in the x-axis numbering between the picture

above and below, is due to the windowing mechanism. Source Orlando

and Zimatore (2017)[144]. . . . . . . . . . . . . . . . . . . . . . . . . 155

7-4 Dynamical features of business time series in a principal component

space as reported in Appendix A.9. Di�erent symbols (letters) indicate

the four macroeconomic variables: I-Investment, C-Consumption, Y-

Income, K-Capital. Note how K-capital is clustered. . . . . . . . . . . 156

11



8-1 Time series obtained with parameters of calibration 1, that displays

convergence to the long-run equilibrium. Legend: blue = rate of gro-

wth, red = expected rate of growth, yellow = share of saved income,

violet: trade to income ratio. Thick line: model, normal line: data. . 165

8-2 Time series obtained with parameters of calibration 2, that displays

divergence from the long-run equilibrium. Legend: blue = rate of

growth, red = expected rate of growth, yellow = share of saved income,

violet: trade to income ratio. Thick line: model, normal line: data. . 166

8-3 Time series obtained with parameters of calibration 3, that displays

lightly damped oscillatory behaviour around the long-run equilibrium.

Legend: blue = rate of growth, red = expected rate of growth, yellow

= share of saved income, violet: trade to income ratio. Thick line:

model, normal line: data. . . . . . . . . . . . . . . . . . . . . . . . . . 167

12



List of Tables

2.1 Perturbed random signal according to a given µ and σ2. For example

for the �rst interval, 100 points have been randomly generated from

a N(0, 1) distribution. For the second interval, 40 points have been

randomly generated from a N(1, 1) distribution, and so on. . . . . . . 81

2.2 RQA parameters of the perturbed signal. . . . . . . . . . . . . . . . . 81

3.1 Business cycles taxonomy sorted by length. From left to right: type

of business cycle, name of the scholar who identi�ed it, year in which

the cycle was identi�ed, time span of the cycle. . . . . . . . . . . . . 90

5.1 List of variables in the Harrod model . . . . . . . . . . . . . . . . . . 112

6.1 Lyapunov Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Correlation Integral versus Embedding Dimension . . . . . . . . . . . 143

7.1 Mann-Whitney U Test (p-values) . . . . . . . . . . . . . . . . . . . . 158

7.2 p-values on RQA from 55 (#C=10, #I=11, #K=14, #Y=20) business

time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.1 Harrod model parameters. . . . . . . . . . . . . . . . . . . . . . . . . 164

A.1 USA Recessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

13



A.2 Time series on Consumption, Income and Investment . . . . . . . . . 174

A.3 BEA time series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.4 Time series on Capital - USA . . . . . . . . . . . . . . . . . . . . . . 176

A.5 Time series on Income . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.6 Time series on Consumption . . . . . . . . . . . . . . . . . . . . . . . 178

A.7 Time series on Investment . . . . . . . . . . . . . . . . . . . . . . . . 179

A.8 Time series on Income . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.9 RQA tables on 55 (10 C, 11 I, 14 K, 20 Y) real time series . . . . . . 182

14



Introduction

I Chaos and non-linearities

The term "chaos" has been commonly used to hint non-linear dynamics characterized

by an apparent absence of order and therefore incomprehensible and unpredictable

behaviour. Instead, through isolated research conducted by scholars out of the scien-

ti�c mainstream, it was shown that a chaotic dynamics is not only ordered [66] and

therefore intelligible, but also that it is deterministic and controllable.

E. N. Lorenz, a universally recognized forerunner in the study of chaotic phe-

nomena, �rst discovered in the 1960s a so-called "strange attractor" in a three-

dimensional continuous-time dynamic system, when carrying out numerical experi-

ments on convection �ows [112]. He was able to publish his work in marginal journals

only, as the concepts he used were unusual to say the least. Silence about this topic

continued until well into late 1970s when in the United States several Physics scho-

lars, among whom we remember M. J. Feingelbaum [32] [63], drew the attention of

the scienti�c world to the "strange" results of this type of research.

In reality, the problem of chaotic phenomena and more generally of non-linear

dynamical systems is their poor permeability to the classical instruments of investiga-

tion of dynamics so dominated by the problem of simplicity and regularity. Empirical

15



evidence, on the contrary, shows a di�erent world characterized by complexity and

disharmony [68].

In economics, dynamics are usually non-linear and characterised by cyclical �uc-

tuations which are called "business cycles". Burns and Mitchell (1946)[34] de�ne

business cycles as a type of �uctuation which "consists of expansions occurring at

about the same time in many economic activities, followed by similarly general reces-

sions, contractions, and revivals which merge into the expansion phase of the next

cycle". Imperfections may be intended as those perturbations of the equilibrium

that can lead to recessions or to expansions (Fig. 0-1). The reason why we deal

with chaotic models in economics is that, di�erently from stochastic models like the

so-called "real business cycle" (RBC), the dynamics can be understood and explai-

ned in terms of the structural characteristics of the system rather than external and

random shocks (i.e. endogenous instead of exogenous).

II Summary of research during the PhD course

In addition to working on the di�erent topic of �nancial mathematics [143], [139],

[140], [142], [141] our research during the last three years of our PhD program has

been devoted to I) �nding a suitable model for business cycles [137], II) looking for

an indicator that could show structural changes in a signal related to chaos [144], III)

applying techniques such as Recurrence Quanti�cation Analysis (RQA) to economic

time series (with a problem due to the short number of data point available for

this kind of research) that may help in understanding hidden features of economic

dynamics [145] and, �nally, comparing time series generated by the studied models

versus real ones [146], [147].

While chaos in economics may look fascinating, for good reasons chaotic economic
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Figure 0-1: Changes in US Real Disposable Personal Income (i.e.the personal income
net of income taxes) (blue - DSPIC96) and Real Personal Consumption Expenditures
(red - PCECC96) 1959 (Q1) - 2014 (Q2). Source: St. Louis Fed, FRED database.
Greyed areas correspond to periods of economic recessions as reckoned by FRED
(Table A.1).

models to be to be considered purely intellectual constructions with little ability to

explain reality. For this reason we thought that we should take up the challenge

of performing a reality check. To avoid being personally involved in the matter we

considered not our model but we went for a chaotic speci�cation of the Harrod-Domar

model [174] to prove that i) real data could be obtained by a suitable calibration of

the model's parameters, ii) the calibrated model con�rmed theoretical predictions

[138].

III Scheme of this thesis

This thesis consists of three Parts derived from my research on non-linear dynamics.

The First Part is formal-methodological and provides the mathematical background

17



for the remainder. Being this a thesis on economic dynamics, its Second Part pro-

vides the related background and literature. The Third Part contains a personal

speci�cation of a business cycle model within the Kaldor-Kalecki framework. By

means of numerical analysis it is shown that the proposed model is chaotic. More-

over recurrence quanti�cation analysis and statical techniques are applied to time

series derived from real macroeconomic variable and to those generated by our mo-

del's simulations. This to I) �nd common features if and where they do exist, II)

discover some hidden features of economic dynamics and III) highlight some indica-

tors of structural changes in the signal (i.e. in our case to look for precursors of a

crash). This is followed by the above mentioned test on a given speci�cation of the

Harrod model and by the Final Remarks.

It is worth mentioning that Kaldor and Harrod explained in detail their models

but did not write any equation. For this reason the mathematical speci�cations

reported here are original if not stated otherwise.
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Part I

Mathematical background
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Chapter 1

Dynamic systems

In this Chapter we provide some basic de�nitions about what systems are. Namely,

syestems are de�ned in Sec. 1.1 along with their dynamical properties such as at-

tractors and repellers (Sec. 1.2). In Sec. 1.3 periodic points are illustrated and

the Logistic map Sec. 1.4 is used as example. Cycles and limit cycles (Sec. 1.5),

embedding dimension (Sec. 1.6) lead to the section on chaos Sec. 1.7. Measures of

sensitive dependence on initial condition Sec. 1.8 and measures of attractors Sec.

1.9 concludes the Chapter.

1.1 Dynamic systems and their classi�cation

The concept of dynamic system that we will de�ne here is taken from R.E. Kalman

[12] who introduced it in the 1960s when he studied the problem of linear �ltering

and predictions.

Roughly speaking, a system is an entity described by the so-called state (generally

a real number or a vector of real numbers); the adjective dynamic is due to the fact
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that this state varies in time according to a suitable law.

We can formalize the concept of dynamical system by giving the following de�-

nition.

De�nition 1.1 (Dynamic system). A dynamic system is an entity de�ned by the

following axioms:

1. There exist an ordered set T of times, a set X of states and a function φ from

T × T ×X to X. φ is named state transition function.

2. For all t, τ ∈ T and for all x ∈ X one has that φ(t, τ, x) represents the state at

time t of a system whose initial state at time τ is x;

3. The function φ satis�es the following properties:

Consistency : φ(τ, τ, x) = x for all τ ∈ T, and for all x ∈ X (as in 2),

Composition : φ(t3, t1, x) = φ(t3, t2, φ(t2, t1, x)) for all x ∈ X and for all

t1, t2, t3 ∈ T with t1 < t2 < t3.

De�nition 1.2 (Reversibility). If the state transition function φ is de�ned for any

(t, τ) in T × T , once assigned the initial time τ and the initial state x, the state of

the system is uniquely determined for the future (i.e. for all t > τ) as well as for the

past, (i.e for t < τ). In this case the system is said reversible. If the state transition

function φ is de�ned only for t ≥ τ , then the system is said irreversible.

De�nition 1.3 (Event, orbit and �ow). For all t ∈ T, x ∈ X the pair (t, x) is named

event ; moreover, for τ and x �xed, the function t ∈ T 7→ φ(t, τ, x) ∈ X is called

movement of the system. The set of all movements is called �ow. The image of the

movement, i.e. the set {φ(t, τ, x) : t ∈ T} is called trajectory or orbit of the system,

i.e. the orbit passing through the state x at the time τ .
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De�nition 1.4 (Fixed or equilibrium point). A state x∗ ∈ X is called a �xed point

or an equilibrium point of the dynamics if there exist t1, t2 ∈ T , with t2 > t1, such

that

φ(t, t1, x
∗) = x∗ for all t ∈ T ∩ [t1, t2]; (1.1)

x∗ is said a �xed point in an in�nite time if there exists t1 > T such that

φ(t, t1, x
∗) = x∗ for all t ∈ T ∩ [t1,+∞[. (1.2)

De�nition 1.5 (Eventually �xed orbit). An orbit is said to be eventually �xed if it

contains a �xed point.

De�nition 1.6 (Eventually �xed point). A point is called eventually �xed if a even-

tually �xed orbit is generated from it.

De�nition 1.7 (Stability). The �xed (or equilibrium) point x∗ is stable if for every

ε > 0 there exists a δ > 0 and a t0 ∈ T such that for all x ∈ X with |x− x∗| ≤ δ it

holds that |φ(t, τ, x)− x∗| ≤ ε for any t > t0.

The �xed point x∗ is asymptotically stable if it is stable and there exists a δ > 0

such that for all x ∈ X with |x− x∗| ≤ δ it holds that lim
t→∞
|φ(t, τ, x)− x∗| = 0.

The �xed point x∗ is globally asymptotically stable if it is stable and

lim
t→∞
|φ(t, τ, x)− x∗| = 0 for any τ ∈ T andx ∈ X. (1.3)

De�nition 1.8 (Discrete, continuous system). The system is called discrete if the

time set T is the set of natural numbers {0, 1, 2, 3, . . . . . .}.

The system is called continuous if T is an interval of real numbers.
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De�nition 1.9 (Autonomous system). The system is called autonomous if

φ(t, τ, x) = φ̃(t− τ, x) (1.4)

for some suitable function φ̃.

In the following we give some examples of continuous and discrete dynamic sys-

tems.

1.1.1 An example of continuous dynamic systems

Let I = [a, b] ⊂ R and let f : I × R→ R.

We recall the following version of the Cauchy-Lipschitz Theorem from Bonsante

and Da Prato[30].

Theorem 1.1 (Cauchy-Lipschitz). Assume that there exists L > 0 such that

∣∣f(t, x1)− f(t, x2)
∣∣ ≤ L|x1 − x2| (1.5)

for any t ∈ I and x1, x2 ∈ R. Then for all t0 ∈ I, x0 ∈ R the Cauchy problemẋ(t) = f(t, x(t)) t ∈ I

x(t0) = x0,

(1.6)

has one and only one solution in [a, b].

From this it follows that the ordinary di�erential equation

ẋ = f(t, x) (1.7)
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de�nes a continuous reversible dynamic system. In fact the time set is T = I, the

state set is X = R and the state transition function φ is the function from I × I ×R

to R such that for all t, τ ∈ I, x ∈ R one has that

φ(t, τ, ξ) = x(t) (1.8)

where x(t) is the unique solution of the Cauchy problem

ẋ(t) = f(t, x(t)) t ∈ I

x(τ) = ξ

(1.9)

Eq. (1.9) shows that the movements are the solutions of Eq. (1.7) and, for any

solution x, the corresponding orbit is the interval {x(t) : t ∈ I}.

The system is autonomous if f is independent from t, (i.e. in the case of a

di�erential equation of the form ẋ = f(x), with f : R 7→ R derivable function with

continuous and bounded derivative), since in this case one has

φ(t, τ, x) = φ(t− τ, 0, x) for all t, τ, x ∈ R. (1.10)

An equilibrium point is a solution of the di�erential equation ẋ = f(x) which is

constant on an interval J = [t1, t2] ⊂ I. Hence the equilibrium points of the system

are the solutions x∗ ∈ R of the equation f(x) = 0.
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1.1.2 Continuous dynamic system associated to a system of

ordinary di�erential equations

The discussion contained in the previous Section 1.1.1 for a single equation, can be

extended to systems of ordinary di�erential equations.

In fact, when x = (x1, x2, . . . , xn), let f = f(t,x) be a vector function from

I × Rn to Rn, and let f1, f2, . . . , fn be the components of f .

Assume that f1, f2, . . . , fn are continuous functions in I × Rn, that the partial

derivatives of f1, f2, . . . , fn with respect to all the variables x1, x2, . . . , xn exist and

are continuous in I×Rn, and that these partial derivatives are bounded in [a, b]×Rn

for all [a, b] ⊂ I.

Then for all t0 ∈ I, x0 ∈ Rn the vector Cauchy problemẋ = f(t,x(t)) t ∈ I

x(t0) = x0

(1.11)

has one and only one solution in the interval I.

Hence the system of ordinary di�erential equations

ẋ(t) = f(t,x(t)) (1.12)

de�nes a reversible continuous dynamic system.

The time set is T = I, the state set is X = Rn, the state transition function is

the mapping φ from I × I ×Rn to Rn such that for all t, τ ∈ I, x ∈ Rn one has that
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φ(t, τ, x) is the value in t of the unique solution of the Cauchy problem

ẋ(t) = f(t,x(t)) t ∈ I

x(τ) = x

(1.13)

In this case the movements are the solutions of the system of di�erential equations

ẋ = f(t,x) and, for any solution x of such a system of di�erential equations, the

corresponding orbit is the curve in Rn of parametric equation x = x(t) : t ∈ I.

As before, the system is autonomous when f is independent from t, i.e. in the

case of a system of di�erential equations of the form ẋ = f(x). Then an equilibrium

point is a solution of the system of di�erential equations ẋ = f(x) which is constant

on an interval J ⊂ I. Thus the equilibrium points of the system are the solutions

x∗ ∈ Rn of the system of equations f(x) = 0.

Remark 1.1. The notion of dynamic system as outlined in De�nition 1.1 is referred

to the situations where the evolution of the system depends only on internal causes.

However there are situations where the evolution of the system can be modi�ed

through the action of external forces, i.e. by means of an a time-dependent input

vector function u. In this case De�nition 1.1 can be generalized in the sense that a

dynamic system is characterized by a time set T , a state set X, an input set U , a

set Ω of admissible input functions from T to U , a state transition function φ from

T ×T ×X×Ω to X such that for all t, τ ∈ T,x ∈ X,u ∈ Ω one has that φ(t, τ,x,u)

represents the state of the system at the time t if the state is x at the time τ and on

the system acts an input function u.

Obviously the state of the system at the time t will only depend on the initial

time τ , the initial state x and the restriction of the input function u to the interval

of extremes t and τ . Hence we have to assume that the state transition function φ
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satis�es the following properties of

Consistency φ(τ, τ,x,u) = x(t) ∀ (τ,x,u(·)) ∈ T ×X × Ω

Composition x(t) = φ(t3, t1,x,u) = φ (t3, t2, φ (t2, t1,x,u) ,u) for each (x, u) ∈

X × Ω, and for each t1 < t2 < t3

Causality If u,v ∈ Ω and u|[τ,t] = v|[τ,t], then φ(t, τ,x,u) = φ(t, τ,x,v).

As we are not going to discuss how to control a dynamic system, in what follows,

we shall never be concerned with the dependence of the state on an external input

function u.
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1.1.3 An example of a discrete time dynamic system

De�nition 1.10 (Map). If f is a function from X to X, then the recursive formula

xn+1 = f(xn) (1.14)

de�nes a discrete dynamic system and it is called a map.

In fact, if we denote by the symbol f ◦n the n-th iterate of f , i.e. for n = 0 the

identity on X and for n ≥ 1 the composition of f with itself n times, then the state

transition function φ is de�ned by

φ(t, τ, x) = f ◦(t−τ)(x) for all t, τ ∈ T = {0, 1, 2, 3, . . . . . .}, t ≥ τ, (1.15)

since it is evident that φ satis�es the consistency and composition properties.

In this case a movement is a sequence (xn)n such that xn+1 = f(xn) for all n,

whereas an orbit is a set of the form {x0, x1, x2, . . . xn, . . .} with xn+1 = f(xn) for all

n.

Example 1.1. For f(x) = x2, the orbit of f with initial point x = 2 is the set

{2, 4, 16, 256, . . .}.

Remark 1.2. Note that the dynamic system de�ned by Eq. (1.14) is autonomous

(cfr. Eq. (1.4)) and it is reversible if and only if the function f is bijective.

De�nition 1.11 (Fixed or equilibrium point for a discrete time system). A �xed

point (or a equilibrium point) x∗ is a point of X such that f(x∗) = x∗. In this

discrete time case, the orbit departing from x∗ is the singleton {x∗}.

Example 1.2. If f(x) = x2 then 0 and 1 are the only �xed points.
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Example 1.3. For f(x) = x2 the point x = −1 is not �xed for f but it is an eventually

�xed point because f(−1) = 1 6= −1. Instead, the point x = 1 is a �xed one for f .

De�nition 1.12 (Periodic orbit, cycle). The orbit of initial point x0 is said periodic

or cycle if there exists m ∈ N such that f ◦m(x0) = x0.

Remark 1.3. Periodic orbit means that after a �nite number of iterations we return

to the initial point and therefore the orbit has a �nite number of elements. In

this case x0 is said a periodic or cyclic point and the smallest number m such that

f ◦m(x0) = x0 is said the prime period of the orbit.

Remark 1.4. A point xp is periodic of period n if and only if xp is a �xed point of

f ◦n. In particular a �xed point xp for f is the �xed for all iterates of f .

Example 1.4. If f(x) = −x then x = 0 is the only �xed point and for all x 6= 0 the

orbit departing from x is the set {x,−x} and is periodic of �rst period m = 2.

De�nition 1.13 (Eventually periodic orbit). An orbit is said to be eventually peri-

odic if it contains a periodic point. Analogously, a point is called eventually periodic

if a eventually periodic orbit is generated from it.

Example 1.5. The point x = 1 is an eventually periodic point for the function f(x) =

x4 − 1, because f(1) = 0 and 0 is contained in the cycle (0,−1).

Remark 1.5. Recursive methods to �nd a �xed point

Recursive expressions of the form of Eq. (1.14) are often used in numerical

computations for solving equations. An example is given by the so-called 'Babylonian

algorithm' to approximate the square root of a number a > 0 asymptotically equal

to

xn+1 =
1

2

(
xn +

a

xn

)
. (1.16)
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A more general algorithm is the Newton method of approximating the zero of a

di�erentiable function g

xn+1 = xn −
g(xn)

g′(xn)
(1.17)

For example if g(x) = x2−a, g′(x) = 2x thus the Newton algorithm in Eq. (1.17)

reduces to Eq. (1.16).

1.2 Attractors and repellers for discrete time dyna-

mic systems

In this Section we provide some de�nitions concerning the behaviour of dynamic

systems which, unless di�erently speci�ed, are taken from R. Devaney [52], H. W.

Lorenz [113] and S. Sternberg [175]. Throughout the Section f : R 7→ R is a twice

continuously di�erentiable function and f on denotes its n-th iterate, i.e. the compo-

sition of f with itself n times.

De�nition 1.14 (Critical point). We say that xc ∈ R is a critical point of f if

f ′(xc) = 0. The critical point is non-degenerate if f
′′
(xc) 6= 0. The critical point is

degenerate if f
′′
(xc) = 0.

Remark 1.6. Degenerate critical points may be maxima, minima, or in�ection points;

non-degenerate critical points, instead, must be either maxima or minima.

Example 1.6. In c = 0, the function f(x) = x2 has a non-degenerate critical point and

f(x) = xn for n > 2 has a degenerate critical point. In particular c is an in�ection

point (i.e. a point in which the function changes concavity) for f(x) = x3.
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De�nition 1.15 (Limit set). Given x ∈ X we call limit set of x the set A of points

ω ∈ X for which there is a sequence of natural numbers (ni)i → +∞ such that

lim
i→+∞

f oni(x) = ω. (1.18)

De�nition 1.16 (Attractor). A compact (i.e. a closed and limited) set A ⊂ X is

an attractor of the dynamics if there is an open set U containing A such that A is

the limit set of all the points in U .

De�nition 1.17 (Basin of attraction). The set of all x that have as limit set A is

called basin of attraction of A.

Remark 1.7. In particular a singleton {xa} is an attractor if there exists δ > 0 such

that for all x ∈]xa − δ, xa + δ[ the sequence (f on(x))n has a subsequence converging

to xa.

Example 1.7. For example, if x∗ = xa is a �xed point of f and |f ′(xa)| < 1, then

there exists δ > 0 such that for all x ∈]xa − δ, xa + δ[ the sequence (f on(x))n tends

to xa, and therefore a is asymptotically stable and the set {xa} is an attractor.

Proof. For a �xed K ∈ R such that |f ′(xa)| < K < 1, one has that

lim
x→xa

|f(x)− xa|
|x− xa|

= lim
x→xa

∣∣∣f(x)− f(a)

x− xa

∣∣∣ = |f ′(xa)| < K (1.19)

and therefore there exists δ > 0 such that for all x ∈]xa − δ, xa + δ[ one has

|f(x)− xa| < K|x− xa| < δ. (1.20)

From this it follows by induction that for all x ∈]xa − δ, xa + δ[ and for all n ∈ N
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one has that

f on(x) ∈]xa − δ, xa + δ[ and |f 0(n+1)(x)− xa| < K|f on(x)− xa|. (1.21)

Hence for all x ∈]a−δ, a+δ[ the distance of f on(x) from a decreases at a geometric

rate K < 1 and therefore tends to 0, as desired.

Remark 1.8. If one has f ′(0) = 0, then the preceding argument shows that the

distance of f on(x) from a decreases at a geometric rate K for all K ∈]0, 1[.

This justi�es the following de�nition:

De�nition 1.18 (Superattractor). A �xed point x∗ such that f ′(x∗) = 0 is called

superattractor or superstable.

Remark 1.9. If |f ′(xa)| > 1, then, for a �xed K ∈ R such that 1 < K < |f ′(xa)|,

there exists δ > 0 such that for all x ∈]xa−δ, xa+δ[ one has |f(x)−xa| > K|x−xa|;

hence the distance of f on(x) from a increases at a geometric rate K > 1 and therefore

there exists n ∈ N such that |f on(x)− xa| > δ.

This motivates the following de�nition:

De�nition 1.19 (Repeller). A �xed point x∗ such that |f ′(x∗)| > 1 is called unstable

or a repeller.

Example 1.8. Let us consider a function g twice di�erentiable and the Newton method

of Eq. (1.17). In this case

f(x) = x− g(x)

g′(x)
(1.22)

hence

f ′(x) = 1− g′(x)

g′(x)
+
g(x)g

′′
(x)

g′(x)2
=
g(x)g

′′
(x)

g′(x)2
. (1.23)
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If the point xa is a non-degenerate zero of g then xa is a superattractive �xed point.

Remark 1.10. As already mentioned a periodic point xp of period n is a �xed point

of f ◦n (n-fold composition of f).

Moreover, if p is periodic also the points

xp, f(xp), f
◦2(p), . . . , f ◦n−1(xp) (1.24)

are periodic and by the chain rule, the derivative of f ◦n in those points is the same

and it is equal to

(f ◦n)′(xp) = f
′
(xp) f

′(f(xp)) · · · f ′(f ◦n−1(xp)). (1.25)

De�nition 1.20 (Hyperbolic bifurcation point). Let xp be a periodic point of prime

period n (see Remark 1.3), the point xp is called hyperbolic if

|(f ◦n)′(xp)| 6= 1 (1.26)

The number (f ◦n)′(xp) is called a hyperbolic point multiplier.

De�nition 1.21 (Bifurcation point). A non-hyperbolic �xed point is called a bifur-

cation point.

De�nition 1.22 (Attractive periodic orbit). If xp is an attractive (respectively a

repeller) �xed point for fn then so are all the others and this is called attractive

periodic orbit.

De�nition 1.23 (Superattractive periodic orbit). A periodic point is superattractive

for f ◦n if and only if f
′
(s) = 0 at least for one of the points xp, f(xp), f

◦2(xp), . . . , f
◦n−1(xp).
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Example 1.9. As mentioned, an attractor as well as a repeller can be a �xed or a

periodic point. For example, the function f(x) = −x3 has two cyclic points −1 and

+1 of period 2 and a �xed one x0 = 0 (see Figure 1-1 (a)).

It can easily be veri�ed that x0 is an attractor for the basin (−1,+1) and that the

cyclic orbit −1,+1 is a repeller. To show that, it is su�cient to study the function

f ◦2(x) for which −1 and +1 are �xed repeller points, and since neither is �xed for

f , then they will be cyclic repellers (see Figure 1-1 (b)).

(a) Plot of f(x) = −x3 (b) Plot of f◦2(x) = x9

Figure 1-1: Convergence to the attractor. Panel (a) represents f(x) = −x3 that is a
mirror image of f(x) = x3 and Panel (b) corresponds to the graph of f ◦2(x) = x9.
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1.3 Existence of periodic points

In the following we recall some results that will be used in Section 1.4.

1.3.1 Schwarz derivative

De�nition 1.24 (Schwarz derivative [175]). Let f be a one-dimensional map de�ned

in the real �eld, three times derivable. The Schwarz derivative of f is

fS(x) =
f

′′′
(x)

f ′(x)
− 3

2

(
f

′′
(x)

f ′(x)

)2

. (1.27)

The relevant property of this derivative is to preserve the sign with the composi-

tion, in the sense that if fS(x) > 0 then it is also (f ◦n)S(x) > 0 ∀n ∈ N.

Proposition 1.2. Let us consider a polynomial Q(x). If all the roots of its �rst

derivative Q′(x) are real and distinct then QS(x) < 0.

Proof. Suppose that

Q′(x) =
n∏
i=1

(x− ai) with ai real and distinct. (1.28)

Then the second and third derivatives are

Q′′(x) =
n∑
j=1

∏n
i=1(x− ai)
x− aj

=
n∑
j=1

Q′(x)

x− aj
(1.29)

and

Q′′′(x) =
∑

j,k=1,...,n
j 6=k

∏n
i=1(x− ai)

(x− aj)(x− ak)
=

∑
j,k=1,...,n

j 6=k

Q′(x)

(x− aj)(x− ak)
. (1.30)
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Therefore

QS(x) =
∑

j,k=1,...,n
j 6=k

1

(x− aj)(x− ak)
− 3

2

(
n∑
j=1

1

x− aj

)2

= −1

2

∑
j=1

(
1

x− aj

)2

−

(
n∑
j=1

1

x− aj

)2

< 0.

(1.31)

Proposition 1.3. Let us consider h = f ◦ g. If fS < 0 and gS < 0 then hS < 0.

Proof. According to the chain rule the second and third derivative of h are

h′′ = (f ◦ g)′′ = f ′′(g(x))(g′(x))2 + f ′(g(x))g′′(x) (1.32)

h′′′ = (f ◦ g)′′′ = f ′′′(g(x))(g′(x))3 + 3f ′′(g(x))g′′(x)g′(x) + f ′(g(x))g′′′(x) (1.33)

Therefore

hS(x) = fS(g(x))(g′(x))2 + gS(x) < 0. (1.34)

In particular if fS is negative then (f ◦n)S is negative for all n > 1. This introduces

us to the following result (for a demonstration see Ref. [52]).

Theorem 1.4 (Schwarz theorem). If fS < 0 and if f has n critical points then f

has at most n+ 2 attracting periodic orbits.
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1.3.2 Singer theorem

As mentioned in Def. 1.24 the Schwarz derivative preserves the sign under composi-

tion which is useful in the following theorem

Theorem 1.5 (Singer [113]). Let f be a map from a closed interval I ⊆ [0, b] onto

itself; then the dynamic system xn+1 = f(xn) has at most one periodic orbit in the

interval I if the following conditions are met:

1. f is a function C3

2. There exists a critical point xc ∈ I such that:


f ′(x) > 0 ∀x < xc

f ′(xc) = 0

f ′(x) < 0 ∀x > xc (1.35)

3. The origin is a repeller for f , that is

f(0) = 0, | f ′(0) |> 1 (1.36)

4. The Schwarz derivative is

fS(x) ≤ 0 ∀x ∈ I \ {xc} (1.37)

1.3.3 Sarkovsky theorem

Let us introduce the following ordering on natural numbers.
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De�nition 1.25 (Sarkovsky ordering [175]).

3 . 5 . 7 . · · · 2 · 3 . 2 · 5 . 2 · 7 . · · · 22 · 3 . 22 · 5 . 22 · 7 . · · ·

· · · 2n · 3 . 2n · 5 . 2n · 7 . · · · . 2n . · · · . 23 . 22 . 2 . 1 (1.38)

That is, �rst all odd integers except one are listed, then they are followed by 2

times that odd number, 22 times the odd, 23 times the odd, etc. This exhausts all

the natural numbers with the exception of the powers of two that are listed last, in

decreasing order.

Theorem 1.6 (Sarkovsky). Let f be a continuous function with a periodic point of

prime period k. If k . l in the Sarkovsky ordering of Def. 1.25, then f has also a

periodic point of period l.

As in the Sarkovsky ordering the largest number is 3 we have the following result:

Corollary 1.7. (Period three implies all periods) If f has a periodic orbit of period

three, then it has periodic orbits of all periods.

As the set of the smallest numbers in the Sarkovsky ordering is the set of the

powers of 2, it holds that:

Corollary 1.8. If f has a periodic point of prime period k, with k not a power of

two, then f has in�nitely many periodic points. Conversely, if f has only �nitely

many periodic points, then they all necessarily have periods which are powers of two.

1.4 Logistic map

In this Section, as an application of the concepts discussed above, we are going to

investigate the discrete dynamic system generated by the so-called Logistic Map (also
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called Verhulst dynamics or quadratic map):

fµ(x) = µx(1− x), x ∈ [0, 1], µ ∈ [0, 4], (1.39)

which, despite having a simple analytical expression and graph (see Figure 1-2),

may display complex behaviours depending on the value of the parameter µ.

Figure 1-2: Logistic for di�erent values of µ. The critical point is c = 1/2.

One of the reasons why we discuss it is due to the fact that its analysis requires

the use of numerical methods similar to those used to analyse the model we propose

in the third Part of this thesis. This because there are equations that cannot be

resolved analytically, in fact

Theorem 1.9 (Abel�Ru�ni impossibility theorem [159]). There is no solution in

radicals expression of a general polynomial equations of degree �ve or higher with

arbitrary coe�cients.

The proof of this result was �rst provided incomplete by P. Ru�ni and then it

was completed by N.H. Abel and E. Galois who worked independently on it. In the
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remainder of this Section we will overcome the said problem with both graphical and

numerical analysis.

1.4.1 Fixed points for the Logistic Map

First of all we note that the �xed points of the Logistic Map fµ are x∗1 = 0 and

x∗2 = 1− 1/µ. The �rst derivative f ′µ(x) = µ(1− 2x) calculated in those points is

f ′µ(x∗1) = µ f ′µ(x∗2) = 2− µ (1.40)

As the nature of the �xed points in the interval [0, 1] changes with the parameter

µ, hereafter we study the di�erent instances.

1. If 0 < µ < 1, there is only one �xed point x = 0, since the other �xed point

x∗2 = 1− 1/µ is negative.

Note that the point x∗1 = 0 is attracting (but not super-attracting) since f ′µ(0) =

µ ∈ (0, 1). Moreover for all x ∈ (0, 1] one has 0 < f(x) < x ≤ 1 and therefore

the sequence (f on(x))n is decreasing and converges to 0. Thus the basin of

attraction of 0 is [0, 1]

2. If µ = 1, f1 = x(1 − x), then 0 is the unique �xed point of f and, (with the

same arguments as before), one proves that 0 is an attractor and the basin of

attraction of 0 is [0, 1].

If µ > 1, the �xed point x∗1 = 0 is repelling and the second �xed point x∗2 = 1−1/µ

lies in [0, 1]. Moreover 1 < µ < 3 implies |f ′µ(x∗2)| = |2− µ| < 1 ; therefore the point

x∗2 is an attractor and its basin depends on the parameter µ as detailed below.
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3. If 1 < µ < 2 then the �xed point x∗2 is in (0, 1/2), and the �rst derivative

f ′µ(x∗2) = 2− µ is in (0, 1).

Now we prove that the basin of attraction is (0, 1].

Proof. Note that f is strictly increasing and strictly concave in the interval

[0, 1/2]; hence one has that

− x ∈ [0, x∗2[ =⇒ 0 ≤ fµ(x) < fµ(x∗2) = x∗2 and fµ(x) > x,

− x ∈]x∗2, 1/2] =⇒

x∗2 = fµ(x∗2) < fµ(x) ≤ fµ(1/2) = µ/4 ≤ 1/2 and 0 < fµ(x) < x.

From this it follows by induction that for all n ∈ N one has that

0 ≤ f onµ (x) < x∗2 and f o(n+1)
µ (x) > f onµ (x), for all x ∈ [0, x∗2[,

x∗2 < f onµ (x) ≤ 1/2 and f o(n+1)
µ (x) < f onµ (x), for all x ∈]x∗2, 1/2].

Hence the sequence (f onµ (x))n is increasing and converging to x∗2 for all x ∈

[0, x∗2[ and is decreasing and converging to x∗2 for all x ∈]x∗2, 1/2].

Finally for all x ∈]1/2, 1] one has that 0 ≤ fµ(x) < fµ(1/2) = µ/4 < 1/2

and therefore the sequence (f onµ (x))n≥1 is increasing or decreasing according to

whether fµ(x) < x∗2 or fµ(x) > x∗2; in both cases such a sequence converges to

x∗2.

4. If µ = 2 we can apply the same reasoning of the case µ < 2 to prove that the

basin of attraction of x∗2 is (0, 1].
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Moreover, since

x∗2 = 1− 1

µ
=

1

2
and f ′2

(1

2

)
= 0, (1.41)

the �xed point x∗2 is superattractive and the sequence (f on2 (x))n converges to

x∗2 very fast (more than geometrically).

5. If 2 < µ < 3 then x∗2 = 1− (1/µ) > 1/2 and

f ′µ(x∗2) = 2− µ ∈ (−1, 0) (1.42)

hence the �xed point x∗2 is an attractor but the iterates oscillate around it.

6. If µ = 3 then x∗2 = 1− 1

µ
=

2

3
and f ′µ(x∗2) = 2− µ = −1. It can be proved that

the �xed point x∗2 is still an attractor.

If µ ∈]3, 4[ then f ′µ(x∗2) < −1. As well as the �xed point x∗1, the �xed point x∗2 has

become a repeller (see Def. 1.19). However, if we consider the second iterate f ◦2µ (x),

a �xed point of it (i.e. a periodic point of period 2) is the zero of f (o2)
µ (x)− x. Since

f (o2)
µ (x)− x = µfµ(x)(1− fµ(x))− x (1.43)

= µ[µx(1− x)][1− µx(1− x)]− x

= x(µ− µx− 1)(µ2x2 − µ2x− µx+ µ+ 1)

=
[
fµ(x)− x

]
(µ2x2 − µ2x− µx+ µ+ 1)

a �xed point of f ◦2µ (x) is either a �xed point of fµ(x) or a zero of the quadratic

polynomial

µ2x2 − µ(µ+ 1)x+ µ+ 1. (1.44)
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The discriminant of the polynomial (1.44)

µ2(µ+ 1)2 − 4µ2(µ+ 1) = µ2(µ+ 1)(µ− 3) (1.45)

is positive since µ > 3. Hence the said polynomial (1.44) has two real roots:

p2± =
1

2
+

1

2µ
± 1

2µ

√
(µ+ 1)(µ− 3) ∈ (0, 1). (1.46)

To check if p2± are attractors or repellers, we need to compute the derivative of

f ◦2µ (x) in these points. This can be done in two di�erent but equivalent ways.

First method. Computing the derivative of f ◦2µ (x) we have

(f ◦2µ )′(x) = µ2(1− 2x)(2µ2x− 2µx+ 1) (1.47)

then replacing x = p2±, after some calculation one gets:

(f ◦2µ )′(p2±) = −µ2 + 2µ+ 4. (1.48)

Second method. Using the chain rule one obtains

(f ◦2µ )′(x) =
[
fµ
(
fµ(x)

)]′
= f ′µ

(
fµ(x)

)
f ′µ(x). (1.49)

Since fµ(p2+) = p2− and fµ(p2−) = p2+, from the above identity we get

(f ◦2µ )′(p2±) = f ′µ(p2+) f ′µ(p2−) (1.50)

= µ2(1− 2p2+)(1− 2p2−)

= µ2
(
1− 2(p2+ + p2−) + 4p2+p2−

)
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From Eq. (1.44) we get

p2+ + p2− = (µ+ 1)/µ and p2+ · p2− = (µ+ 1)/µ2 (1.51)

thus we get

(f ◦2µ )′(p2±) = −µ2 + 2µ+ 4. (1.52)

Hence (f o2)′(p2±), as a function of µ, is decreasing in the interval [3, 4] and has

value 1 for µ = 3 and value −1 for µ = µ1 := 1 +
√

6 = 3.449499 . . .

7. If 3 < µ < µ1, as we have already shown, the two �xed points are repelling for

f while the two periodic points of period two are attracting for f o2.

For µ > µ1 the periodic points of period two become unstable (repelling) and

4 periodic points of period four appear. These points are stable (attracting)

for µ < µ2 = 3.54409 . . . and unstable for µ > µ2.

Iterating this procedure, one can construct a sequence (µn)n such that for

µ > µn a cycle of order 2n appears.

8. Regarding the limit case µ = 4, by direct calculation one has

f ◦3µ (x)−x =
(
fµ(x)−x

)
(64x3− 112x2 + 56x− 7)(64x3− 96x2 + 36x− 3)

(1.53)

The two polynomials of degree 3 have three real roots in (0, 1) namely Numerical

values are

x1 = 0.1882550991 . . . , x2 = 0.6112604670 . . . , x3 = 0.9504844340 . . .
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for the �rst polynomial and

x4 = 0.1169777784 . . . , x5 = 0.4131759112 . . . , x6 = 0.9698463104 . . .

for the second. These are two cycles of period 3 and by using Sarkovsky's Theorem

1.3.3, there exists orbits of any period.

In Fig. 1-3 it is shown that when µ is 1 or 2 and x∗2 > 0 is stable, the graph

intersects the 45o line only once. In that case x∗2 > 0 is a �xed point of both f o1 and

f o2. When µ is larger than the bifurcation value for the �ip bifurcation, the graph of

f o2 intersects the 45o line three times i.e. at the unstable �xed point at the period-2

�xed points (see Fig. 1-3 lower graph on the right).

Figure 1-3: Second iteration for the Logistic Map.
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1.4.2 Feigenbaum universal constant for the Logistic Map

M.J. Feigenbaum showed [63] that in the Logistic Map the sequence (µn)n of period-

doubling bifurcation values follows the rule

lim
n→∞

µn − µn−1

µn+1 − µn
= δF ≈ 4.6692 . . . (1.54)

where δF is a universal constant and it is present in many one-dimensional non-

invertible maps (that is why the Logistic Map is a paradigmatic example for chaos).

Therefore if two successive bifurcation values are known, the next bifurcation can

be approximately computed from Eq. (1.54). Finally, it can be shown that the limit

point of the period-doubling sequence is µc ≈ 3.5699 . . . (see Fig. 1-4).

Figure 1-4: Period doubling for the Logistic Map. Ref. H.W. Lorenz [113].

1.4.3 Schwarz derivative for the Logistic Map

Since

f
′

µ = µ− 2µx, f
′′

µ = −2µ, f
′′′

µ = 0 (1.55)
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for the Schwarz derivative 1.24 of the Logistic Map one has

fS(x) = − 6

(1− 2x)2
(1.56)

which is < 0 ∀x 6= 1/2.

Hence by Theorem 1.4 there exist at most three attracting periodic orbits.

1.4.4 Application of the Singer's theorem to the Logistic Map

In this paragraph we want to show that for the function fµ(x) = µx(1 − x), with

µ > 1 it is easy to check that the four conditions of Singer's Theorem 1.5 are all

satis�ed. Indeed

1. fµ is in�nitely di�erentiable,

2. The derivative is f
′

µ(x) = µ(1− 2x) and therefore for c = 1/2 one has:

f
′

µ(x)


> 0 ∀x < c

= 0 for x = c ,

< 0 ∀x > c

3. The origin for fµ is a repeller since fµ(0) = 0 and f ′µ(0) = µ > 1.,

4. fS(x)µ = − 6

(1− 2x)2
< 0 ∀x ∈ I \ {c} (see Paragraph 1.4.3).

1.4.5 Cobweb or Verhulst diagram for the Logistic Map

A cobweb or Verhulst diagram is a way to visualize the behaviour of a dynamic system

under repeated application of a map [28].

48



The diagram consists of a diagonal x = y line and a curve representing y = f(x).

The algorithm [2] is:

• Find the point on the function curve with coordinates x0, f(x0).

• Plot horizontally across from this point to the point on the diagonal line with

coordinates f(x0), f(x0).

• Plot vertically from the point on the diagonal to the function curve that has

coordinates f(x0), f(f(x0)).

• Repeat from step 2 as required.

Figure 1-5 shows the cobweb diagram for the Logistic Map.

Figure 1-5: Cobweb diagram for the Logistic Map. Source [4].

1.5 Cycles and limit cycles

In this Section we consider a continuous time dynamic system described by the state

transition function φ(t, τ, x)., from now on, de�nitions and results are taken from R.

Devaney [52], H. W. Lorenz [113] and S. Sternberg [175] unless di�erently speci�ed.
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De�nition 1.26 (Limit cycle). A limit cycle (see Fig. 1-6 ) is a closed orbit Γ for

which there exists a tubular neighbourhood U(Γ) [129] such that for all x ∈ U(Γ)

one has

lim
t→+∞

d(φ(t, τ, x),Γ) = 0, (1.58)

where we have set

d(y,Γ) = inf
z∈Γ
|y − z|. (1.59)

Figure 1-6: A limit cycle.

In order to establish the existence of limit cycles, in the two-dimensional case, we

can refer to the following theorem by Poincaré and Bendixon.

Theorem 1.10 (Poincaré-Bendixon [113]). Let D be a non-empty, compact (i.e.

closed and bounded) set of the plane not containing �xed points of a C1 vector �eld

f from D to R2 and let γ ⊆ D be an orbit of the system ẋ = f(x). Then either γ is
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a closed orbit or γ asymptotically approaches a closed orbit (i.e. there exists a limit

cycle in D).

Figure 1-7: Convergence to the limit cycle. On the boundary of D, the vector �eld
points inwards the set, therefore once a trajectory enters in D it will stay forever.

(a) A system with a stable limit cycle in
a vector �eld. Ref. Caltech [36]

(b) Limit cycle in a compact setD. Ref. H.W.
Lorenz [113].

The limitations of Theorem 1.10 are related to �nding a suitable set D and to the

fact that it is valid only in two dimensions. For example suppose that there exists

a compact set D ⊂ R3 with the vector �eld pointing inwards to D (see Figure 1-7b)

and that there is a unique unstable equilibrium. Nevertheless it is possible that no

closed orbit exists because a trajectory can arbitrarily wander in R3 without neither

intersecting itself nor approaching a limit set (see. Figure 1-8).

When we deal with a linear system of di�erential equations (as expressed in

matrix form)

ẋ = Ax (1.60)

its solution with initial point x0 for t = 0 is etAx0. Therefore we get to know its

behaviour by studying the eigenvalues of the matrix A. The Hartman-Grobman

Theorem 1.11 explains the behaviour about the �xed points for nonlinear systems
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Figure 1-8: In R3 Poincaré-Bendixon is invalid. Ref. H.W. Lorenz [113].

by a linearisation around the equilibrium. Before that, we need to introduce the

following de�nitions as in Zimmerman [201].

De�nition 1.27 (Homeomorphism). A function h : X → Y is a homeomorphism

between X and Y if it is continuous and bijective (one-to-one and onto function)

with a continuous inverse denoted h−1.

Remark 1.11. An homeomorphisms means that X and Y have similar structure and

that h (resp. h−1) stretches and bends the space but does not tear it.

De�nition 1.28 (Di�eomorphism). A function f : U ⊆ Rn → V ⊆ Rn is called

di�eomorphism of class Ck if it is surjective (onto) and injective (one-to-one), and

if the components of f and its inverse have continuous partial derivatives up to the

k − th order with respect to all variables.

De�nition 1.29 (Embedding). An embedding is a homeomorphism onto its image.

De�nition 1.30 (Topological conjugacy). Given two maps, f : X → X and g : Y →

Y , the map h : X → Y is a topological semi-conjugacy if it is continuous, bijective
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and h◦f = g ◦h, with ◦ function composition. In addition, if h is a homeomorphism

between X and Y , then we say that h is a topological conjugacy and that X and Y

are homomorphic.

De�nition 1.31 (Hyperbolic �xed point). In the case of continuous time dynamic

system

ẋ = f(x) (1.61)

a hyperbolic �xed point is a �xed point x∗ for which all the eigenvalues of the Jacobian

matrix

Df =


∂x1f1 ∂x1f2 . . . ∂x1fn

∂x2f1 ∂x2f2 . . . ∂x2fn
...

∂xnf1 ∂xnf2 . . . ∂xnfn

 (1.62)

calculated in x∗ have a non-zero real part.

Theorem 1.11 (Hartman-Grobman). Let f be C1 on some E ⊂ Rn and let x∗ be a

hyperbolic �xed point that without loss of generality we can assume x∗ = 0. Consider

the non-linear system ẋ = f(x) with �ow φ(t, 0,x) and the linear system ẋ = Ax,

where A is the Jacobian Df(0). Let I0 ⊂ R, X ⊂ Rn and Y ⊂ Rn such that X, Y

and I0 each contain the origin. Then there exists a homeomorphism H : X → Y

such that for all initial points x ∈ X and all t ∈ I0

H(φ(t, 0,x)) = etAH(x) (1.63)

holds. Thus the �ow of the non-linear system is homeomorphic to etA (i.e. to the

�ow of the linear system).
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1.6 Embedding dimension

Let us consider the map

xik+1 = fi(xk), x ∈ Rn, i = 1, . . . , n (1.64)

where the variable xi is not directly observable.

De�nition 1.32 (Time series). For the observable variable

x̄ik = h(xk), (1.65)

we denote with {x̄ik}Tk=1 the time series of observations.

The embedding dimension is a statistical measure which indicates the smallest

dimension required to embed an object (as for instance a chaotic attractor) [109] and

it is de�ned as follows.

De�nition 1.33 (Embedding dimension). Let us consider the last m element of ob-

servations as arranged in the vector [m]x̄
i
T = {x̄iT , x̄iT−1, . . . , x̄

i
T−m+1} in the observed

time series and let us repeat the grouping for each x̄ik in the descending order of time

t = T, . . . , 1 by dropping the remaining m− 1 elements.

If m denotes the embedding dimension this results in the m-dimensional vectors

where

[m]x̄
i
T = {x̄iT , x̄iT−1, . . . , x̄

i
T−m+1} (1.66)

[m]x̄
i
T−1 = {x̄iT−1, x̄

i
T−2, . . . , x̄

i
T−m}

...

[m]x̄
i
m = {x̄im, x̄im−1, . . . , x̄

i
1}.
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Remark 1.12. The vector [m]x̄
i
T is also called m-history and describes a point in

an m-dimensional space, where the coordinates are the delayed observed values

{x̄iT , x̄iT−1, . . . , x̄
i
T−m+1}. The sequence {[m]x̄

i
k}Tk=m of points forms a geometric object

in this space.

Remark 1.13. F. Takens (1981) [179] showed that if:

1. the variables xi of the true dynamical system are located on an attractor (i.e.

there are no transients),

2. the functions g(x) in the true dynamical system and the observation function

h(x) are smooth,

3. m > 2n− 1,

the sequence {x̄it}Tt=m is topologically equivalent to the object generated by the true

dynamical system described by Eq. (1.64).

1.6.1 Time lag

Instead of considering the m element of observations as arranged in the vector

[m]x̄
i
T = {x̄iT , x̄iT−1, . . . , x̄

i
T−m+1},

one may take the vector

[m]x̄
i
T−τ = {x̄iT , x̄iT−(1+τ), . . . , x̄

i
T−(m−1+τ)},

by sampling the time as follows t = T, T − (1 − τ), . . . , τ . This vector is called

delayed or time lagged vector and the delay τ corresponds to the spacing between

the observations.
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Mutual information The delay τ is determined in a way that the values [m]x̄
i
T

and [m]x̄
i
T−τ are "su�ciently independent to be useful as coordinates in a time-delay

vector but not so independent as to have no connection with each other at all" [161].

To this end, it might be useful recurring to the mutual information as de�ned by

De�nition 1.34 (Mutual information [47]). Let us consider two jointly discrete

random variables X and Y , the mutual information is the double sum:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(X,Y )(x, y) log

(
p(X,Y )(x, y)

pX(x) pY (y)

)
, (1.67)

where p(X,Y ) and pX , pY denote, respectively, the joint distribution and the marginal

probability mass functions of X and Y .

1.7 Chaos

As previously mentioned the Logistic Map exhibits an irregular behaviour that, ac-

cording to the following de�nitions, we call chaotic.

De�nition 1.35 (Closure). Let S be a subset of Rn. The closure of S is the set

of points x such that every open ball centred at x contains a point of S and it is

denoted as S.

De�nition 1.36 (Dense set). Let be D ⊂ S; D is dense in S if D = S.

Example 1.10. The set of rational numbers Q is dense in R.

De�nition 1.37 (Topological transitivity). The map f : S → S is said to be topo-

logically transitive if for any pair of open sets U, V ⊂ S there exists n ∈ N such that

f on(U) ∩ V 6= ∅.
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Remark 1.14. The idea is that a topologically transitive map has points that move

under iteration from one arbitrarily small neighbourhood to any other. This means

that the dynamical system cannot be decomposed into two disjoint open sets which

are invariant under the map.

De�nition 1.38 (Sensitive Dependence on Initial Conditions - SDIC). f : S → S

has sensitive dependence on initial conditions if there exists δ > 0 such that, for

any x ∈ S and any neighbourhood N of x, there exists y ∈ N and n ≥ 0 such that

| f on(x)− f on(y) |> δ.

Remark 1.15. Sensitive dependence on initial conditions for a map means that if

there exist points arbitrarily close to x, at least one of those will eventually move

away from x by at least δ under iteration of f . Such a behaviour may magnify small

errors caused by round-o� errors in computations.

Example 1.11. The Logistic Map possesses sensitive dependence on initial conditions

for µ > 2 +
√

5.

A popular de�nition of chaos is

De�nition 1.39 (Chaos - Devaney [52]). The map f : S → S is said to be chaotic

on S if

1. f is topologically transitive

2. The set of the periodic points is dense in S.

3. f has sensitive dependence on initial conditions

Banks et al. (1992) [15] have shown that the �rst two conditions are su�cient

for de�ning chaos when S is a not a �nite set.
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Theorem 1.12 (Banks et al. [15]). If the map f : S → S is topologically transitive

and is dense in S, then f has sensitive dependence on initial conditions.

Now we are in position to restate Theorem 1.7.

Theorem 1.13. (Period three implies chaos - Li and Yorke [111]) If f has a periodic

orbit of period three, then f is chaotic.

1.8 A measure of sensitive dependence on initial con-

ditions

Now let us consider the mapping f : Rn → Rn; the recursive expression

xN+1 = f(xN), (1.68)

and two initial points x0 − y0 close to each other such that

x0 − y0 = ∆0. (1.69)

We denote the iterations from the �rst to the N -th as

x1 − y1 = f ◦1(x0)− f ◦1(y0) (1.70)

...

xN − yN = f ◦N(x0)− f ◦N(y0),

their linear approximations as

x1 − y1 ≈
df ◦1(x0)

dx
∆0 (1.71)
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...

xN − yN ≈
df ◦N(x0)

dx
∆0,

and by Λ1, . . .ΛN the corresponding N Jacobian matrices evaluated in x0, i.e. Λk =
df ◦k(x0)

dx
, k = 1, . . . , N .

For all N ∈ N let AN the Jacobian matrix of f oN in x0 and assume that AN has

n real eigenvalues ΛN
1 ,Λ

N
2 , . . . ,Λ

N
n ordered in such a way that ΛN

1 ≥ ΛN
2 . . . ≥ ΛN

n .

De�nition 1.40 (Lyapunov exponents). The real numbers λ1, λ2, . . . , λn de�ned by

λi = lim
N→∞

1

N
log2(ΛN

i ) (1.72)

are called Lyapunov exponents.

Remark 1.16. Notice that if we consider the trajectories departing from x0 and y0,

then we have

yN − xN = f oN(y0)− f oN(x0) ' AN(y0 − x0) (1.73)

Therefore the leading Lyapunov exponent is the rate at which nearby trajectories

diverge (see for example [171]), [50]). This indicates how fast predictability of the

system is lost. For this reason Lyapunov exponents are often used as a measure of

chaos.

De�nition 1.41 (Lyapunov spectrum). The set of all Lyapunov exponents is called

the Lyapunov spectrum and the sign of the Lyapunov exponents determines whether

stretching and contracting occur in a dynamical system.

Example 1.12. Let us consider the Logistic Map with parameter µ = 2.5. The

corresponding �xed point is x∗2 = 0.6 and the product of derivatives in 0.6 is
∏

=
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0.5N . The Jacobian is simply the derivative therefore ΛN = 0.5N . The unique

Lyapunov exponent is λ = log2(0.5N)/N =
N

N
log2

1

2
= − log2(2) = −1 which means

that the orbit rapidly converges to the �xed point. In Figure 1-9 are listed some

Lyapunov exponents of the Logistic Map while in Figure 1-10 the Logistic Map and

the Lyapunov exponents are plotted versus the µ parameter.

Figure 1-9: Lyapunov exponents of the Logistic Map from H. W. Lorenz [113].

1.9 Measure of an attractor

The calculation of the dimension of chaotic attractors can be based on: 1) the geo-

metry of the attractor) 2) information (e.g. the frequency with which a trajectory

visits various parts of the attractor), 3) the dynamic properties of the attractor [73].

1.9.1 Geometry of the attractor

Let us de�ne Br(u) as the open ball centred in u and with radius r as follows

Br(u) = {x ∈ Rn| |x− u| < r} (1.74)
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Figure 1-10: Figure on top: Logistic Map versus µ. Figure below: Lyapunov expo-
nents versus µ.

De�nition 1.42 (Box-counting dimension). Let us take the minimum set of balls of

radius ε that can cover the attractor and let us denote N(ε) the minimum number

of balls needed. The box-counting dimension is

DBC = lim sup
ε→0

logN(ε)

log(1/ε)
(1.75)

Example 1.13. DBC is 1 for a line, 2 for an area and
log 3

log 2
for the Sierpinski triangle

graphically represented in Fig. 1-11.

Non-uniform open balls of radius less than < ε can be used to cover the attractor

instead of using balls of the same radius. We start by de�ning a metric and then we

show the corresponding measure.
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Figure 1-11: Sierpinski triangle. Ref. Devaney [53].

De�nition 1.43 (Hausdor� measure). Let us consider a compact set X ⊂ Rn; for

each real number d ≥ 0, we de�ne the d-dimensional Hausdor� measure of X

Hd(X) = lim
ε→0

inf
(ui), (ri)

∞∑
i=1

rdi (1.76)

where the in�mum is taken on the set of the sequences (ui) of points of X and of

positive numbers (ri) such that

X ⊂
∞⋃
i=1

Bri(ui) and ri < ε for all i. (1.77)

De�nition 1.44 (Hausdor� dimension). The Hausdor� dimension of a compact set

X is

DH(X) = inf
{
d > 0 : Hd(X) = 0

}
(1.78)

Remark 1.17. The Hausdor� dimension for many types of sets are listed in [3]. For

example the set of periodic points of the Logistic Map, with µ = µc (see Sec. 1.4.2),

has Hausdor� dimension 0.538.

De�nition 1.45 (Fractal dimension). An object is said to have a fractal dimension

if its dimension is a noninteger number.
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De�nition 1.46 (Strange attractor). Strange attractors are attractors speci�c to

chaotic systems that possess the following properties:

• They attract trajectories (at least those that start from points close to them).

• They are of the SDIC type, i.e. if ones takes a pair of initial points close to each

other, if the trajectories they originate are attracted by the strange attractor,

they will diverge more and more with the passage of time.

• Their dimension is fractal.

Remark 1.18. When the attractor of a dynamical system is a small non-integer num-

ber, there is an indication that the attractor is strange[113].

1.9.2 Measures of information

The box-counting dimension of Def. 1.42, may be di�cult to compute. A di�entent

and easier to compute fractal dimension can given, in particular, tor the orbit of a

dynamical system [11].

Correlation

De�nition 1.47 (Heaviside function). The Heaviside or step function is de�ned as

follows

H(y) =

1 if y > 0

0 otherwise

(1.79)

De�nition 1.48 (Correlation integral [113]). The correlation integral is a spatial

correlation measure aiming to measure the degree of 'kinship' between two di�erent
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points on the (strange) attractor. This integral is de�ned for m sub-series of the

orbit γ as

C(r) = lim
N→∞

1

N2

N∑
i,j=m

H
(
r− ‖[m] x̄

i
m −[m] x̄

j
m ‖
)

with i 6= j, r > 0 (1.80)

with [m]x̄
i
m as de�ned in 1.6.

An estimator of the correlation integral is the correlation sum.

De�nition 1.49 (Correlation function [11]). Let γ = {x1, x2, . . . } be an orbit of the

map f on Rn. Given r > 0, we de�ne the correlation function C(r) as

Cγ(r) = lim
N→+∞

1

N2

N∑
i,j=1

H(r − |xi − xj|) (1.81)

Hence C(r) is approximately the proportion of pairs of orbit points having distance

less than r.

Remark 1.19. Clearly Cγ(r) increases from 0 to 1 as r increases from 0 to +∞.

De�nition 1.50 (Correlation dimension [73] [75]). The correlation dimension is

de�ned as

DC(γ) = lim
r→0

log(Cγ(r))

log(r)
, (1.82)

if such a limit exists. For this reason if DC(γ) = d, for r > 0 "small", one has that

Cγ(r) ≈ rd .

Remark 1.20. It can be shown (see [156]) that the correlation dimension de�ned in

Eq. (1.82), is an upper bound of the Hausdor� dimension.
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Entropy

Another indicator of the amount of information produced on an attractor is the

Kolmogorov-Sinai (KS) entropy (or just Kolmogorov entropy) and it is a useful

indicator of chaos. In fact it has been shown, (see for example Sivakumar Berndtsson

(2010) [171]), that the entropy value KS converges to a positive value when time

series are chaotic .

De�nition 1.51 (Kolmogorov-Sinai entropy [114]). Let us consider a time series

{xt}T1 and let us partition the phase space into hypercubes with side lengths ε and

denote the resulting n cubes by ci for i = 1, . . . , n (see Fig. 1-12). Let us start

with an initial value x(t1) and repeat the measurements at �xed points in time

(t1 + δ), (t1 + 2δ), . . . (T ). The joint probability that the trajectory starting at x(t1)

is in cube c1 at time (t1 + δ), in cube c2 at time (t1 + 2δ), . . . , and in cube cn at at

the �nal point (T ) is denoted by ρc1,c2,...cn .

Figure 1-12: A partition of the phase space in the plane with hypercubes. Source
H.W. Lorenz [114]

The Kolmogorov-Sinai entropy is then de�ned as

KS = − lim
ε→0

lim
T→∞

lim
δ→0

1

T δ

∑
c

ρc1,c2,...cn log ρc1,c2,...cn (1.83)
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De�nition 1.52 (An approximation of the Kolmogorov-Sinai entropy). Since Eq.

(1.83) is di�cult to compute Grassberger and Procaccia [74] suggested to approxi-

mate it trough the correlation integral. In particular, denote with Cm(ε) the correla-

tion integral of a time series with embedding dimension m. Thus the approximation

of the Kolmogorov-Sinai entropy is

KS2 = lim
m→∞

lim
ε→0

1

δ
log

Cm(ε)

Cm+1(ε)
(1.84)

Remark 1.21. It was shown by Grassberger and Procaccia (1983) [74] that KS2 is a

good approximation of the Kolmogorov-Sinai entropy and that KS2 ≤ KS.

Remark 1.22. According to the Pesin's theorem [149] the sum of all the positive

Lyapunov exponents gives an estimate of the Kolmogorov�Sinai entropy. So, ifKS >

0, then the biggest Lyapunov exponent is bigger than zero and the system is chaotic,

i.e. by "increasing the embedding dimension the Kolmogorov entropy approaches a

�nite and positive value" [113].

In order to deal with noise, Jayawardena et al. (2010)[89] have presented a

modi�ed KS entropy that is closer to the entropy of the nonlinear system calculated

by the Lyapunov spectrum than the general correlation entropy and that is more

robust to noise than the KS correlation entropy.

De�nition 1.53 (Modi�ed correlation entropy (MCE) - Jayawardena et al. [89] ).

Given the correlation sum computed for two values of the embedding dimension e.g.

m and m + 2, the modi�ed correlation entropy is

KS3 = lim
m→∞

lim
ε→0

1

2δ
log

Cm(ε)

Cm+2(ε)
+

1

2δ
log

m− d logCm(ε)

d log ε

m−DC

. (1.85)
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Chapter 2

Signal analysis: Spectral analysis,

Recurrence Plot and RQA measures

2.1 Spectral analysis

De�nition 2.1 (Frequency). The frequency ν is the number of occurrences of a

repeating event or oscillation per unit of time. Therefore if an event is periodic of

period T then

ν =
1

T
. (2.1)

Frequency is measured in Hertz (Hz) (i.e. in cycles per second, cps). Alternatively

ω = 2πv denotes the angular frequency.

De�nition 2.2 (Spectral analysis). The analysis of a signal in terms of a spectrum

of frequencies or related quantities such as energies, eigenvalues, etc. is called spectral

analysis.

De�nition 2.3 (Phase). Let x(t) be a time series or a periodic signal and T be its
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period that is, the smallest positive real number such that

x(t+ T ) = x(t) ∀ t. (2.2)

Then the phase of x(t) with respect to the initial time t0 is

ϕ(t) = 2π

[[
t− t0
T

]]
(2.3)

where [[ · ]] denotes the fractional part of a real number.

A sinusoid can be represented mathematically by the Euler's formula, i.e. as the

sum of two complex-valued functions:

A · cos(ωt+ θ) = A · e
i(ωt+θ) + e−i(ωt+θ)

2
, (2.4)

where i is the imaginary unit, A the amplitude (i.e. the maximum absolute height

of the curve), ω the frequency (i.e. how rapidly the function oscillates), θ the phase

(i.e. the starting point, in angle degrees, for the cosine wave).

The frequency of the wave measured in Hz is ω/2π or can be denoted as:

A · cos(ωt+ θ) = Re{A · ei(ωt+θ)} (2.5)

with Re{·} meaning the real part.

In fact

Re{A · ei(ωt+θ)} = Re{A · cos(ωt+ θ) + iA · sin(ωt+ θ)} = A · cos(ωt+ θ). (2.6)

De�nition 2.4 (Phasor). Given a sinusoidal signal represented in the time-domain
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form as

v(t) = A · cos(ωt+ θ), (2.7)

the phasor is the corresponding representation in the frequency-domain form

V (iω) = A · eiθ = A∠θ (2.8)

Therefore a phasor is a "complex number, expressed in polar form, consisting of a

magnitude equal to the peak amplitude of the sinusoidal signal and a phase angle

equal to the phase shift of the sinusoidal signal referenced to a cosine signal" [155].

De�nition 2.5 (Fourier transform). The Fourier transform of a Lebesgue integrable

function f : R→ C is

f̂(ξ) =

∫ ∞
−∞

f(x) e−2πixξ dx, (2.9)

for any real number ξ.

Remark 2.1 (Fourier transform). The Fourier transform is called a representation of

the function, in terms of frequency instead of time; thus, it is a frequency domain

representation. It is invertible in the sense that f̂(ξ) can be taken back to f(x)

therefore, linear operations that could be performed in the time domain have coun-

terparts that can often be performed more easily in the frequency domain. Frequency

analysis also simpli�es the understanding and interpretation of the e�ects of various

time-domain operations, both linear and non-linear. For instance, only non-linear or

time-variant operations can create new frequencies in the frequency spectrum.

Remark 2.2 (Fourier transform). The Fourier transform, applied to a given complex

function de�ned over the real line, returns a frequency spectrum containing all infor-

mation of the original signal. For this reason the original function can be completely
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reconstructed through the inverse Fourier transform. However, in order to do so,

it is required the preservation of both the amplitude and phase of each frequency

component.

De�nition 2.6 (Energy spectral density). Energy spectral density of a continuous-

time signal x(t), describes how the energy of a signal or a time series is distributed

with frequency and it is denoted as Es (unit
2 per second)

Es =

∫ ∞
−∞
|x(t)|2dt =

∫ ∞
−∞
|x̂(f)|2 df (2.10)

where

x̂(f) =

∫ ∞
−∞

e−2πiftx(t) dt, (2.11)

is the Fourier transform of the signal and f is the frequency. If the signal is discrete

energy is de�ned as

Es =
∞∑

n=−∞

|x(n)|2 (2.12)

De�nition 2.7 (Average power). Given a signal x(t) the average power P over all

time is:

P = lim
T→∞

1

T

∫ T

0

|x(t)|2 dt. (2.13)

Remark 2.3. A stationary process, may have a �nite power but an in�nite energy.

This because, energy is the integral of power, and the stationary signal continues

over an in�nite time. For this reason in such cases we cannot use the energy spectral

density in Def. 2.6 but we need to introduce the concept of power spectral density.

De�nition 2.8 (Amplitude spectral density). In analyzing the frequency content

of the signal x(t), one might like to compute the Fourier transform. However, for

many signals of interest the Fourier transform does not formally exist. In such a case
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one can use a truncated Fourier transform where the signal is integrated only over a

�nite interval [0, T ] called as amplitude spectral density

x̂ω =
1√
T

∫ T

0

x(t)e−iωt dt. (2.14)

De�nition 2.9 (Power spectral density [154]). The power spectral density is

Sxx(ω) = lim
T→∞

E
[
|x̂(ω)|2

]
(2.15)

Remark 2.4 (Spectral density). The spectral density describes how the energy of a

continuous-time signal is distributed with frequency

De�nition 2.10 (Spectral density estimation). The spectral density is usually esti-

mated using Fourier transform methods (such as the Welch method) which consist of

"sectioning the record, taking modi�ed periodograms of these sections, and averaging

these modi�ed periodograms"[188].

Remark 2.5 (Power spectrum). The phasor contains amplitude and phase in polar

coordinates. Squared amplitude (or power) is referred to as a power spectrum (see

Fig. 2-1) and answers the question �How much of the signal is at a frequency"[48].

This because "periodic signals give peaks at a fundamental and its harmonics; quasi-

periodic signals give peaks at linear combinations of two or more irrationally related

frequencies (often giving the appearance of a main sequence and side-bands); and

chaotic dynamics give broad band components to the spectrum. Indeed this later

may be used as a criterion for identifying the dynamics as chaotic" [48].

De�nition 2.11 (Harmonic frequencies). Let us consider a signal x(t), the set of

possible frequencies ωj = j/n for j = 1, 2, . . . , n/2 in which it could be decomposed
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Figure 2-1: Power spectrum of ei(ω0t+θ) with frequency ω0 = 0.126π obtained from a
time series of length = 8 and with steps ∆ = 0.25. Source Ref. [48].

it is called set of harmonic frequencies.

x(t) =

n/2∑
j=1

[
β1

(
j

n

)
cos(2πωjt) + β2

(
j

n

)
sin(2πωjt)

]
(2.16)

Remark 2.6. In order to reconstruct the signal x(t) we need to estimate β1

(
j

n

)
and

β2

(
j

n

)
, 2 ∗ n/2 = n parameters by the Fourier transform

β1

(
j

n

)
=

n∑
t=1

n

2
cos(2πωjt) j = 1, 2, . . . , n/2
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β2

(
j

n

)
=

n∑
t=1

n

2
sin(2πωjt) j = 1, 2, . . . , n/2. (2.17)

De�nition 2.12 (Periodogram). For the signal x(t) the periodogram P is the plot

of

P

(
j

n

)
= β̂1

2

(
j

n

)
+ β̂2

2

(
j

n

)
(2.18)

versus j/n for j = 1, 2, . . . , n/2.

2.1.1 Power spectrum of the Logistic Map

As in H. W. Lorenz[114] let us assume that a time series xi; j = 1, . . . , n of a single

variable has been observed at equidistant points in time. The Fourier transform of

the series xi is de�ned as

xk =
1√
n

n∑
j=1

xj exp(−2πijk/n), k = 1, . . . , n (2.19)

It can be shown that the autocorrelation function, de�ned by

ψm =
1

n

n∑
j=1

xjxj+m (2.20)

can be written in terms of the Fourier transform:

ψm =
1

n

n∑
k=1

|xk|2 cos
(2πmk

n

)
. (2.21)

Inverting Eq. (2.21), we get

|xk|2 =
1

n

n∑
m=1

ψm cos
(2πmk

n

)
. (2.22)
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The graph obtained by plotting |xk|2 as a function of the frequency 2π/n is the

power spectrum.

Remark 2.7 (Power spectrum interpretation). A power spectrum displaying several

distinguishable peaks is a sign of quasi-periodic behaviour. Dominating "peaks re-

present the basic frequencies of the motion, while minor peaks can be explained as

linear combinations of the basic frequencies. If the underlying system is discrete, a

single peak corresponds to a period-2 cycle, the emergence of two additional peaks to

the left and to the right sides of the �rst peak, respectively, correspond to a period-4

cycle, 7 peaks correspond to a period-S cycle, etc."[114]. If peaks emerge in a conti-

nuum the time series is either random or chaotic. In Fig. 2-2 it shown the the power

spectrum of the Logistic Map for two di�erent values of the bifurcation parameter

µ.
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Figure 2-2: Power spectrum of the Logistic Map. Figure on the left displays regular
peaks corresponding to the period doubling bifurcations. Figure on the right shows
the power spectrum in the chaotic region where it is not possible to isolate dominating
frequencies. Source H. W. Lorenz [114].

2.2 Recurrence Plot

Let xi be the orbit of a dynamical system and let us consider the so called delayed

vectors denoted as

xi = (xi, xi+1, ..., xi+(m−1)). (2.23)

where m is the embedding dimension (see 1.33).

Fixed a ε > 0, for all coordinates (i, j) we can de�ne the function

Ri,j(ε) = H (ε− ‖ xi − xj ‖) i, j = 1, . . . , N. (2.24)

De�nition 2.13 (Recurrence Plot [55]). A Recurrence Plot (RP) is a matrix of dots

in a N × N square where the coordinates (i, j) are displayed if Ri,j(ε) = 1 i.e. the
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distance between xi and xj is less than ε.

Therefore the RP of xi ≈ xj shows, for a given t, the indices of times at which a

phase space trajectory visits the same area in the phase space. The diagonal is called

Line Of Identity (LOI) and vertical segments represent phase space trajectories which

remain in the same phase space region for some time, while diagonal lines represent

trajectories which run parallel for some time. Thus the RP enables us to investigate

the m-dimensional phase space trajectory through a two-dimensional representation

of its recurrences. Large scale structures in RP can be classi�ed as homogeneous,

periodic, drift and disrupted (see Fg. 2-3). Small scale structures (isolated dots,

diagonal lines and vertical/horizontal lines and rectangular regions) are the basis of

a quantitative analysis of the RPs.

Figure 2-3: Recurrence plots coupled with its time series. From left to right it is
shown the time series and the related RP for a white noise, a harmonic oscillation
with two frequencies, the Logistic Map and data from an auto-regressive process.
Source [5].
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2.3 Recurrence Quanti�cation Analysis

Recurrence is de�ned as the ability of a dynamical system to return to the proximity

of the initial point in phase space, and Recurrence Quanti�cation Analysis (RQA) was

developed to understand the behaviour of the phase space trajectory of dynamical

systems [119].

2.3.1 RQA measures

In the RQA the following measures can be de�ned:

S.1 Recurrence (REC), i.e. the density of recurrence points in a recurrence plot

(RP). This measure counts those pairs of points whose spacing is below a

prede�ned cut-o� distance. Its value is a function of the periodicity of the

systems: the more periodic the signal dynamics, the higher the REC.

S.2 Determinism (DET) measures the number of diagonals and indicates the dura-

tion of stable interactions which is represented, graphically, by the recurrence

points in the RP whose forming lines are parallel to the line of identity (LOI).

However it must be noted that high values of DET "might be an indication of

determinism in the studied system, but it is just a necessary condition, not a

su�cient one" (Marwan [117]).

S.3 Maximal deterministic line (MAXLINE) measures the length of the said line

found in the computation of DET. According to Eckmann et al. (1987) [55]

line lengths on RP are directly related to the inverse of the largest positive

Lyapunov exponent therefore small MAXLINE values are "indicative of rand-

omlike behavior". "In a purely periodic signal, lines tend to be very long, so
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MAXLINE is large" [122]. Last but not least, there is a positive probability

that white noise processes can have a high MAXLINE, although this is unlikely.

S.4 Entropy (ENT) is the Shannon entropy measured in bits because of the base-

2 logarithm (which are the bins over the diagonals). "ENT quanti�es the

distribution of the diagonal line lengths. The larger the variation in the lengths

of the diagonals, the more complex the deterministic structure of the RP" [122].

S.5 Trend (TREND) is the regression between the density of recurrence points

parallel to the LOI and its distance to the LOI. As TREND measures how

quickly a recurrence point departs from the main diagonal, it aims to detect

nonstationarity.

S.6 Laminarity (LAM), analogous to DET, measures the number of recurrence

points which form vertical lines and indicates the amount of laminar phases

(intermittency) in the system.

S.7 Trapping time (TT) measures the average length of the vertical lines, therefore

showing how long the system remains in a speci�c state.

Remark 2.8. With regard to the RP, points on the LOI are excluded from the mea-

sures S.1, S.2 and S.3 because they are trivially recurrent. REC, DET, ENT, MAX-

LINE and TREND are sensitive to parallel trajectories along di�erent segments of

the time series. LAM and TT are able to �nd chaos-chaos transitions. The ratio of

determinism is represented by the lengths of diagonal lines.

2.3.2 RQE correlation index

We start from the de�nition of a rolling window because, as mentioned in Webber,

[119] "one of the most useful applications of recurrence quanti�cations is to examine
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long time series of data using a small moving window traversing the data. For

example, in retrospective studies it is possible to study subtle shifts in dynamical

properties just before a large event occurs".

De�nition 2.14 (Rolling window). Let us set I = {1, . . . , n} ⊆ N and, for each

(k, i) ∈ N∗ × N∗ with k < n and i ≤ n− k + 1.

A discrete time rolling or sliding window is

Ik,i = {i, . . . , i+ k − 1} (⊂ N) (2.25)

where k and i are, respectively, the size and the window's index.

Remark 2.9. It can be noted that the number of windows of size k, as de�ned in Eq.

(2.25), is q = n− k + 1(≥ 2).

De�nition 2.15 (Recurrence quanti�cation epoch [198]). When a time series is

divided into a series of windows or epochs of smaller length, the resulting RQA on

those multiple sub-series it is called Recurrence Quanti�cation Epoch (RQE).

Remark 2.10. When performing the RQE it can happen that some windows may

overlap. For example Webber [186] partitioned a time series of 227,957 points in

shorter windows (or epochs), each 1.024 seconds long and "adjacent windows were

o�set by 256 points (75% overlap), �xing the time resolution to 256 ms".

De�nition 2.16 (Sampling). For each (k, i, l) ∈ N∗ × N∗ × N∗ we denote Slk,i the

l-th RQA measure of the the epoch

Sk,i = {St | t ∈ Ik,i}. (2.26)
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De�nition 2.17 (RQE correlation index). For each l 6= m, we denote ρl,m the

Spearman's correlation coe�cient between Slk,i and S
m
k,i.

Therefore there are p =

(
L

2

)
pairs of correlations ρl,m and q × p pair of epoch

correlations ρl,mk,i so that the product

P ( RQE )k,i =
L∏

l,m=1
l 6=m

(1 + ρl,mk,i ) (2.27)

can be de�ned as the RQE correlation index for the rolling window Ik,i and it varies

between 0 and 2p.

De�nition 2.18 (RQE absolute correlation index). The product

Pabs( RQE )k,i =
L∏

l,m=1
l 6=m

(1 + |ρl,mk,i |) (2.28)

can be de�ned as the RQE absolute correlation index for the rolling window Ik,i and

it varies between 1 and 2p.

2.3.3 RQE correlation index on a sample signal

In order to test whether the aforementioned correlation index can help to understand

the changes in a times series, we start with a known signal. Let us simulate a random

signal distributed as ε ∼ N (µ, σ2) and let us change its mean and variance as in

Table 2.1 and shown in Fig. 2-4.

Now let us apply the RQA on both the original and the transformed signal by

using the parameters in Table 2.2.

The resulting correlation for the original signal and the �nal signal are displayed
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Table 2.1: Perturbed random signal according to a given µ and σ2. For example
for the �rst interval, 100 points have been randomly generated from a N(0, 1) dis-
tribution. For the second interval, 40 points have been randomly generated from a
N(1, 1) distribution, and so on.

N. Interval µ σ2

1 0 100 0 1
2 101 140 1 1
3 141 200 1 4
4 201 280 4 4
5 281 300 4 6
6 301 400 -5 6
7 401 420 2 6
8 421 500 2 1
8 501 560 0 1
9 561 600 0 3
10 601 700 1 3

Table 2.2: RQA parameters of the perturbed signal.

Embedding 10
Radius 80
Line 5
Shift 1
Epoch 50
Distance Meandist, Euclidean
Numb. of epochs 642

in Figure 2-5 and Figure 2-6 respectively. It is worth noting that the RQE absolute

correlation (2.28) is able to detect 9 of the 10 intervals appearing in Table 2.1 (one

being clouded by the windowing �ltering).
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Figure 2-4: Clockwise: original sample signal N(0, 1), sample signal with changes in
mean, sample signal with changes in variance and resulting �nal signal with changed
mean and variance.
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Figure 2-5: Spearman correlations (below) versus the original test signal (above).
RQE absolute correlation (in blue) is displayed next to correlation (red). Di�erence in
the x-axis numbering between the picture above and below, is due to the windowing
mechanism.
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Figure 2-6: Spearman correlations (below) versus the �nal test signal (above). RQE
absolute correlation (in blue) is displayed next to correlation (red). See how the RQE
correlation calculated as in Equation 2.28 is closer than the other and it is able to
detect more �nely changes in the times series. Di�erence in the x-axis between the
picture above and below, is due to the windowing mechanism.

84



Part II

Non-linearities in economics
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Chapter 3

On business cycles and growth

In this Chapter we seek to �nd out why economics has been concerned with non-

linear dynamics Sec. 3.1, the role of the business cycle in economics Sec. 3.2, how

RQA can be of help in analysing business cycles Sec. 3.3 and growth Sec. 3.4.

3.1 Non-linearities in economics

The dynamic analysis of non-linear phenomena in economics dates back to 1887 with

the �rst cobweb model (see Fig. 3-1), in which demand and supply would adjust to

the market equilibrium with some time lag. Regularly recurring cycles were spotted

in the market prices [22] who found that producers base their current output on the

price they observe in the market during the previous year. This behaviour can be

found for example in agriculture because of the lag between planting and harvesting

(for the history of the model and the related theorem see Ezekiel [58]).

One of the main problems of the cobweb dynamic consisted in the complexity

of the analysis that it involved; in fact, even Keynes, in his General Theory [97],
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(a) Cobweb model, convergent case. Source
[1].

(b) Cobweb model, divergent case. Source [1].

Figure 3-1: Fluctuation of prices and quantities in the cobweb model.

did not venture into a dynamic analysis, but he limited himself to explaining why

the system headed towards a point of static equilibrium. Only some of those who

inherited his legacy such as Harrod, in modelling economic growth, tried to embed

the Keynesian analysis into a dynamic perspective so that equilibrium or imbalance

situations were generated endogenously (for more details see Part III).

3.2 Business cycles

3.2.1 Background and de�nition

The pioneering work of Burns and Mitchell (1946)[34] gives what is the considered

the classic de�nition of business cycles
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Business cycles are a type of �uctuation found in the aggregate economic

activity of nations that organize their work mainly in business enterprises:

a cycle consists of expansions occurring at about the same time in many

economic activities, followed by similarly general recessions, contractions,

and revivals which merge into the expansion phase of the next cycle.

This de�nition is useful here for:

1. the creation of composite leading, coincident, and lagging indexes based on the

consistent pattern of comovement among various variables over the business

cycle (e.g. see Shishkin [170]).

2. the identi�cation within the business cycles of separate phases or regimes.

Figure 3-2: Business cycle phases where recession (through) follows expansion (peak).

The National Bureau of Economic Research (NBER)[132] de�nes a recession as "a

signi�cant decline in economic activity spread across the economy, lasting more than
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a few months, normally visible in real GDP, real income, employment, industrial

production, and wholesale-retail sales. A recession begins just after the economy

reaches a peak of activity and ends as the economy reaches its trough. Between

trough and peak, the economy is in an expansion. Expansion is the normal state of

the economy; most recessions are brief and they have been rare in recent decades".

With regard to the cycle Schumpeter [168] mentioned four stages connecting

production, stock exchange, public con�dence, demand, interests rates and prices:

1. expansion (increase in production and prices while interests rates are relatively

low)

2. crisis (stock exchanges crash and multiple bankruptcies of �rms occur)

3. recession (drops in both prices and production and rise of interests rates)

4. recovery (stocks prices recover because of the fall in prices and incomes)

In addition Schumpeter suggested that each business cycle has its own typology

according to the periodicity, so that a number of cycles were named after their

discoverers (see Table 3.1, for a review refer to Korotayev and Sergey (2010)[98]).

Table 3.1: Business cycles taxonomy sorted by length. From left to right: type of
business cycle, name of the scholar who identi�ed it, year in which the cycle was
identi�ed, time span of the cycle.

Name Scholar First studied Length of cycle

Inventory cycle Kitchin 1923 From 3 to 5 years
Fixed investment cycle Juglar 1862 From 7 to 11 years
Demographic cycle Kuznets 1930 From 15 to 25 years
Technological cycle Kondratiev 1935 From 45 to 60 years

Fig. 3-2 depicts the four stages of a business cycle: (1) expansion ; (2) boom period

in which aggregate demand rises much more than aggregate output and this overheats
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the economy bringing it close to its production ceiling; (3) recession; (4) recovery

when economy restarts to grow after a through. The vertical distance between the

peak and the trough is called speci�c cycle amplitude.

3.2.2 Literature and investigation on the root causes of busi-

ness cycles

Theories on business cycles (for a review see Hillinger (1992)[83], Zarnowitz (1992)[197],

Mullineux (1990)[130] and Cooley (1995)[46]) study volatility of economies and may

di�er from each other depending on:

1. Their ability to explain cycles without having to rely on outside forces/shocks.

They are called endogenous. By contrast exogenous business cycle theories

require the intervention of the above mentioned forces/shocks.

2. The assumption of a general equilibrium framework (neoclassical theories) or

the assumption of market imperfections and/or disequilibrium (Keynesian the-

ories).

3. The possibility of attributing cycles to real shocks or monetary shocks, or

excess/lack investment or consumption.

4. The derivation of business cycles starting from the interaction of individuals

(micro-funded theories) or by considering the aggregate variables as a whole

(macro-funded theories).

Until the Keynesian revolution, classical and neoclassical explanations were the

mainstream of economic cycles; but after that revolution neoclassical macroecono-

mics was largely spurn. Starting from 1980s there has been a resurgence of neo-
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classical approaches, the real business cycle (RBC) theory being the most important

of them (see the seminal paper of Kydland and Prescott (1982) [104]). The main

assumption of the neoclassical approach, is that individuals and �rms respond op-

timally all the time. Hence public intervention, at the best, has no e�ect on the

economy whereas most of the time has a negative e�ect. Even slumps represent,

given the situation, the optimal solution. The idea behind this approach is that

governments should focus on long-term growth instead of focussing on stabilization.

RBC di�ers in this way from Keynesian economics and monetarism. These two other

approaches relate recessions to some failure of the market. On the contrary, RBC

explains business cycle �uctuations with real shocks such as innovations. The success

of RBC relies on the fact that it can mimic many measurable business cycle proper-

ties. This notwithstanding RBC models still have some issues notably in interpreting

the Solow "residuals", i.e. the part of growth which is not explained by capital accu-

mulation and labour force expansion. Arguably Solow de�ned the aforementioned

residuals as "a measure of our ignorance" whereas RBC describes them as the part

of growth which is explained by technical progress.

Hence the identi�cation of the root cause of economic �uctuations varies between

schools of thoughts. The Keynesian/post-Keynesian view is that behind the cycles

aggregate demand is inherently unstable therefore, unless governed, it can reach levels

below or above full employment. This interpretation created a lively debate among

econometricians that had to model and measure economies. For example Timbergen

(1939)[181], (1951)[182] and Frisch (1933)[67] who maintained that the economy is

intrinsically stable and cycles are the e�ect of exogenous shocks. In particular Tim-

bergen, following Slutsky (1927), (1937)[172], modelled the "economy as a system

of stochastically disturbed di�erence equations, the parameters of which could be

estimated from actual time series"[116]. Similarly, according to Frisch, cycles are
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the e�ect of delays in new capital, spurred by the increased consumer demand. This

would cause recurrent but temporary oscillations in output absorbed in two or three

cycles. Schumpeter identi�ed in innovation and creative destruction the factors that

deviate the economy from Walrasian equilibrium: "capitalism is by nature a form

or method of economic change and not only never is but never can be stationary"

[167]. In this context "imperfections" must be intended as those perturbations of the

Walras equilibrium that lead to booms because of high pro�ts made by frontrunners.

This ends when more and more entrepreneurs copy the strategy of the pioneer �rms

and, therefore, a greater competition depresses the business margins up to forcing

foreclosures. At this point a depression starts and the market is cleaned of unpro�-

table �rms. This equilibrium is maintained until technological or other innovations

lay the basis for another expansion. Phelps (1969) [151] and Lucas (1972) [115]

explain business cycles on the ground of incomplete information, given that "key

economic decisions on pricing, investment or production are often made on the basis

of incomplete knowledge of constantly changing aggregate economic conditions. As

a result, decisions tend to respond slowly to changes in economic fundamentals, and

small or temporary economic shocks may have large and long-lasting e�ects on ma-

croeconomic aggregates" [81]. The so-called Austrian School [184] [59] claims that

a sustained period of low interest rates leads to an excessive creation of credit and

then to an unstable imbalance between savings and investments. From this point

of view a recession (or "credit crunch") is caused by the need of re-establishing the

equilibrium. In other terms, monetary shocks in�uence "relative prices, such as the

term structure of interest rates, systematically altering pro�t rates across economic

sectors. Resource use responds to those changes, generating a cyclical pattern of

real income. The divergence of the interest rate structure, from the previous and

unchanged time preferences, means that the expansion is unsustainable and must
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end in recession" [6]. The RBC theory [104] [46], which was the mainstream view

until the �nancial crisis of 2008, assumes that markets are perfect. This implies

that business cycle, in itself, is the e�cient response to exogenous changes in the

real economy. Other theories such as the so-called "debt de�ation" [64] [124] [23],

which gained momentum after 2008, contends that over-indebtedness may lead to

liquidations, fall of bank assets, credit crunch and �nally to a recession.

Given the di�erent interpretations of business cycles, implications in terms of

control of undesired consequences such as unemployment, in�ation, etc. di�er too.

From a control theory [196] point of view the economy may be seen as a dynamical

system in which the state is limitedly known and the observations contain noise,

or which is chaotic by nature [25], [195], [174], [146] [136]. Therefore, to it applies

the research on controlling stochastic dynamic systems, e.g. Kushner (1967)[103],

Guo and Wang (2010)[77], Fleming and Rishel (2012)[65], as well as the research on

controlling chaotic dynamical systems, e.g. Romieras et al. (1992)[157], Grebogi and

Laib (1997)[76], Calvo and Cartwright (1998)[37], Pettini (2005)[150]. More recently

noise, coupled with incomplete information, has been approached in terms of static

(Bashkirtseva et al. (2017)[19], Bashkirtseva (2017)[18]) or dynamic (Bashkirtseva

(2017c)[17]) feedback regulators. However the way in which this can be empirically

applied in terms of economic policy has not been resolved yet.

3.2.3 Detecting non-linearities in data

To make the matter even more complicated, economic time series are short because

of low sampling frequency. For example, data such as the aggregate capital stock

is available only on annual basis, "some prewar U.S. output and price series are

only available for benchmark years which may be a decade apart" [54]. For this
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reason it is a common practice interpolating data to increase data frequency. Ho-

wever, as explained by Dezhbakhsh and Levy (1994)[54], conventional methods are

not able to detect stationary processes because "segmented linear interpolation of a

stationary process leads to varying moments that may be viewed as an indication

of non-stationarity in a conventional sense". Therefore the suggestion is to analyse

those "series in the context of periodic time-series models rather than by conventio-

nal methods" [54]. To date there are di�erent approaches to �nding the periodicity

of a signal. Time-frequency representation and wavelet transformation, spectral re-

presentation, Fourier analysis, etc. On the other hand, RQA has proved its ability

in detecting non-linear behaviour or chaos in several �elds (e.g. acoustic emission

[153]) as well as in discovering feasible precursors of catastrophic events triggered by

Earth's crust phenomena [199].

In fact the ability of RQA to predict catastrophic changes is because RQA is

based upon the change in correlation structure of the observed phenomenon that is

known to precede the actual event in many di�erent systems ranging from physiology

and genetics to economics.

Gorban et al. (2010)[71] studied the behaviour of systems approaching a critical

transition by many experiments and observations of groups of humans, mice, trees,

grassy plants, and �nancial time series. They observed that even before obvious

symptoms of crisis appear, correlation increases, and, at the same time, variance

(and volatility) increases too. More speci�cally, with regard to �nance, their case

study of the thirty largest companies from the UK stock market within the period

2006-2008 supports the hypothesis of increasing correlations during a crisis and,

therefore, that correlation (or equivalently determinism) increases when the market

goes down (respectively decreases when it recovers). Along this line Orlando and

Zimatore (2017)[144] de�ned the so called RQE correlation index and they have
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shown, on a test signal, that it is able to detect regimes' changes. Moreover, by

computing the RQE correlation index on USA GDP data [134], they have found

that it may help in anticipating recessions [145].

3.3 Recurrence quanti�cation analysis on the busi-

ness cycles

As already mentioned there is a debate in the literature whether the dynamics of an

economy is chaotic or stochastic, and whether shocks are endogenous or exogenous

(e.g. RBC theory, Austrian School, Neo-Keynesian economics, etc.). Most studies

concentrated on �nancial time series (e.g. stock indices) because of accessibility of

data, frequency and length and found co-existence of stochastic and chaotic behavi-

our [120], [121]. This thesis, with an extensive analysis on macroeconomic data (i.e.

consumption, investment, capital and income), aims to investigate two issues. The

�rst is the applications of recurrence plots, and their quantitative description provi-

ded by RQA, to dynamical regimes of business time series. The second is whether

RQA can give some indications on the nature of trade cycles as well as on the nature

of macroeconomic variables and the economy.

RQA applications to economics and �nance are not widespread, and started later

than in other �elds [198], [49], [95], [41], [126]. The interest in RQA by economists

stemmed from the world �nancial crisis of 2007-2010 which was not anticipated by

a large part of economic literature [102]. In fact, the majority of economists, basing

their models on standard equilibrium, implicitly assumed that "economies are inhe-

rently stable and that they only temporarily get o� track" Colander et al (2009)[44].

Moreover, the paradigm of the rational representative agent, "largely ignored" [44]
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the risk of new �nancial products and of the interconnections of markets. Therefore

RQA applied to economics was seen as a potential "tool for the revealing, moni-

toring, analysing and precursoring of �nancial bubbles, crises and crashes" Piskun

and Piskun (2011)[152]. Fabretti and Ausloos (2005)[60] found examples in �nancial

markets where RQA could detect a di�erence in state and recognize the critical re-

gime such that a warning before a crash (in their case 3 months in advance) can be

given. Along this line Addo et al. (2013)[8], looking for signals anticipating �nan-

cial crises, highlights "the usefulness of recurrence plots in identifying, dating and

explaining �nancial bubbles and crisis" and claims that the �ndings from the data

analysis with recurrence plots "shows that these plots are robust to extreme values,

non stationarity and to the sample; are replicable and transparent; are adaptive to

di�erent time series and �nally, can provide better chronology of �nancial cycles since

it avoids revision of crisis dates through time". Strozzi et al. (2007b)[177] studying

the Nordic Spot Electricity Market Data con�rm that determinism and laminarity

detect "changes more clearly than standard deviation and then they provide an alter-

native measure of volatility". Moloney et al. (2010)[126] investigating arbitrage-free

parity theory for the Credit Default Swaps (CDS) and bond markets questioned the

assumption of a stable equilibrium "which is central to the arbitrage-free parity the-

ory". In addition they found evidence of deterministic structures in the data and

that "market is being trapped at certain levels" where "equivalence being trapped

for a period of time is a characteristic of a nonlinear system (not a periodic or a

random system)".
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3.4 Growth

As mentioned by Salvadori (2003) [162] "economic growth was central in classical

political economy from Adam Smith to David Ricardo, and then in its `critique' by

Karl Marx, but moved to the periphery during the so-called `marginal revolution'.

John von Neumann's growth model and Roy Harrod's attempt to generalise Keyne-

sian principle of e�ective demand to the long-run re-ignited interest in growth theory.

Following the publication of papers by Robert Solow and Nicholas Kaldor in the mid-

1950s, growth theory became one of the central topics of the economics profession

until well into the early 1970s. After a decade of dormancy, since the mid-1980s,

economic growth has once again become a central topic in economic theorising. The

recent theory is called `endogenous growth theory', since according to it the growth

rate is determined from within the model and is not given as an exogenous variable".

While Kaldor's theory in�uenced the academic debate on business cycles, Har-

rod inspired Solow who, with his seminal paper �A Contribution to the Theory of

Economic Growth� (1956) [173], set the basis of modern growth theory. However,

recent research based on a thorough reading of Harrod's theory [24, 78], challenges

Solow's interpretation �which ultimately dominated the profession's view of Harrod�

[78]. The idea that the Harrod model �implied a tendency toward progressive col-

lapse of the economy� and that he invoked a �xed-coe�cients production function�

has �little to do with the problem of long-run growth as Solow understood it, but

instead addressed medium-run �uctuations, the �inherent instability� of economies�

[78].

There are several reasons why in this thesis we are dealing with the Harrod's

model. First of all, Harrod, through Solow's interpretation, contributed to the foun-

dation of modern growth theory. Secondly, the Harrod model provides a dynamic
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framework and some guidelines to policy-makers in terms of supply-side policies. In

fact they should consider the combination of investment, technological change, popu-

lation growth, unemployment and aggregate demand. Another reason is that, in his

framework, the warranted rate of growth is not a single moving equilibrium, but a

�highly unstable� one. This is called Harrod's knife-edge instability or the Instability

Principle.

Similarly but coming from a di�erent angle (i.e. static analysis and microecono-

mic foundations of macroeconomic dynamics), Leijonhufvud de�nes the notion of a

stability corridor as a time-path in which economic activities "are reasonably well

coordinated" [108]. Moreover the "the system is likely to behave di�erently for large

than for moderate displacements from the "full coordination" time-path. Within

some range from the path (referred to as "the corridor" for brevity), the system's

homeostatic mechanisms work well, and deviation-counteracting tendencies incre-

ase in strength. Outside that range these tendencies become weaker as the system

becomes increasingly subject to "e�ective demand failures". If the system is displa-

ced su�ciently "far out", the forces tending to bring it back may, on balance, be

so weak and sluggish that for all practical purposes he Keynesian "unemployment

equilibrium" model is as sensible a representation of its state as economic statics

will allow. Inside the corridor, multiplier-repercussions are weak and dominated by

neoclassical market adjustments; outside the corridor, they should be strong enough

for e�ects of shocks to the prevailing state to be endogenously ampli�ed. Up to a

point, multiplier-coe�cients are expected to increase with distance from the ideal

path. Within the corridor, the presumption is in favor of "monetarist" policy pres-

criptions, outside of it in favor of "�scalist". Finally, although within the corridor

market forces will be acting in the direction of clearing markets, institutional obsta-

cles of the type familiar from the conventional Keynesian literature may, of course,

99



intervene to make them ine�ective at some point. Thus, a combination of mono-

polistic wage-setting in unionized occupations and legal minimum-wage restrictions

could obviously cut the automatic adjustment process short before "equilibrium em-

ployment" is reached"[108].

Both views, macroeconomic and dynamic (by Harrod) and static and micro-

founded (by Leijonhufvud) converge the idea of "existence of thresholds at the start

of the mechanisms that are at work" [105]. Therefore the idea of dynamically unstable

multiple equilibria or the alternative Harrod's suggestion of a Leijonhufvud's �corri-

dor stability� in our opinion is worth being explored. Especially because, whereas in

the 1970s and the 1980s unemployment and stag�ation discarded those theories, in

the 20th century �in the leading Western economies there have been prolonged peri-

ods when more saving would have been bene�cial, and others with every appearance

of inadequate e�ective demand� [57]. As the Harrod's model is one of the few able

to predict that, �it still deserves serious attention� [57].
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Chapter 4

The Kaldor model

In this Chapter we provide some background related to the Keynes multiplier and

the multiplier�accelerator model (Sec. 4.1.1), which is instrumental to introduction

of the literature on the Kaldor model (Sec. 4.1.2). The illustration of the Kaldor

model as described by the author concludes (Sec. 4.2).

4.1 Background

4.1.1 Keynes multiplier and Hansen�Samuelson model

According to Keynes, income Y depends on a parameter m (called Keynes multi-

plier) times investment I. This multiplier is derived from the marginal propensity

to consume ζ. The dynamic relationship between Y and I is

Yt = mIt =
1

(1− ζ)
It. (4.1)

An explanation of business cycles is the positive (resp. negative) acceleration due
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to the e�ect of income variation on capital accumulation. This model is based on

the Keynesian approach and it was �rst described by P. Samuelson, who credited H.

Hansen for the inspiration [163]. The resulting "multiplier�accelerator" model (also

known as Hansen�Samuelson model) is

Yt = 1 + ζ(1 + β)Yt−1 − ζβYt−2 (4.2)

with β representing the sensitivity of investments to changes of consumption C

It = β[Ct − Ct−1]. (4.3)

The second order linear di�erence Eq. (4.2) displays di�erent solutions depending

on the roots of the equation and on the relationship between the parameters [130].

4.1.2 Literature on Kaldor business cycle model

Among economic models, one of the most fruitful applications in the �eld of chaotic

phenomena is the one worked out by Kaldor in 1940 for the business cycle [92].

The author's intention, contrary to the traditional Keynesian multiplier-accelerator

concept, was to explain from a macroeconomic viewpoint the fundamental reasons

for cyclical phenomena. However Kaldor did not formalize mathematically his model

but gave a qualitative description which prompted out authors to �rstly specify the

equations and, secondly, to �nd out under which conditions abnormal behaviour

could be produced or under which conditions bifurcations or even chaos could be

generated.

In his work Morishima (1959)[128] along with Yasui (1953)[194] and Ichimura

(1955)[85], [84], were the �rst in formalizing mathematically Kaldor's ideas and in-
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vestigating the existence, stability and uniqueness of limit cycles in a nonlinear trade

cycle model. Hicks (1950)[82] and Goodwin (1951)[70] furhter studied the model in

the form a system of second order, nonlinear, di�erential equations. In particular

Goodwin (1951) built his model on the imbalance between the actual and the de-

sired capital stock and found that without technological progress the equilibrium is

unstable and that the economy can oscillate inside a limit cycle. With technological

progress, instead, there is no equilibrium and recessions are shorter than expansions

(which is in line with the stylized facts on business cycles). Kalecki (1966)[94] sug-

gested to divide the investment process into three steps, the �rst being the decision,

the second the time needed for the production and the last the delivery of capital

goods. In such a way the dynamics of capital stock in the economy is described

by a non-linear di�erence-di�erential equation which exhibits a complex behaviour

(including chaos) and, as a result, oscillations of capital induce �uctuations of other

economic variables. Rose (1967)[158] introduced the Poincaré -Bendixson Theory for

two-dimensional autonomous system and Chiarella (1990)[42] modi�ed the Goodwin

model by introducing a model of monetary dynamics with an adaptive expectation

of in�ation. In this model the velocity of money circulation is a nonlinear function

of expected in�ation.

Thirty years after the original formulation, Chang and Smith (1971)[40] re-

analysed the model and they proved that:

• The necessary and su�cient conditions enunciated by Kaldor in order to deter-

mine that a cycle was established were neither necessary nor su�cient. Instead,

these conditions stressed that the onset of the cycle and its amplitude were sub-

ordinated to the values of the following parameters:
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� The velocity of adjustment α;

� The initial perturbations;

� The position of functions I and S with respect to each other (see Fig. 4-1

and 4-2).

• Some additional hypotheses to those adopted by Kaldor are necessary for a

cycle to arise. The above-mentioned hypotheses are conditions for the existence

of a point of stable equilibrium - an attractor - for each trajectory.

• Based on the hypothesis explained by them they were able to determine the

onset of a limit cycle by applying the Poincaré -Bendixson theorem.

Krawiec et al. (1999)[100], (2001)[101] introduced a time delay in their speci-

�cation of the Kaldor-Kalecki model. Their model admits a limit cycle. Moreover

the persistence of cycles in the linear approximation depends crucially on the delay

parameter and, additionally, on both the speed of adjustment and the initial distur-

bances. Finally they noticed that preserving the condition of a s-shaped investment

function is not necessary for creating a limit cycle if the mechanism of time delay

is introduced into the model. Finally Orlando (2016)[136], (2018)[137] formalized

a model in which the investment and consumption are represented by a hyperbolic

tangent instead of the usual periodic arctangent. Moreover he proved that his model

displays a chaotic behaviour.
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4.2 The Kaldor model

Let us to formalize the Kaldor model as follows:

Ẏt = α(It − St)

K̇t = It − δKt

(4.4)

where Yt, It, St, Kt de�nes respectively income, investment, saving and capital at time

t. In Eq. (4.4) α is the rate by which the output responds to excess investment I−S

and δ represents the depreciation rate of capital K.

In addition let us assume with Kaldor that

IY > 0, IK < 0,

SY > 0, SK > 0.

(4.5)

In order to explain the dynamics of I and S, Kaldor suggested that I = I(Y,K)

and S = S(Y,K) are non-linear functions of income and capital. This is graphically

shown in Fig. 4-1 where the curves I(Y ) and S(Y ) cross each other in three points

A,B and C. Those points correspond to three di�erent equilibrium level as de�ned

by the equality I = S.

If production is low at YA, that is the level of income corresponding to the equi-

librium A, there will be an excess of capacity. This will absorb the increase of

aggregate demand and, as consequence, there will be no or little investment. In the

case in which the economy is running high, e.g. Y = YC , the capacity is saturated,

hence the cost of an additional unit of capital is increasing. On the other side the

yield of investments is decreasing as the more rewarding initiatives have been already
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Figure 4-1: Investment (blue curve) and saving (green curve) versus income (x-axis).
Equilibrium is for the level of income corresponding to I = S. For example if income
lays between YB and YC , the imbalance between investment and saving pushes the
economy towards a higher level of income until when I = S in C.
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funded. This explains the non-linearity of investments.

Savings rates are assumed to be high for both low and high levels of output. The

reason is that for Y = YA income is almost completely consumed and families have

presumably depleted their �nances. For this reason an increase of income would be

likely to be directed to restore some savings. For Y = YC consumption is already

high hence additional income will be saved.

Given the shape of I, and S he income corresponding to the equilibrium is YA, YB

or YC . Whilst YA and YC are stable, YB is not (on the left savings exceeds investments

and on the right vice versa).

For Kaldor the business cycle is caused by capital accumulation. For example

let us assume that Y = YC and that I depends on K in such a way that
dI

dK
< 0.

In such a case the stock of capital increases and then the marginal productivity of

capital declines and so does the investments curve I.

When the production is high this brings down prices which implies that more

income can be saved. This
dS

dK
> 0 i.e. the savings curve shifts upwards.

This process has the e�ect to move down YC and up YB (see Fig. 4-2) and it will

continue until the two points will meet and the S and I curves will be tangent at that

point. To the left the ensuing point of equilibrium is for Y = YA which represents a

crash for the economy.
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Figure 4-2: Representation of investment I, and saving S - dynamic analysis: be-
cause of declining productivity investment shift downwards and the ensuing price's
reduction move saving upwards.
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Chapter 5

The Harrod's model

As mentioned in the Introduction, Sec. III, the objective of this thesis is twofold: to

provide a personal speci�cation of a business cycle model within the Kaldor-Kalecki

framework (see Chapter 6) and to choose a chaotic speci�cation of the Harrod-Domar

model [174] to prove that a) real data could be obtained by a suitable calibration of

model's parameters, b) the calibrated model con�rmed theoretical predictions [138].

In this Chapter we illustrate the aforementioned chaotic speci�cation of the Har-

rod's model that will be tested then in Chapter 8.

5.1 A mathematical speci�cation of the Harrod's

model

As already mentioned, Kaldor and Harrod laid down the basis for modern theory on

growth and cycles. In particular, Kaldor suggested that growth depends on income

distribution and that the shifts between wages and pro�ts determine the savings

ratio. Therefore equilibrium is achieved when Gn (the rate of growth required for a
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full employment) equates Gw (the warranted rate of growth). Keynes argued that

in the short run, through the multiplier, more demand (e.g., investments, public

spending, exports) translates into an increase in output. Harrod shares the same view

with regard to the short run but �notes that investment not only induces production

through the multiplier, but also simultaneously expands capacity. On this basis he

shows that investment is sustainable only if it is self-consistent, and for this to hold

it must follow a particular growth path which he calls the warranted path� [169].

In other terms, in Harrod's view, it is the discrepancy between the natural rate

of growth (Gn), the warranted rate of growth (Gw) and the actual one (G), that

generates instability. This instability could be lessened when the economy is open

to foreign trades.

5.1.1 The Harrod knife-edge

According to Harrod, �for a country in which Gw is tending to exceed Gn, there is

by consequence a chronic tendency to depression (because G cannot exceed Gn), a

positive value of the balance of trade expressed as a fraction of income (i.e., the net

export rate) may be bene�cial� [79]. Therefore, Harrod �predicts that incompati-

bilities between long-term saving and investment opportunity are all but certain to

cause prolonged unemployment (which will be structural where Gn exceeds Gw and

demand de�cient where Gw exceeds Gn) with persistent in�ation in addition where-

ver long-term saving is inadequate for the natural rate of growth� [57]. In terms of

public policy `the di�culties may be too great to be dealt with by a mere anti-cycle

policy� [80] hence government should increase public investment when Gw > Gn or,

conversely, seek to generate more long term savings when Gw < Gn.
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Figure 5-1: The Harrod knife-edge or unstable equilibrium. When G = Gn = Gw

there is sustainable full employment. A departure from that may lead to recession
(G′) or booming periods (G′).

Figure 5-2: Supply side policy to raise the natural growth path. When G = Gw < Gn

there is a permanent unemployment equilibrium. Policy-makers may employ supply
side policies in order to increase both: the actual growth and G and the natural
growth Gn.
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5.1.2 Discussion

The model we are testing [174] claims that Harrod's speculation holds true only for a

speci�c set of parameters and with positive net exports coupled with competitiveness

in foreign markets. In those speci�c conditions regular cycles in the long period can

be achieved. In the following we list some variables/equations that will be used in

the ensuing part where some assumptions will be made and new variables will be

identi�ed.

Table 5.1: List of variables in the Harrod model

Variable Description

Ij Ex-ante investment including both equipment and desired inventory stocks
I Ex-post investment including both equipment and e�ective inventory stocks
S Ex-post saving
E Exports
M Imports
X = E −M Balance of trade
Y E�ective demand
S/Y = Σ Share of income saved
x = X/Y Ratio of balance of trade to income (or simply the net export rate)
I/Y = Σ− x Share of income invested

G = Ẏ/Y Actual rate of growth of domestic income
Ye Expected demand

Cr = Ij/Ẏe Desired capital coe�cienta

C = Ij/Ẏ Actual capital coe�cientb

Gw = Ẏ e/Y Warranted expected rate of growth of aggregate demand
Gn Technical progress (rate of growth)
Gf Rate of growth of foreign demand
φ Sensitivity of the di�erence between actual and warranted relative changes of demand

a "The requirement for new capital divided by the increment of output to sustain which the new capital is required"[79].
b "The increase in the volume of goods of all kinds outstanding at the end over that outstanding at the beginning of
the period divided by the increment of production in the same period"[79].

As in [174] we assume that:

(A) The desired capital is an increasing function Φ of the di�erence between the

current and the expected change of demand i.e.,
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Cr = Φ

(
Ẏ − Ẏe
Y

)
= Φ (G−Gw) (5.1)

such that Φ > 0. So that, ex-post, at the equilibrium Cr = C∗, Ij = I,

Φ(0) = C∗ > 1, G = Gw (or equivalently Y = Ye ). Denoted φ > 1 as a reaction

parameter representing how sensitive are �rms to discrepancies between actual

and warranted relative changes of demand, the linearisation of ((5.1)), in G−Gw,

can be expressed as

Cr = Φ (G−Gw) = [C∗ + ϕ(G−Gw)] (5.2)

(B) According to Alexander [10], changes in the growth rate of income depends on

the di�erence between ex-ante and ex-post investments, that is

U = Ij − I = CrẎe − I, (5.3)

so that dividing by Y and considering that I/Y = (S−X)/Y = Σ−x, we have

that the relative gap u = U/Y can be written as

u = U/Y = Ij/Y − I/Y = CrGw − (Σ− x) = Φ (G−Gw)Gw − Σ + x. (5.4)

Therefore Ġ can be expressed as a function F of u with F increasing (resp.

decreasing) with u and if we assume F to be linear we obtain

Ġ = F (u) = F (Φ (G−Gw)Gw + Σ− x) = α {[C∗ + ϕ(G−Gw)]Gw − Σ + x} ,

(5.5)

with 0 < α < 1 because investment changes in the productive capacity make
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investment sticky.

(C) The saving rate varies over time depending on unforeseen di�erences between

technical progress and rate of growth and on income �uctuations:

Σ̇ = ε (Gn −Gw) + δĠw, (5.6)

where the parameters ε and δ represent the sensitivities and the variable Ġw

describes the economic cycle.

(D) Let us introduce the mapping Ψ that we assume to be linear. Moreover let us

denote with ζ, σ, µ > 0 the sensitivities of the balance of trade to foreign rate

of growth, technical progress and domestic growth rate respectively. Thus we

assume that changes in the ratio of the trade balance depend on Gf , Gn and G

as follows

ẋ

x
= Ψ(Gf , Gn, G) with

∂Ψ

∂Gf

> 0,
∂Ψ

∂Gn

> 0 and
∂Ψ

∂G
< 0. (5.7)

We can assume that the mapping Ψ is linear and by denoting the sensitivities

ζ, σ, µ > 0 of the balance of trade to foreign rate of growth, technical progress

and domestic growth rate, Equation ((5.7)) can be rewritten as

ẋ

x
= Ψ(Gf , Gn, G) = (ζGf + σGn − µG−m) , (5.8)

where m > 0 implies that Y (Gf , 0, 0) < 0 i.e., a constant domestic production

without technical progress has a negative e�ect on the balance of trade or,

equivalently, ζGf −m < 0.
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(E) The expected rate of change of aggregate demand is linear with γ to the di�e-

rence between G and Gw i.e.,

Ġw = γ(G−Gw), (5.9)

where γ ≥ 1 denotes how quick the expected rate of growth adjusts to the actual

growth.

(F) The dynamics of technological progress is described by a continuous, increasing

non-linear function of share of income saved and devoted to investments

Gn = Gn(Σ) = β(ξ − Σ)Σ, with β > 1 and 0 < ξ < 1. (5.10)

Therefore the Harrod's dynamic can be written as [174] as

Ġ = α {[C∗ + ϕ(G−Gw)]Gw − Σ + x}

Σ̇ = ε (Gn −Gw) + δĠw

ẋ = (ζGf + σGn − µG−m)x.

(5.11)

By replacing on it Eq. (5.9) and (5.10) we obtain the following speci�cation we want

to test

Ġ = α {[C∗ + ϕ(G−Gw)]Gw − Σ + x}

Ġw = γ(G−Gw)

Σ̇ = ε [β(ξ − Σ)Σ−Gw] + δγ(G−Gw)

ẋ = [ζGf + σβ(ξ − Σ)Σ− µG−m]x.

(5.12)
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where: α, γ, ε, β, δ, ζ, σ, and µ, are the parameters that will be calibrated in

Chapter 8.
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Part III

A contribution to economic theory
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Chapter 6

A new form of Kaldor-Kalecki model

on business cycles

Goodwin [70] was of the opinion that "economists will be led, as natural scientists

have been led, to seek in nonlinearities an explanation of the maintenance of os-

cillation"; for this reason, we have investigated economic cycles as being generated

by non-linear di�erential equations showing that the proposed model represents a

chaotic behaviour.

The main goal of this Chapter is to study chaotic behaviour within Kaldor's

framework as described in Chapter 4. In the following, we suggest an alternative to

the usual models available in literature which shows chaotic dynamics, and adheres

to Kaldorian speci�cations. This is obtained by declaring that the investment and

saving functions, I and S respectively are: nonlinear, regular, increasing (or at least

not decreasing) while capital and income are growing. This will be achieved by new

speci�cation of the functions describing the investments and consumption as variants

of the hyperbolic tangent function rather then the usual arctangent prosed by the
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author of this thesis in References [136] and [137]. This is original work.

6.1 The model

In Chapter 4 we presented the Kaldor model in continuous time. Here we discuss

the following discrete time version

Yt+1 − Yt = α(It − St) = α[It − (Yt − Ct)]

Kt+1 −Kt = It − δKt,

(6.1)

where Y, I, S,K de�ne respectively income, investment, saving and capital. In Eq.

(6.1) α is the rate by which the output responds to excess investment and δ repre-

sents the depreciation rate of capital. As seen in Chapter 4, Kaldor suggested that

I = I(Y,K) and S = S(Y,K) are non-linear s-shaped functions of income and capi-

tal.

Our proposed modi�cations are based on the considerations. First of all, it should be

noted that the di�erence in timing between consumption and investments re�ects the

process of observation, decision (including �nancing) and actual investment. There-

fore we can suppose that investment It at time t is proportional to a certain level of

capital Kt−1 at time t-1 according to a factor which is a function of the di�erence

(Kd
t−1 −Kt−1) between desired capital Kd and owned capital K, i.e.

It = Kt−1 · f1(Kd
t−1 −Kt−1). (6.2)

Similarly, consumptions Ct at time t can be taken proportional to income Yt at

the same time through a factor which is a function of the di�erence Y d
t −Yt between
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the desired Y d and current income Y , i.e.

Ct = Yt · f2(Y d
t − Yt). (6.3)

Concerning the form of the function f1(Kd − K), it should be noted that the

desired stock of capital depends on factors such as expected pro�t rate, expected level

of output, etc. which can be linked to Y . In fact, for example, the simple accelerator

model assumes that K is proportional to the level of production Y as follows: I =

kY (where k is a parameter called "capital-output ratio"). The �exible accelerator

model, instead, assumes that investments are modelled as I = s(Kd
t−1−Kt−1), where

s ∈ (0, 1] is a coe�cient representing the speed of adjustment. In the context of our

model we assume that 0 < f1 < r for some r < 1 (where r is a fraction of Kt−1).

As to the function f2(Y d − Y ), it represents the fraction of income Y which is

consumed; hence it is reasonable to assume that there exists a constant c > 0 such

that c < f2 < 1 everywhere.

f1 and f2 are clearly increasing (as higher is the di�erence between what is desired

and what is owned and higher is f) we will model the according the speci�cations

that I = I(Y,K) and C = C(Y,K) but, as required by Kaldor, we need to impose

the sigmoidality [160]. In order to do so, most of papers on the Kaldor model, have

used the arctg function (see Fig. 6-1).

However, it is well known that the arctg function has some contraindications

from a numerical point of view (see Bradford and Davenport (2002)[31], Collicott

(2012)[45], Walter (2010)[185], Gonnet and Scholl (2009)[69]). This form is not com-

monly used in natural sciences for modelling growth and it diminishes its usefulness

as, for example, it prevents a connection to some other theories as the classic Solow-

Swan growth model. For the above mentioned reasons we suggest to use two variants

121



Figure 6-1: Graph of the inverse function. Source Wolfram [192]
.

of the hyperbolic tangent, namely:

f1(z1) = ρ
exp(2z1/τ1)

exp(2z1/τ1) + 1
and f2(z2) =

exp(2z2/τ2) + c

exp(2z2/τ2) + 1
, (6.4)

so that f1(z1) goes to 0 as z1 → −∞ and tends to ρ as z1 →∞ whereas f2(z2) goes

to c as z2 → −∞ and tends to 1 as z2 →∞. τ is the parameter controlling the slope

of the function (see Fig. 6-2).

So far we speci�ed the functions but we still need to identify their arguments. We

said that what counts for investment decisions is Kd and Y d. As it is not possible

to exactly know the desired values Kd and Y d, we can derive them from the actual

behaviour of economic agents as follows:

• As mentioned above the desired stock of capital is associated to Y and K,

hence it is legitimate to describe the di�erence Kd − K as a function of the

di�erence between the relative income variation (de�ned as ∆Y/Y ) and the
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Figure 6-2: Graph of the hyperbolic tangent showing how the parameter τ determines
the knee.

relative capital variation (de�ned as ∆K/K), i.e.

Kd
t −Kt = g1

(
Yt − Yt−1

Yt−1

− Kt −Kt−1

Kt−1

)
. (6.5)

If, for instance, the income variation (at time t -1 ) has been 3%, a smaller

capital growth (still at time t-1 ) could be interpreted by entrepreneurs as a

need to adapt the stock of capital to economic growth (similarly to the Kalecki

assumption (1935)[93] that the saved part of pro�t is invested and the capital

growth is due to past investment decisions).

• Analogously we can describe Y d − Y as a function of the di�erence between

the relative income variation and the relative consumption variation, i.e.

Y d
t − Yt = g2

(
Yt − Yt−1

Yt−1

− Ct − Ct−1

Ct−1

)
. (6.6)

Hence we are assuming that the change in consumption is a kind of barometer
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of the state of health of the economy, so that, for example, in the case of high

in�ation families revise and reduce their consumption. In other words, we want

to give an account here of the variation in purchasing power due to in�ation or

to those depressive e�ects of the business cycle (reduction of workers' contractual

power, downsizing followed by dismissals, etc.) or the expansive e�ect (rise of real

wages due to increased workers contract power because entrepreneurs need to expand

production, easier access to credit, and so on).

Concerning the form of the functions g1 and g2, let us notice that:

1. It is reasonable to assume that the di�erence x = ∆Y/Y − ∆K/K, has an

upper bound k > 0,

2. For x = ∆Y/Y −∆K/K > 0 the di�erence Kd −K = g1(x) increases with x

and tends to +∞ (respectively −∞) as x→ k (respectively as x→ 0+),

3. For x = ∆Y/Y − ∆K/K ≤ 0 we can assume that Kd − K = g1(x) has a

constant negative value,

4. The same remarks can be made for the di�erence y = ∆Y/Y − ∆C/C and

Y d − Y = g2(y)

Hence we shall assume that g1 = g2 = g has the form (see Fig. 6-3)

g(x) =


h for all x ≤ 0

− log((k/x)s − 1) for all x ∈ (0, k]

(6.7)

with h < 0 such that f1 is close to zero. It should be noted that the shape of the

function g is an approximation of the value function of Kahneman and Tversky (see
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Kahneman and Tversky 1979[91]) where on the left the function is assumed to be

�at.

Figure 6-3: Graph of g(x)
.

To sum up, the proposed Kaldor model is



Yt+1 − Yt = α

[
f1

(
g

(
Yt−1 − Yt−2

Yt−2

− Kt−1 −Kt−2

Kt−2

))
+

f2

(
g

(
Yt − Yt−1

Yt−1

− Ct − Ct−1

Ct−1

))
− Yt

]

Kt+1 −Kt = f1

(
g

(
Yt−1 − Yt−2

Yt−2

− Kt−1 −Kt−2

Kt−2

))
− δKt

(6.8)

These equations, together with (6.4) contain the parameters α, δ, τ1, τ2, ρ, ,�k with

the following meaning:

1. α is the coe�cient showing the savings adjustment speed with regard to inves-
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tment. Its reciprocal in physics is called delay and measures the time necessary

for the adjustment. In other terms, if we assume that the time of reference 1

is equal to a year, then the savings will adjust themselves to the investment

over this period. Therefore if α = 1/2 this means to assert that six months are

su�cient for the verifying of the aforesaid adjustment. In general terms, we

would assume that α lies between 1/4 but less than 2 because such an interval

would be economically reasonable.

2. δ is a percentage that determines the �xed capital which is lost during the

productive process (due to obsolescence or actual consumption). In the model,

when running simulations, we have chosen values between 3% and 6%.

3. τ determines the f function "knee". It is, therefore, a measure of the reactivity

of the function to the variation in its argument: as τ grows the function is less

steep. We have tried values between 1 and 20.

4. ρ measures the maximum possible level (in capital terms) of investment. This

value changes according to the economic system (pre-industrial, industrial,

post-industrial) and the type of investment (i.e. high or low capital inten-

sity). A reasonable choice led me to adopt the (0,0.2] interval preferring values

around ρ = 0.16 for the depiction of our type of economy.

5. c = 1 − ĉ represents the average level of consumption. Its complement to 1,

multiplied by actual income, determines the minimum level of consumption,

therefore it is also called the �base� level. ĉ, similarly to ρ, is very sensitive to

the type of economy in question, but in our context economically admissible

values are assumed to be between 40% and 80%.
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6. The k parameter changes according to the economic development. For instance

it could be that the percentage variation of Y - K (respectively -C ) can be low

(for developed/less volatile economies) or high (for developing/more volatile

economies). It has been experimentally observed that if the maximum admis-

sible intervals of the aforesaid variations are between -1 and +1 (respectively

between -2 and 2 the output varies between -0.23 and +0.23 (respectively -1.2

to +1.2).

In each of the above mentioned cases - for a quite broad range of parameters -

we found that the model shows a chaotic dynamics. In addition the system can also

be used for modelling lagging perturbations or shocks (see Sec. 6.1.1).

Figures 6-4 and 6-5 illustrate two examples of the system's dynamic which di�er

only because a di�erent initial condition.

Figure 6-4: A simulation displaying a steady growth. Y = 4, I, S,K
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Figure 6-5: A simulation displaying a steady fall. Y, I, S,K

6.1.1 Shocks in the economy

It is worth noting that using the proposed model it is possible to produce a shift that

re�ects the real situation mentioned by Kaldor, i.e. at a certain stage of the economy

some factors exist which take place cumulatively and have the e�ect of shifting the

saving and investment functions in one direction or the other. In the model this was

achieved by operating a shift on f by adding or subtracting a value (i.e. the shock) to

the argument. The shifting operator works when the capital or the income changes

negatively and it has the e�ect of helping the system to recover from a crisis.

6.1.2 Consumptions, savings and economic recessions

The idea that an increase in the disposable income (possibly through �scal stimulus

such as tax rebates) automatically translates into an increase in the aggregate de-
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mand can be erroneous as it neglects to consider the state of health of the economy

and therefore the con�dence in it.

In fact, if con�dence in the economy is low, it could be that people may reduce

their consumption during the recessions years: consumers will continue the process

of deleveraging (they use the money to pay o� debt and save more) because of

uncertainty in the future.

For the above mentioned reason in the suggested model we linked the change in

consumption to the change of income as follows (see (6.6))

w =
M Y

Y
− M C

C
(6.9)

which we believe describes correctly the behaviour of consumption.

6.2 Proof of the chaotic behaviour of the model

Up to now the sensitive dependence on initial conditions and the irregular trend of

variables over time has only been showed graphically. This kind of evidence is not

su�cient to prove the chaoticity of a system. Therefore we must use some nume-

rical techniques in order to have a better insight of the possible chaotic nature of

the system (6.8). Speci�cally, we will report the results obtained by spectral ana-

lysis as well as the calculation of the correlation integral, the Lyapunov exponents,

the Kolmogorov entropy and the embedding dimension discussed in Chapters 1 and 2.
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6.2.1 Tools

Results shown in this Section were obtained with RRChaos [166] or MATLAB ver.

8.5.0.197613 (R2015a).

6.2.2 Spectral analysis

As already mentioned, spectral analysis extracts the spectral content from a time

series by decomposing it into di�erent harmonics with di�erent frequencies. and, by

doing that, it identi�es the contribution of each harmonic to the overall signal (see

for example Stoica and Moses (2005) [176]).

Spectral analysis may help identify chaos for a given time series to discover hidden

periodicities in data. Yet, spectral analysis cannot distinguish if a signal is chaotic or

stochastic, therefore this technique does not deliver a conclusive answer as observed

by Moon (1987) [127]) and (McBurnett (1996) [123]). However, as the proposed

model is by construction deterministic, the spectral analysis can de�nitively help in

understanding whether the system shows chaotic dynamics.

As an example the Figures 6-6, 6-7 and 6-8 show the cobweb diagram, the orbit

and the periodiograms for di�erent Logistic Maps.
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Figure 6-6: Cobweb diagram and periodograms for the Logistic Map (mu=3).

Figure 6-7: Cobweb diagram and periodograms for the Logistic Map (mu=3.5).

Regarding our Kaldorian system, we ran a simulation in order to show that for the

generated time series there is no peak that clearly dominates all other peaks. Figure
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Figure 6-8: Cobweb diagram and periodograms for the Logistic Map (mu=4).

6-9 and 6-10 show the behaviour of the power spectrum for the macroeconomic vari-

ables C,K, I, Y with rectangular and Hamming windows, respectively. The presence

of several frequency peaks suggests that irregular orbits (chaos) can be identi�ed in

the proposed model.
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Figure 6-9: Power spectrum with rectangular window for K, I, C, Y . The irregularity
of the spectrum hints at the possibility that the series are chaotic.

6.2.3 Correlation integral

As mentioned in Sec. 1.9.2, the correlation integral C(r) of Eq. (1.80), measures

the 'degree of kinship' between two di�erent points on the (strange) attractor and

it "represents a direct arithmetic average of the pointwise mass function" Theiler

(1990)[180].

In Figure 6-11 we can see the value of the correlation integral versus r, and versus

its logarithm in Figure 6-12. It can be noted that when ln(C(r)) is plotted against

ln(r) the slope of the linear section can be interpreted as the dimensionality m of

the phase-space orbit within that range of r. Finally the fact that ln(C(r)) increases
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Figure 6-10: Power spectrum with Hamming window for K, I, C, Y . The irregularity
of the spectrum shows that the series are chaotic.

regularly con�rms that the system is deterministic.
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Figure 6-11: Correlation integral trend versus r.

Figure 6-12: Log-log plot where the slope approximates the correlation integral.

6.2.4 Correlation dimension

Another useful notion is the correlation dimension as de�ned in Eq. 1.50 of Sec.

1.9.2. The correlation dimension is intended to measure the information content

"where the limit of small size is taken to ensure invariance over smooth coordinate
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changes. This small-size limit also implies that dimension is a local quantity and

that any global de�nition of fractal dimension will require some kind of averaging"

[180].

In Figure 6-13 it can be seen that the dimension of correlation is noninteger. As

DC is a "more relevant measure of the attractor than DH because it is sensitive to

the dynamical process of the coverage of the attractor" (Grassberger and Procaccia

(1983 [75]), we can say that the system is fractal [73], [72].

Figure 6-13: Correlation dimension when r → 0.
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6.2.5 Lyapunov exponents

Lyapunov exponents are used to measure the rate at which nearby trajectories of a

dynamical system diverge (see Def. 1.40).

As a dynamic dissipative system is chaotic if its biggest Lyapunov's exponent is

a positive number [113], we have adopted the Wolf algorithm [191], [190] to calculate

the biggest Lyapunov exponent. In our simulations, the calculated value has always

been positive (see Table 6.1 with the calculated Lyapunov's exponents for 10,000

points time series of C, Y, K and I ).

Table 6.1: Lyapunov Exponents

Min Max Mean

Consumptions 6.22 11.399 10.885

Income 12.8338 19.6440 13.3534

Capital 7.3165 14.594 12.999

Investments 5.511 11.969 11.049

6.2.6 Entropy

The Kolmogorov-Sinai KS entropy presented in Sec. 1.9.2 has been added to supple-

ment the above mentioned analysis because KS converges to a positive value when

time series are chaotic.

In order to measure KS we used the methodology suggested by J.C. Schouten,

F. Takens and C.M. van den Bleek [165], [164] and we found that it was positive

(e.g. Kolmogorov entropy = 21.34561, Kolmogorov entropy KML = 3.67711, relative

standard error of KML [%] = 0.81194, total number of distances checked = 1,376,660,

number of distances found = 15,280).
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In order to measure KS we used the methodology suggested by J.C. Schouten,

F. Takens and C.M. van den Bleek [165], [164] and we found that it was positive

i.e. Kolmogorov entropy KML [bits/sec] = 21.34561, relative standard error of KML

[%] = 0.81194, total number of distances checked = 1,376,660, number of distances

found = 15,280.

6.2.7 Embedding dimension

As discussed in Sec. 1.33, the embedding dimension is a statistical measure which

indicates the smallest dimension required to embed an object (as for instance a

chaotic attractor).

Cao embedding dimension's estimation

In order to compute this quantity, Cao (1997)[38] has suggested an algorithm based

on the work of Kennel, Brown and Abarbanel (1992)[96] for estimating the embedding

dimension (see [179], [7],[189]) through E1(d) and E2(d) functions, where d denotes

the dimension. The function E1(d) stops changing when d is greater than or equal

to the embedding dimension staying close to 1. The function E2(d), instead, is used

to distinguish deterministic from stochastic signals. If the signal is deterministic,

there exist some d such that E2(d)!=1 whilst if the signal is stochastic E2(d) is

approximately 1 for all the values (see also [13], [14]).

Figure 6-14 illustrates the behaviour of E1 and E2 function for consumption, in-

vestment, capital and income of the proposed model. As observed in Cao (2002)[39],

when the quantity E2 has values close to 1, with some oscillations for small dimen-

sion, the related time series is likely a random series. On the other hand, the presence

of oscillatory behaviour away from 1 when embedding dimension are small, implies
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some weak determinism in the considered time series. As it can be observed from

Figure 6-14 related to the proposed model, the quantity E2 is not 1 but approaches

this value for d ≥ 10.

(a) Embedding Dimension for C (b) Embedding Dimension for Y

(c) Embedding Dimension for K (d) Embedding Dimension for I

Figure 6-14: Embedding Cao Dimension (τ = 1, data points=10,000).

Symplectic geometry method

In addition to the Cao's estimation, the symplectic geometry method (see M. Lei, Z.

Wang and Z. Feng (2002)[107] H. Xie, Z. Wang and H. Huan (2005)[193], M. Lei and

G. Meng(2011)[106]) is used as a consistency check to verify the appropriate embed-

ding dimension from a scalar time series. The symplectic similarity transformation is
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nonlinear and has measure-preserving properties i.e. time series remain unchanged

when performing symplectic similarity transformation. For this reason symplectic

geometry spectra (SGS) are preferred to singular value decomposition (SVD) (which

is by nature a linear method that can bring distorted and misleading results e.g. see

M. Palus and I. Dvorak (1992)[148]).

In Figures 6-15a and 6-15b we show two examples of embedding dimension for

a Gaussian white noise and the the Logistic Map respectively, as obtained with the

symplectic geometry method.

Figure 6-16 depicts the behaviour of the embedding dimension for consumption,

investment, capital and income obtained using Symplectic Geometry Spectrum with

Lei method. The behaviour of these curves is in accordance with that provided by

other well know chaotic system in literature. This is another con�rmation of the

chaotic behaviour of the proposed model.

6.2.8 Chaotic attractor

As we have repeatedly shown, the system behaves like it was stochastically but we

know that it is fully deterministic. In Table 6.2 we have reported the correlation

integral versus the embedding dimension for 10,000 points time series of C, Y, K

and I. Indeed, it can be observed that the correlation integral doesn't grow with the

embedding dimension con�rming that the system is deterministic [114].
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(a) Embedding Dimension for a Gaussian white noise.

(b) Embedding Dimension for the Logistic Map (mu=3.9).

Figure 6-15: Embedding Dimension Symplectic Geometry Method. Ordinate is

log
σi

tr(σi)
, abscissa is i). The kink in the �gure corresponds to the embedding di-

mension.

Finally in Figure 6-17 we present the strange attractor for the system obtained

with software package RRChaos [166].
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(a) Embedding Dimension for C (b) Embedding Dimension for Y

(c) Embedding Dimension for K (d) Embedding Dimension for I

Figure 6-16: Embedding Dimension Symplectic Geometry Method (data

points=10,000, ordinate is log
σi

tr(σi)
, abscissa is i). The kink in the �gure corre-

sponds to the embedding dimension.

6.3 Conclusions

In literature, the usual set-up of the Kaldor's model use the trigonometric investment

function arctg (see [125], [90], [87], [9], [88], [27], etc.). We have decided, instead, to

try a variant of the hyperbolic tangent.

For all the reasons discussed in this Chapter we wish to add further reasons. For

example we think that there is no particular justi�cation to prefer the arctg whilst

there are several to prefer the tanh. A further good reason, for example, is that across

142



Table 6.2: Correlation Integral versus Embedding Dimension

Embedding Dimension

Correlation Integral for 2 3 4 5 6 7 8

Consumptions
Min 0.053543 0.021604 0.0092081 0.0043155 0.0022121 0.0012546 0.00079854

Max 0.71333 0.70895 0.70449 0.69998 0.69658 0.69372 0.69127

Mean 0.30254 0.2599 0.23142 0.21153 0.19686 0.1859 0.17797

Income
Min 0.053543 0.021604 0.0092081 0.0043155 0.0022121 0.0012546 0.00079854

Max 0.71333 0.70895 0.70449 0.69998 0.69658 0.69372 0.69127

Mean 0.30254 0.2599 0.23142 0.21153 0.19686 0.1859 0.17797

Capital
Min 0.053543 0.021604 0.0092081 0.0043155 0.0022121 0.0012546 0.00079854

Max 0.71333 0.70895 0.70449 0.69998 0.69658 0.69372 0.69127

Mean 0.30254 0.2599 0.23142 0.21153 0.19686 0.1859 0.17797

Investments
Min 0.053543 0.021604 0.0092081 0.0043155 0.0022121 0.0012546 0.00079854

Max 0.71333 0.70895 0.70449 0.69998 0.69658 0.69372 0.69127

Mean 0.30254 0.2599 0.23142 0.21153 0.19686 0.1859 0.17797

multiple sciences, growth and decay are better modelled by an exponential-alike

function such as tanh. For example in actuarial science and �nancial mathematics

such a law is used for the Gompertz�Makeham law of mortality or compound inte-

rests. With regards to economics, in particular, the proposed model could link up to

the classic Solow-Swan growth model, in which labour and knowledge are represented

by exponential functions. Moreover the function arctg tends to its asymptotes quite

slowly compared to the hyperbolic tangent whilst we wanted to design a framework

in which economic agents can adjust quickly (how quickly depends on parameters as

τ) to changes.

We wish to remark that an additional original contribution in our proposed model

is the speci�cation of consumption and investment as a function of the di�erence,

respectively, between the growth rates of income and capital, and the growth rates

of income and consumption. This has been achieved by considering, à la Kalecki,

that the investment process has di�erent timing than does consumption, hence the
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Figure 6-17: Strange attractor.

di�erence in the considered time lags (see Eq. (6.2) vs. Eq. (6.3)). Last but not least

the model can accommodate external perturbations such as shocks by a translation

of the argument of the function f (see Sec. 6.1.1).

If anyone thinks of possible future research, we could address the issue of the con-

ditions under which the system generates (presumably asymptotically) regular cycles.

Further, the detected non-linear behaviour has some implications which could be po-

tentially considered as being of some interest, e.g. what should be the rules set by

regulators (such as the central bank) in a chaotic context? More speci�cally: If the

system is not predictable, not reachable and therefore not observable but neverthe-

less controllable (for example see [157], [76], [37], [150]), can one set up a system of
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controls that is able to drive the economy? Are the current instruments of economic

policy the correct ones?
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Chapter 7

Recurrence Quanti�cation Analysis

of Business Cycles

As explained in the Introduction, after having devised a suitable model for business

cycles such as that discussed in Chapter 6 and in References [136], [137], our aim is to

look for an indicator that could show structural changes in a signal related to chaos

[144]. Here we apply RQA and statistical techniques to both: real time series and

model generated ones [145]. This to I) �nd common properties if and where they do

exist, II) discover some hidden features of economic dynamics and III) highlight some

indicators of structural changes in the signal (i.e. in our case to look for precursors

of a crash).

7.1 Material and methods

The variables under investigation are Capital (K), Consumption (C), investment

(I) and Income (Y) (see Appendix A). Cyclical swings of economy are typically
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analysed in terms of the duration or the amplitude between a peak and the succeeding

trough [33]. The cycle Peak-Trough-Peak (PTP) can be caused by various factors

such as negative shocks in demand, in supply, in price and in credit (i.e. when

"�nancial distress produces sharp discontinuities in �ows of funds and spending and

when the �nancial strains include tight monetary policy, much lessened availability

of money and credit, sharp rises of interest rates, and deteriorating balance sheets

for households, businesses, and �nancial institutions")[56] as discussed in Chapter 3.

In order to study business cycles and recessions we will apply the RQA on time

series extracted from di�erent sources. This because we want to have an extensive

set of data, with the highest number of points possible, covering the following di-

mensions: countries with di�erent development paths (Organisation for Economic

Co-operation and Development A.5, Bureau of Economic Analysis A.3), di�erences

in methods for computing the capital (M1, M2 A.4), gross versus net (Levy and Chen

(1994) A.4), etc. A further requirement was that, whenever possible, the number of

time series should be balanced across variable or dimension.

For the variables K (capital), C (consumption), I (investment) and Y (income)

modelled as described in Chapter 6, we collected 55 time series belonging to the

following countries: Germany (DEU), Italy (ITA), Korea (KOR), United Kingdom

(GBR), Turkey (TUR), Japan (JNP), Spain (ESP) and United States of America

(USA). This in order not only to consider the evolution in time but, also, to cover

di�erent types of economies (developed vs. developing, stagnating vs. expanding,

etc.). Moreover, it is worth noticing that the aforementioned four variables di�er in

their units of measurement. In fact the "stock" variable K represents the quantity

existing at a certain point in time, whereas "�ow" variables such C, I and Y are

measured over an interval of time. For this reason we balanced the dataset by

gathering 41 �ow and 14 stock variables.
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7.1.1 Data on capital

As mentioned in the Introduction, while �nancial data are abundant and have many

data points, economic time series are not many and data points are very few. This is

especially true for capital stock (see Appendix. A.4. In fact aggregate capital stock

data is only collected on an annual basis. To analyze quarterly data we referred

to time series made available by Levy and Chen (1994) [110] who used Musgrave

(1992)[131] for annual capital stock time series, Citicorp (1993)[43] for investments

and their price de�ator series and U.S. Bureau of Economic Analysis (BEA) for

annual depreciation and discard �gures.

Levy and Chen calculated quarterly data which is useful for "analyzing the dy-

namic relationship between aggregate factors of production and output"; in fact "it

is preferable to look at the data using quarterly observations because some dynamic

phenomena that perhaps take place within the period of a year will not be captured

if annual data is used. In addition, from an econometric point of view, use of quar-

terly data instead of annual data quadruples the sample size which makes empirical

statistical inference more reliable" [110].

Adopting the same notation we distinguish between time series in nominal terms

from time series in real terms (measured in 1987 dollars) by using the su�x 87 and

we denote Segmented Linear Interpolation as M1 and Numerical Iteration as M2

for the following time series: Consumer Durable Goods (CDG), Producer Durable

Goods and Equipment (PDG), Non-residential Business Structures (BS).

As explained by Levy and Chen the quarterly capital stock series are constructed

using di�erent procedures: "The �rst is a segmented linear year-to-year interpola-

tion technique. The second technique exploits the dynamic relationship between

the capital stock and the corresponding capital investment series and uses annual
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beginning-of-the year and end-of-the-year capital stock data to estimate the implied

quarterly depreciation rates for all three categories of the aggregate capital stock by

numerical iteration over the depreciation rates until a convergence is achieved. These

depreciation rates are then used along with the quarterly investment and the annual

capital stock series to construct quarterly capital stock series" [110].

In our analysis we focus on series built with Method 1 and 2 because, as shown

by Dezhbakhsh and Levy[54] "linear interpolation of a trend stationary series supe-

rimposes a 'periodic' structure on the moments of the series" whilst, according to

Jaeger's (1990)[86] "segmented linear interpolation reduces the size of shock persis-

tence in a di�erence stationary series".

7.1.2 Data on income, investment and saving

Regarding the scope of our analysis we included countries that had very di�erent

development paths (see Appendix. A.5) from the Organisation for Economic Co-

operation and Development (OECD). OECD data are respectively

• Quarterly GDP Total, Percentage change, Quarterly National Accounts. This

indicator is seasonally adjusted and it is measured in percentage change from

previous quarter and from same quarter previous year [134].

• Investment (GFCF) Total, Annual growth rate (%). Aggregate National Ac-

counts, SNA 2008 (or SNA 1993): Gross domestic product. Gross �xed capital

formation (GFCF) is in million USD at current prices and PPPs, and in annual

growth rates [133].

• Saving rate Total. % of GDP. National Accounts at a Glance [135].
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7.1.3 Tools

Recurrence Plots, RQA and RQE were discussed in Chapter 2. RQE computes recur-

rence quanti�cations on an epoch-by-epoch basis. The RPs shown in the following

Figures were obtained with the CRP Matlab Toolbox ver. 5.22,rel. 32 [118]. RQA

and RQE were obtained with the package RQA ver. 14.1 [187]. Statistical analysis

was carried out by using Systat ver. 10.2 or MATLAB ver. 8.5.0.197613 (R2015a).

7.2 Results and analysis

In this Section we show that, in some cases, early warning signals of dramatic changes

(downturns/expansions) can be seen by computing recurrence variables within a

moving window (epoch) shifted by a given number of points (delay) throughout

the whole sample (which is the RQE). Finally we demonstrate that RQA is a valid

technique of investigation as it is able to distinguish between real and nominal data

as well as between net and gross time series.

7.2.1 Recurrence Quanti�cation Analysis (RQA)

Recurrence Plot (RP) on USA GDP

In Fig. 7-1 it is shown the recurrence plot of USA GDP% depicted right below

its time series. From the RP it is possible to observe the anticipating transitions

to turbulent phases. The remarkable result consists of a correspondence between

vertical lines in RP (i.e. chaos to chaos transitions) and downturn/upturn periods.
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Figure 7-1: Changes in US GDP (above) and its Recurrence Plot (below). Data
range: 01-01-1947 - 2016-01-01. ID: A191RP1Q027SBE. Gross Domestic Product,
Percent Change from Preceding Period, Quarterly, Seasonally Adjusted Annual Rate.
Source: St. Louis Fed, FRED database. Note the alignment between shocks and
vertical lines in RP.

RQA on business cycle data

RQA de�nes the overall complexity of the signal in terms of quantitative indices

deriving from RP. Here RQA was carried out on 55 time series from the dataset

mentioned above (see Appendices A.3, A.4, A.5) with the following input parameters

[187]: time lag (or delay: the spacing between selected input points) = 1; embedding

= 10 (embedding dimension: estimated number of dominant operating variables);

radius (largest normed distance at and below which recurrent points are de�ned and

displayed) = 80; line (minimum number of sequential recurrent points required to
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de�ne diagonal and vertical lines) = 5. Time lag = 1 has been chosen because, dif-

ferently from �nancial time series, economic time series have few data. Moreover, as

speci�ed in Section 1.6.1, quarterly data are independent (they do not su�er of auto-

correlation). The method chosen for normalizing vectors in higher dimensional space

uses the Euclidean norm and meandist is the method for rescaling the recurrence

matrix. It is worth mentioning that the radius has been set with the objective of

maximizing the di�erence among the time series of the whole data set. This happens

because when the radius is too large the determinism can saturate, whilst when the

radius is too small, few recurrences points in RP could not be describe di�erences

among the time series.

More details will be provided in Paragraph 7.2.3. Here we can anticipate that,

with regard to USA quarterly capital data, as reconstructed by Levy and Chen (see

Table A.4), no signi�cant di�erences have been observed between interpolation met-

hods M1 and M2 whilst di�erences have been found between real and nominal as

well as between net and gross time series (see Table 7.1, row 1 where p > 0.1 for all

the RQA measures, PC1 and PC2).

Recurrence Quanti�cation Epoch (RQE) on business cycle data

To better understand the time evolution of these economic data, RQE analysis was

carried out on business cycle time series with the following parameters: window size

= 50 points; shift = 1 point; lag = 1; embedding = 10; radius = 80; line = 5. Even

in this case, as well as in RP, the drop of DET corresponds to the grey vertical line

indicated by FRED DATA (see Fig 7-2).

These results are in line with what was reported by Bastos and Caiados [20]
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Figure 7-2: Dynamical analysis in the sliding window mode (RQE) where percent of
laminarity (LAM) and percent of determinism (DET) refer to the same time series
as in Fig. 7-1. Overlapping sliding windows of 50 data points shifted by 1 point
(49 data point overlaps) were taken. Variables are plotted in central position in
standardized units (su), i.e., after subtracting the average value from absolute values
and dividing by standard deviation in each window.

who, comparing 23 stock market indices of both developed and developing countries,

found a reduction in DET and LAM during the sub-prime mortgage crisis and even

dramatic fall, during the burst of the technology bubble. The latter was also docu-

mented in the analysis of the dot-com bubble by Fabretti and Ausloos (2005)[60] and

Kousik et al. (2010)[99] where DET and LAM reached the highest values during the

bullish period and declined before the bubble burst. Morevover according to Piskun

et al. (2010)[152] laminarity (LAM) "is the most suitable measure, sensitive to criti-

cal events on markets" where the inverse of laminarity re�ects the market volatility

(Strozzi et al. (2007a)[178]).
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RQE correlation index

In order to understand the limitations of the proposed method and to provide further

detail on the power of RQA in in anticipating transitions from laminar to turbulent

phases, we resort to the RQE (absolute) correlation index described in Orlando and

Zimatore (2017)[144] and here discussed in Section 2.3.2.

As shown in [144], while the RQE correlation index 2.28 is able to detect 9 of the

10 intervals in which a random signal was perturbed, the results displayed on Fig.

7-3 are less conclusive.

Figure 7-3: Maximum correlations (in blue) between RQE measures versus recession
periods (in grey) on the USA GDP [134]. As shown in the �gure a change in the
index is often linked to a recession. Spearman correlations (below) versus the �nal
test signal (above). RQE absolute correlation (in blue) is displayed next to correlation
(red). See how the RQE correlation calculated as in Equation 2.28 is more reactive
than the other and it is able to detect more �nely changes in the original times series.
Di�erence in the x-axis numbering between the picture above and below, is due to
the windowing mechanism. Source Orlando and Zimatore (2017)[144].
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7.2.2 Principal Component Analysis (PCA) on RQA

PCA is a multivariate statistical analysis successfully applied to business time series

which it minimizes redundant information (Bartholomew et al. (1984)[16]), Zimatore

et al. (2002)[200]). In this thesis, we apply PCA to recurrence measures estimated

from the aforementioned economic data by taking advantage of the combined use of

the two techniques; therefore PCA has been carried out on the main four RQA mea-

sures: REC, DET, MAXLINE and ENT. The percentage of total variance explained

is respectively: PC1=81%; PC2=11%; PC3=5%.

In Fig. 7-4 for every data series shown in Table A.9, PC1 vs PC2 are depicted.

As those are obtained from RQA data, it is possible to observe that RQA preserves

some structural di�erences between income, capital, investment and consumption.

Figure 7-4: Dynamical features of business time series in a principal component space
as reported in Appendix A.9. Di�erent symbols (letters) indicate the four macroe-
conomic variables: I-Investment, C-Consumption, Y-Income, K-Capital. Note how
K-capital is clustered.
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In order to check whether there are di�erences among the four macroeconomic

variables we applied the Mann-Whitney U test. This test belongs to the class of

nonparametric tests and it checks the null hypothesis that a randomly selected value

from one sample is less than or greater than a randomly selected value from another

sample. In our case and we found (see Table 7.1) that all measures are di�erent with

p < 0.001.

7.2.3 Statistical analysis on RQA

An additional statistical analysis was performed on the obtained RQA measures.

Spearman's correlations among these parameters were estimated. A MANOVA test

was conducted for I, C, Y and K variables, for di�erent countries, measures, in-

vestment goods, terms and interpolation methods. Data is expressed as means ±

standard deviations.

We anticipate that the results of the tests in following Paragraphs 7.2.3 and

7.2.3 show that RQA is able to capture the di�erence between stock and �ow (ME-

ASURES) as well as the dissimilarities between the four macroeconomic variables

(VARIABLES). In addition, the fact that di�erent countries (COUNTRIES) with

very di�erent evolutions are not distinguishable, might be an indication of the chaotic

nature of economics, as in chaos di�erent paths originate from the same underlying

deterministic dynamic. Furthermore the interpolation methods provide equivalent

results.

Mann-Whitney Test

The non-parametric Mann-Whitney test was carried out on the RQA measures from

the whole data set (see Table A.9).
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Table 7.1: Mann-Whitney U Test (p-values)

Row # Groups1 REC DET MAXLINE ENT TREND LAM TT PC1 PC2

1 142 Method 0.796 1 0.301 0.439 0.796 0.439 0.439 0.897 0.197
2 553 Variable 0.001 <0.001 <0.001 0.028 0.002 <0.001 <0.001 <0.001 0.026
3 354 Country 0.071 0.253 0.436 0.162 0.157 0.126 0.469 0.253 0.146
4 555 Measure <0.001 <0.001 <0.001 0.209 0.772 <0.001 0.967 <0.001 0.772

PC1 and PC2 calculated on REC, DET, MAXLINE and ENT

In summary, we observe that (between groups) results in row 1 Table 7.1, fail

to reject the null hypothesis that Methods 1 or 2 are equal the distributions of the

four variables C, I, Y, K are not the same (see row 2, Table 7.1), the distributions of

data belonging to di�erent countries (Germany (DEU), Italy (ITA), Korea (KOR),

United Kingdom (GBR), Turkey (TUR), Japan (JNP), Spain (ESP) and USA) do

not reject the null hypothesis that they are equal (see row 3, Table 7.1) and, �nally,

that the distributions of �ow and stock variables are di�erent (see row 4, Table 7.1).

Kruskal-Wallis Test

To further con�rm the ability of RQA in capturing the di�erences between macroeco-

nomic variables the following table reports the p-values on RQA of the Kruskal-Wallis

Test performed on the time series displayed in Table A.9.

Table 7.2: p-values on RQA from 55 (#C=10, #I=11, #K=14, #Y=20) business
time series

Mean SDev Mean/SDev REC DET MAXLINE ENT TREND LAM TT PC1 PC2

0.012080589 0.000137346 3.33E-07 0.001264944 3.14E-05 2.26E-05 0.027594729 0.002148292 8.61E-08 7.08E-06 8.05E-05 0.00054498

1Method : M1, M2; Variables: C, I, K, Y; Country : Germany (DEU), Italy (ITA), Korea
(KOR), United Kingdom (GBR), Turkey (TUR), Japan (JNP), Spain (ESP), United States (USA);
(Unit) Measure : Flow, Stock; (Time Series').

2Number of time series considered by method: 8 M1, 6 M2.
3Number of time series considered by variable: 10 C, 11 I, 14 K, 20 Y.
44 DEU, 4 ITA, 4 KOR, 4 GBR, 3 TUR, 4 JNP, 4 ESP, 8 USA
5Number of time series considered by measure: 41 �ow, 14 stock.
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7.3 Conclusions

So far, in the literature, there are no clear indications whether economic data are

chaotic or not. This thesis applied RPs and their quantitative description provided

RQA to try to detect subtle but essentially relevant changes in the dynamical regime

of business time series. RQA aims at a direct and quantitative assessment of the

amount of deterministic structure of time series. Here it was shown that RQA is an

e�cient and relatively simple tool in non-linear analysis of a wide class of signals.

This technique allows for the identi�cation of sudden phase-changes possibly pointing

to mechanistically relevant phenomena. Therefore RQA may be suitable to study

business cycles and could be used for early detection of recessions (even though some

limitations are apparent Sec. 7.2.1).

The results reported so far have revealed the applicability of this methodology

to economic time series; especially where other methods may fail because of rand-

omness, non-linearity and non-stationarity of data, and have given new insights into

underlying dynamics. In fact both PCA and statistical analysis on RQA seem to

validate the technique as macroeconomic variables are clearly distinguishable. In

addition RQA seems to con�rm that di�erent paths in economic development may

originate from the same underlying deterministic dynamic (which is an indication of

chaos).

Future research, along this line, will aim to understand whether RQA, applied

to both real data and simulations obtained from a nonlinear economic model on

the business cycle [136], may present analogies and/or similarities, which could be

helpful in understanding the nature of economic dynamics. The implications in

terms of control will follow: Given the nature of economy, can one set up a system

of controls that is able to steer it?
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Chapter 8

An empirical test on Harrod's model

After having illustrated in Chapter 5 the Harrod's model and a chaotic speci�cation

of it (see Sec. 5.1, in this Chapter we are going to prove that I) real data could be

obtained by a suitable calibration of model's parameters, II) the calibrated model

con�rms theoretical predictions [138].

8.1 Calibration of the Harrod's model

To test empirically the Harrod model we evaluated the average distance between the

historical data series reported in Appendix A and the orbit produced by Eq.(5.12)

that starts at time 0 at the same initial point of the data and best �ts the time series.

This orbit can be found by suitably calibrating the parameters in Eq. (5.12) through

a numerical optimization. The aim of the optimization was thus to minimize the

square error between the historical time series and the orbit produced by Eq. (5.12)

that starts at time 0 at the same initial point of the data series. Mathematically, we
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want to compute the quantity:

D =
1

286

286∑
t=0

(
d(t)− 1

τ̂

∫ t+1

t

φ̂
(
τ̂ t̃, P

)
dt̃

)2

, (8.1)

where d(t) is the vector that stacks the data of the rate of growth of domestic

income, the expected rate of growth of aggregate demand, the share of income saved,

and the net export rate for the quarter t (t = 0 is the �rst quarter of 1947, t = 286

is the second quarter of 2018). Similarly, P is the vector of the 13 parameters

of the model (reported in Table 8.1), and φ̂ stacks the four variables that solve

the di�erential Eq. (5.12) with parameters set in P starting at φ̂(0, P ) = d(0):

the integral between t and t + 1 allows us to compute the average value of the

(continuous) signal over the quarter of interest, to be compared with the data. Note

that an additional dummy parameter τ̂ has been added. This parameter permits us

to rescale the time of the signal produced by the model, in order to best �t with

the time-scale of the data. The optimization variables are the 13 + 1 parameters

of Eq. (5.12) since they have physical meaning only when positive, this adds a set

of constrains to be satis�ed. Formally speaking, in order to �nd the best �tting

solution, we solve the following constrained optimization problem:

min
P,τ̂

1

286

286∑
t=0

(
d(t)− 1

τ̂

∫ t+1

t

φ̂
(
τ̂ t̃, P

)
dt̃

)2

s.t. φ̂ (τ̂ t, P ) is a solution of Equation (5.12) with parameters set as P

φ̂ (0, P ) = d(0)

P ≥ 0, τ̂ > 0.

(8.2)

This problem is solved using the interior point method [26, 35] implemented in
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the Matlab fmincon routine. Since the problem is not convex, the optimization

algorithm may converge to a local optimal solution. To better explore the space

of the optimal solutions, we introduce a multi-start algorithm: the optimization is

then run several times starting from a randomly perturbed sample drawn from a

distribution centred in the parameter setting provided in Sportelli and Celi [174].

Since the aim of this thesis is to evaluate the above mentioned version the Har-

rod model, in Table 8.1 we report the parameters for both the original model and

three calibrations we have obtained that present qualitatively di�erent behaviours

(together with the value of their distance D for calibration 2, D is computed with

t ≤ 6). The model, calibrated with real data, may display convergence to a long-run

equilibrium (calibration 1, Fig. 8-1), divergence (calibration 2, Fig. 8-2) as well as

a lightly damped oscillatory behaviour (calibration 3, Fig. 8-3). It is worth saying

that the global optimum is obtained with calibration 1. However, with calibrations 2

and 3, we displayed sub-optimal results to provide a context for our results. In fact,

qualitatively, we obtain similar values to the ones in [174]. Moreover we agree with

this conclusion �when the value of ε is large enough, the long period dynamics of the

saving rate is such that it can generate an irregular cycle in the system only if the

net export rate is very low. On the contrary, starting from positive and meaningful

values of the net export rate, the system may simply generate a limit cycle (or at

most a double cycle) if a higher ε works together with adequate competitiveness on

the foreign markets. This is the only formal result consistent with Harrod's intuition

that a more moderate cyclical instability can emerge in an open economy compared

to a closed one� [174].
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Table 8.1: Harrod model parameters.

Given Model
Calibration

Cal. 1 Cal. 2 Cal. 3

# Parameter Given Value/Range Calibrated Value

1 α 0.5 0.28 0.29 1.09

2 ε [0.2, 1.31] 0.13 0.58 0.52

3 σ [2, 4) 1.42 1.67 2.45

4 Gf 0.03 0.03 0.00 0.54

5 C∗ 4 4.00 4.00 3.18

6 β 2.5 2.50 2.50 2.20

7 m 0.07 0.04 0.04 1.23

8 ϕ 15 15.00 15.00 14.89

9 ξ 0.18 0.18 0.18 0.20

10 µ 1.4 0.78 0.90 2.06

11 γ 1 0.56 0.57 0.36

12 δ 6.2 6.20 6.20 5.94

13 ζ 1.9 1.06 1.09 2.25

Value of D 0.38 0.71 0.55

Original data as provided in [174] and related calibrations. Ḡ = maxGn.
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Figure 8-1: Time series obtained with parameters of calibration 1, that displays
convergence to the long-run equilibrium. Legend: blue = rate of growth, red =
expected rate of growth, yellow = share of saved income, violet: trade to income
ratio. Thick line: model, normal line: data.
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Figure 8-2: Time series obtained with parameters of calibration 2, that displays
divergence from the long-run equilibrium. Legend: blue = rate of growth, red =
expected rate of growth, yellow = share of saved income, violet: trade to income
ratio. Thick line: model, normal line: data.
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Figure 8-3: Time series obtained with parameters of calibration 3, that displays
lightly damped oscillatory behaviour around the long-run equilibrium. Legend: blue
= rate of growth, red = expected rate of growth, yellow = share of saved income,
violet: trade to income ratio. Thick line: model, normal line: data.

8.2 Conclusions

The Harrod's model [79] has the merit of rearranging Keynes's ideas into a dyna-

mic framework with some additional speci�cation on the supply side. In fact �where

the warranted growth rate represents an economy's growth path on which aggregate

demand and supply remain in balance, the model's natural growth rate re�ects the

supply of productive resources and the level of technology, the long-run limit to real

output growth. The interaction between the warranted and natural growth rates pro-

vides a useful perspective for policymaking in today's environmentally-constrained

global economy. Also, since the growth of the labor force is built into the natural

growth path, the model also helps to clarify policy choices in an economy impacted
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by immigration� [183]. Therefore �supply-side policies must be developed along with

the standard Keynesian demand side policies, and the interactions between the two

require disaggregated policies to address speci�c types of investment, technological

change, and demand. That is, it is not generally possible to solve the unemployment

problem by simply expanding aggregate demand� [183]. Harrod's theory, and thereof

modelisation which built on that [195], [183], [173], [174], may thus be seen as the

link between classical economy (that stressed the importance of investment for gro-

wth) and the Keynesian approach �primarily concerned with the demand and income

generating e�ect of investment� [51]. In real life this theory was put in practice in

India. In fact, the Indian �fth �ve year plan for the years 1974�1979, was based

on a mix of a Harrod macroeconomic model and a Leontief inter-industry model,

and it was aimed at achieving both self-reliance and growth. Main priorities on the

industrial sectors were the developments of: (i) core industry, (ii) industry for ex-

port and diversi�cation, (iii) mass consumption production, (iv) small industry and

ancillary industry feeders of large industries. The target growth rate was 4.4% and,

as a result, the actual growth rate was 4.8% [51].

Having said that, to remind the importance of the model, this test shows (for

a speci�c set of parameters) that it is possible to �nd a match between Harrod's

suggestions and reality.
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Chapter 9

Final Remarks

As mentioned in the Introduction, this Thesis consists of three Parts. Part I and

Part II provides mathematical and economic background, while Part III contains the

bulk of our research on growth and business cycle.

Intentionally we have left out our research on �nancial mathematics [143], [139],

[140], [142] as this subject matter runs parallel when it comes to assessing market

stability, solvency and resilience of �nancial institutions. Future research will link

up them by integrating business cycles into �nancial models.

Back to the research we have introduced in this Thesis, in Chapter 6 we have

proposed a new version of the Kaldor model by using a form of hyperbolic tangent

instead of the usual arctg. The reasons are numerous and the Chapter gives a

full account of them all. Here we only mention that in economics growth models

(such as the Solow-Swan model) and in actuarial science and �nancial mathematics

hyperbolic functions are widely used (e.g. Gompertz�Makeham law of mortality or

law of compound interests). By considering that the investment process has di�erent

timing compared with consumption, we introduced a time delay à la Kalecki. Last
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but not least we have seen that the proposed model can accommodate external

perturbations such as shocks or perturbations (repetition).

In Chapter 7 we tried to turn to a fundamental question - is economy stochastic or

deterministic? To answer this question we applied recurrence plots and their quan-

titative description in our research provided by recurrence quanti�cation analysis

(RQA). We found out that RQA may be suitable to study business cycles and could

be used for early detection of recessions (provided the shown limitations). Moreover,

we found out that RQA is able to identify structural characteristics of time series

by discriminating �ow versus stock variables, real versus nominal data as well as net

versus gross time series. Finally, RQA seems to con�rm that di�erent paths in eco-

nomic development can have origins in the same underlying deterministic dynamic

(which is an indication of chaos).

In Chapter 8 we have dealt with the Harrod's model [79] because it connects

growth and cycle, supply and demand. The fundamental question here is if a cha-

otic economic model is able to explain reality? Therefore the Chapter is a reality

check on the fact that a) real data can be obtained by a suitable calibration of mo-

del's parameters, b) the output of the calibrated model matches with theoretical

predictions.
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Appendix A

The dataset

Time series are taken from a range of sources such as the U.S. Bureau of Economic

Analysis (BEA), IMF, the World Bank, Penn World Table by Feenstra et al. [61],

Levy and Chen (1994)[110] and the OECD as retrieved from their original dataset

or from FRED and explained in details below.

A.1 USA Recessions
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Table A.1: USA Recessions

Recessions

From To

Quarter Year Quarter Year
Q4 1948 Q4 1949
Q3 1953 Q1 1954
Q4 1957 Q1 1958
Q3 1960 Q1 1961
Q1 1970 Q4 1970
Q1 1974 Q2 1975
Q1 1980 Q2 1980
Q3 1981 Q4 1982
Q3 1990 Q1 1991
Q2 2001 Q4 2001
Q1 2008 Q3 2009

US. Bureau of Economic Analysis[21]
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A.2 World GDP data

For testing Harrod's model, annual world GDP estimate has been retrieved from the

Maddison�Penn world table [29, 62], (from 1946 to 1961). This has been linked up

withWorld Bank (https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG)

and IMF (https://www.imf.org/external/datamapper/NGDP_RPCH@WEO/OEMDC/ADVEC/

WEOWORLD) data (available from 1961 to 2018). Annual data has been changed into

quarterly via the compounding law.
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A.3 BEA data

In the following table (TableA.2) we list the time series considered for our analysis

on business cycle as retrieved from FRED. Units were transformed in percent change

from preceding period (apart from time series n. 3 for which percent change were

already taken).

Table A.2: Time series on Consumption, Income and Investment

# Time series Data points Frequency
Data range
(from to)

Type Account code/ID

1 USA PCEC 274 Quarterly 1947-01-01 to 2015-07-01 C DPCERC1a

2 USA DPCER 275 Quarterly 1947-04-01 to 2015-10-01 C DPCERL1b

3 USA GDP 274 Quarterly 1947-01-01 to 2015-07-01 Y A191RC1c

4 USA RGPDI FI 274 Quarterly 1947-04-01 to 2015-07-01 I A007RL1d

5 USA GPDI 274 Quarterly 1947-01-01 to 2015-07-01 I A006RC1e

6 USA RGPDI 275 Quarterly 1947-04-01 to 2015-10-01 I A006RL1f

a US. Bureau of Economic Analysis, Personal Consumption Expenditures [PCEC], Seasonally Adjusted Annual Rate,
Percent Change, retrieved from FRED, Federal Reserve Bank of St. Louis https://research.stlouisfed.org/

fred2/series/PCEC/, January 2, 2016.
b US. Bureau of Economic Analysis, Real Personal Consumption Expenditures [DPCERL1Q225SBEA], Seasonally Ad-
justed Annual Rate, Percent Change, retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.

stlouisfed.org/series/DPCERL1Q225SBEA, June 21, 2016.
c US. Bureau of Economic Analysis, Gross Domestic Product [GDP], Seasonally Adjusted Annual Rate, Percent Change,
retrieved from FRED, Federal Reserve Bank of St. Louis https://research.stlouisfed.org/fred2/series/GDP/,
January 3, 2016.

d US. Bureau of Economic Analysis, Real Gross Private Domestic Investment: Fixed Investment [A007RL1Q225SBEA],
Seasonally Adjusted Annual Rate, Percent Change, retrieved from FRED, Federal Reserve Bank of St. Louis https:
//research.stlouisfed.org/fred2/series/A007RL1Q225SBEA/, January 3, 2016.

e US. Bureau of Economic Analysis, Gross Private Domestic Investment [GPDI], Seasonally Adjusted Annual Rate,
Percent Change, retrieved from FRED, Federal Reserve Bank of St. Louis https://research.stlouisfed.org/

fred2/series/GPDI/, January 2, 2016.
f US. Bureau of Economic Analysis, Real Gross Private Domestic Investment [A006RL1Q225SBEA], Seasonally Adjusted
Annual Rate, Percent Change, retrieved from FRED, Federal Reserve Bank of St. Louis; [A006RL1Q225SBEA],
https://research.stlouisfed.org/fred2/series/A006RL1Q225SBEA/, June 27, 2016.
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In the following table (Table A.3) we list the time series considered for testing

Harrod's model as retrieved from FRED.

Table A.3: BEA time series.

# Time Series Data Points Frequency Data Range (from to) BEA Account Code

1 USA SAVE 287 Quarterly 1947-01-01 to 2018-07-01 A929RC1a

2 USA GPDIC1 287 Quarterly 1947-04-01 to 2018-07-01 A006RXb

3 USA NETEXP 287 Quarterly 1947-01-01 to 2018-07-01 A019RCc

4 USA GDPDEF 287 Quarterly 1947-04-01 to 2018-07-01 A191RDd

5 USA GPD 287 Quarterly 1947-01-01 to 2018-07-01 A191RCe

a U.S. Bureau of Economic Analysis, Gross Saving [GSAVE], retrieved from FRED, Federal Reserve Bank of St. Louis;

https://fred.stlouisfed.org/series/GSAVE, 20 February 2019.

b U.S. Bureau of Economic Analysis, Real Gross Private Domestic Investment (GPDIC1), retrieved from FRED, Fede-

ral Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/GPDIC1, 20 February 2019. U.S. Bureau of

Economic Analysis.

c Net Exports of Goods and Services (NETEXP), retrieved from FRED, Federal Reserve Bank of St. Louis; https:

//fred.stlouisfed.org/series/NETEXP, 20 February 2019.

d U.S. Bureau of Economic Analysis, Gross Domestic Product: Implicit Price De�ator (GDPDEF), retrieved from FRED,

Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/GDPDEF, 20 February 2019.

e U.S. Bureau of Economic Analysis, Gross Domestic Product (GDP), retrieved from FRED, Federal Reserve Bank of St.

Louis; https://fred.stlouisfed.org/series/GDP, 20 February 2019.
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A.4 Levy and Chen data - USA

In the following table (TableA.4 we list the time series on capital reconstructed as

described by Levy and Chen (1994) [110].

Table A.4: Time series on Capital - USA

# Code Terms Gross/Net Goods Method Type

1 M1BS87G Real Gross BS 1 K
2 M1CDGG Nominal Gross CDG 1 K
3 M1CDG87G Real Gross CDG 1 K
4 M2BS87G Real Gross BS 2 K
5 M2CDGG Nominal Gross CGD 2 K
6 M2CDG87G Real Gross CGD 2 K
7 M1BSG Nominal Gross BS 1 K
8 M1PDGG Nominal Gross PDG 1 K
9 M2PDG87G Real Gross PDG 2 K
10 M1BS87N Real Net BS 1 K
11 M1CDG87N Real Net CGD 1 K
12 M1PDG87N Real Net PDG 1 K
13 M2BS87N Real Net BS 2 K
14 M2PDG87N Real Net PDG 2 K

data points=175, data range=1948-91
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A.5 OECD data

Regarding the scope of our analysis we included countries that had very di�erent de-

velopment paths. OECD data are respectively quarterly GDP (percentage change)1,

investment (GFCF) (annual growth rate %)2 and saving rates (% of GDP)3.

In the following we start, �rst, by listing the data directly taken from the OECD

database (Table A.5, Table A.8) and then, the time series as retrieved from FRED

(Table A.6, Table A.7); units were transformed in percent change from preceding

period).

Table A.5: Time series on Income

# Time series Data points
Data range
(from to)

Type Country Code/ID

1 Tot Q GDP perc. c. KOR 183 1970 (Q2) - 2015 (Q4) Y Korea TQGDP PC_CHGPP KOR
2 Tot Q GDP perc. c. GBR 243 1955 (Q2) - 2015 (Q4) Y United Kingdom TQGDP PC_CHGPP GBR
3 Tot Q GDP perc. c. ESP 223 1960 (Q2) - 2015 (Q4) Y Spain TQGDP PC_CHGPP ESP
4 Tot Q GDP perc. c. JPN 222 1960 (Q2) - 2015 (Q3) Y Japan TQGDP PC_CHGPP JPN
5 Tot Q GDP perc. c. TUR 222 1960 (Q2) - 2015 (Q3) Y Turkey TQGDP PC_CHGPP TUR
6 Tot Q GDP perc. c. DEU 223 1960 (Q2) - 2015 (Q4) Y Germany TQGDP PC_CHGPP DEU
7 Tot Q GDP perc. c. ITA 223 1960 (Q2) - 2015 (Q4) Y Italy TQGDP PC_CHGPP ITA
8 Tot Q GDP perc. c. USA 275 1947 (Q2) - 2015 (Q4) Y USA TQGDP PC_CHGPP USA

Organization for Economic Co-operation and Development

Quarterly GDP Total, Percentage change, previous period, Q2 1947 � Q4 2015 Source: Quarterly National Accounts, OECD (2016)[134]

1Quarterly GDP Total, Percentage change, previous period, Q2 1947 � Q1 2016. Source: Quar-
terly National Accounts. This indicator is seasonally adjusted and it is measured in percentage
change from previous quarter and from same quarter previous year. [134]

2Investment (GFCF) Total, Annual growth rate (%), 1951 � 2014. Source: Aggregate National
Accounts, SNA 2008 (or SNA 1993): Gross domestic product. Gross �xed capital formation (GFCF)
is in million USD at current prices and PPPs, and in annual growth rates.[133]

3Saving rate Total, % of GDP, 1970 � 2014. Source: National Accounts at a Glance [135]
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Table A.6: Time series on Consumption

# Time series Data points Frequency
Data range
(from to)

Type Account code/ID

1 Private Final Cons. in Korea 179 Quarterly 1970-01-01 to 2014-07-01 C KORPFCEQDSMEIa

2 Private Final Cons. in USA 143 Quarterly 1947-01-01 to 2013-01-01 C USAPFCEQDSNAQb

3 Private Final Cons. in Italy 94 Quarterly 1991-01-01 to 2014-04-01 C ITAPFCEQDSNAQc

4 Private Final Cons. in the UK 172 Quarterly 1970-01-01 to 2012-10-01 C GBRPFCEQDSNAQd

5 Private Final Cons. in Turkey 111 Quarterly 1987-01-01 to 2014-07-01 C TURPFCEQDSMEIe

6 Private Final Cons. in Germany 179 Quarterly 1970-01-01 to 2014-07-01 C DEUPFCEQDSMEIf

7 Private Final Cons. in Spain 78 Quarterly 1995-04-01 to 2014-07-01 C ESPPFCEQDSMEIg

8 Private Final Cons. in Japan 82 Quarterly 1994-04-01 to 2014-07-01 C JPNPFCEQDSMEIh

a Organization for Economic Co-operation and Development, Private Final Consumption Expenditure in Korea c© [KORPFCEQDSMEI], retrie-
ved from FRED, Federal Reserve Bank of St. Louis https://research.stlouisfed.org/fred2/series/KORPFCEQDSMEI, June 10, 2016.

b Organization for Economic Co-operation and Development, Private Final Consumption Expenditure in United States c© [USAPFCEQDSNAQ],
retrieved from FRED, Federal Reserve Bank of St. Louis https://research.stlouisfed.org/fred2/series/USAPFCEQDSNAQ, June 10, 2016.

c Organization for Economic Co-operation and Development, Private Final Consumption Expenditure in Italy c© [ITAPFCEQDSNAQ], retrieved
from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/ITAPFCEQDSNAQ, June 21, 2016.

d Organization for Economic Co-operation and Development, Private Final Consumption Expenditure in the United Kingdom c© [GBRPFCE-
QDSNAQ], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/GBRPFCEQDSNAQ, June 21,
2016.

e Organization for Economic Co-operation and Development, Private Final Consumption Expenditure in Turkey c© [TURPFCEQDSMEI], re-
trieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/TURPFCEQDSMEI, June 21, 2016.

f Organization for Economic Co-operation and Development, Private Final Consumption Expenditure in Germany c© [DEUPFCEQDSMEI],
retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/DEUPFCEQDSMEI, June 21, 2016.

g Organization for Economic Co-operation and Development, Private Final Consumption Expenditure in Spain c© [ESPPFCEQDSMEI], retrieved
from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/ESPPFCEQDSMEI, June 21, 2016.

h Organization for Economic Co-operation and Development, Private Final Consumption Expenditure in Japan c© [JPNPFCEQDSMEI], retrieved
from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/JPNPFCEQDSMEI, June 21, 2016.
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Table A.7: Time series on Investment

# Time series Data points Frequency
Data range
(from to)

Type Account code/ID

1 Tot. Prod. of Inv. Goods for Germany 240 Quarterly 1955-01-01 to 2014-10-01 I PRMNVG01 IXOB DEUa

2 Tot. Prod. of Inv. Goods for Italy 176 Quarterly 1971-01-01 to 2014-10-01 I PRMNVG01 IXOB ITAb

3 Tot. Prod. of Inv. Goods for Spain 200 Quarterly 1965-01-01 to 2014-10-01 I PRMNVG01 IXOB ESPc

4 Tot. Prod. of Inv. Goods for Korea 140 Quarterly 1980-01-01 to 2014-10-01 I PRMNVG01 IXOB KORd

5 Tot. Prod. of Inv. Goods for Japan 240 Quarterly 1955-01-01 to 2014-10-01 I PRMNVG01 IXOB JPNe

6 Tot. Prod. of Inv. Goods for the UK 188 Quarterly 1968-01-01 to 2014-10-01 I PRMNVG01 IXOB GBRf

7 Tot. Prod. of Inv. Goods for the Euro Area 115 Quarterly 1985-01-01 to 2013-07-01 I PRMNVG01 IXOB EA17g

8 Tot. Prod. of Inv. Goods for Brazil 96 Quarterly 1991-01-01 to 2014-10-01 I PRMNVG01 IXOB BRAh

a Organization for Economic Co-operation and Development, Total Production of Investment Goods for Manufacturing for Germany c© [PRMNVG01DEQ661N],
retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/PRMNVG01DEQ661N, June 22, 2016.

b Organization for Economic Co-operation and Development, Total Production of Investment Goods for Manufacturing for Italy c© [PRMNVG01ITQ661N], retrieved
from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/PRMNVG01ITQ661N, June 22, 2016.

c Organization for Economic Co-operation and Development, Total Production of Investment Goods for Manufacturing for Spain c© [PRMNVG01ESQ661N], retrieved
from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/PRMNVG01ESQ661N, June 21, 2016.

d Organization for Economic Co-operation and Development, Total Production of Investment Goods for Manufacturing for the Republic of Korea c©
[PRMNVG01KRQ661N], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/PRMNVG01KRQ661N, June 22, 2016.

e Organization for Economic Co-operation and Development, Total Production of Investment Goods for Manufacturing for Japan c© [PRMNVG01JPQ661S], retrieved
from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/PRMNVG01JPQ661S, June 22, 2016.

f Organization for Economic Co-operation and Development, Total Production of Investment Goods for Manufacturing for the United Kingdom c©
[PRMNVG01GBQ661N], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/PRMNVG01GBQ661N, June 22, 2016.

g Organization for Economic Co-operation and Development, Total Production of Investment Goods for Manufacturing for the Euro Area c© [PRMNVG01EZQ661N],
retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/PRMNVG01EZQ661N, June 22, 2016.

h Organization for Economic Co-operation and Development, Total Production of Investment Goods for Manufacturing for Brazil c© [PRMNVG01BRQ661N],
retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/PRMNVG01BRQ661N, June 22, 2016.
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Table A.8: Time series on Income

# Code/ID Data points
Data range
(from to)

Type Country

1 B1_GE GPSA KOR Y 184 1970 (Q2) - 2016 (Q1) Y Korea
2 B1_GE GPSA GBR Y 244 1955 (Q2) - 2016 (Q1) Y United Kingdom
3 B1_GE GPSA ESP Y 224 1960 (Q2) - 2016 (Q1) Y Spain
4 B1_GE GPSA JPN Y 224 1960 (Q2) - 2016 (Q1) Y Japan
5 B1_GE GPSA TUR Y 224 1960 (Q2) - 2016 (Q1) Y Turkey
6 B1_GE GPSA DEU Y 224 1960 (Q2) - 2016 (Q1) Y Germany
7 B1_GE GPSA ITA Y 224 1960 (Q2) - 2016 (Q1) Y Italy
8 B1_GE GPSA USA Y 276 1947 (Q2) - 2016 (Q1) Y USA
9 B1_GE GPSA ICE Y 224 1960 (Q2) - 2016 (Q1) Y Iceland
10 B1_GE GPSA GRE Y 224 1960 (Q2) - 2016 (Q1) Y Greece
11 B1_GE GPSA FRA Y 224 1960 (Q2) - 2016 (Q1) Y France

B1_GE: Gross domestic product - expenditure approach, GPSA: Growth rate compared to previous quarter, seasonally adjusted, quarterly data[135].
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Table A.9: RQA tables on 55 (10 C, 11 I, 14 K, 20 Y) real time series

# Table Row VARTYPE Mean SDev Mean/SDev REC DET MAXLINE ENT TREND LAM TT PC1 PC2

1 1 1 C 1.777 0.81 2.194 29.378 85.402 61 4.294 136.25 61.948 11.65 -0.324 0.482
2 4 1 C 0.036 0.027 1.333 43.097 94.998 79 4.842 -478.416 94.018 19.367 0.834 1.778
3 4 2 C 0.008 0.007 1.143 33.81 87.074 78 4.352 -297.973 72.693 12.338 -0.013 0.606
4 4 3 C 0.002 0.007 0.286 33.161 90.138 51 3.386 -830.171 76.903 11.397 -0.507 1.764
5 4 4 C 0.007 0.011 0.636 35.871 87.623 119 4.602 -269.715 77.533 17.028 0.377 -0.110
6 4 5 C 0.104 0.07 1.486 37.327 93.103 70 4.641 -1033.278 83.873 15.057 0.437 1.432
7 4 6 C 0.012 0.011 1.091 35.559 91.303 77 4.803 -375.587 79.913 16.398 0.421 0.933
8 1 2 C 3.628 3.705 0.979 36.367 83.902 61 4.351 -37.051 66.174 12.537 -0.128 0.871
9 4 7 C 0.012 0.012 1.000 31.714 87.231 46 4.295 -1085.41 62.903 11.415 -0.244 1.118
10 4 8 C 0.003 0.009 0.333 33.79 81.644 32 4.206 -665.148 67.68 18.212 -0.497 1.116
11 1 5 I 1.861 4.474 0.416 31.876 85.859 75 4.4 -28.101 69.081 13.577 -0.112 0.391
12 1 4 I 4.754 9.352 0.508 29.896 83.641 86 4.332 62.648 68.847 12.848 -0.246 -0.143
13 5 8 I 0.014 0.084 0.167 21.259 78.507 62 3.377 -31.291 1.544 6 -1.293 -0.371
14 5 3 I 0.017 0.166 0.102 36.92 92.653 158 4.983 62.794 0.558 9.25 0.962 -0.535
15 5 7 I 0.01 0.106 0.094 46.648 97.998 101 4.926 22.772 -1.000 -1.000 1.202 1.836
16 5 2 I 0.013 0.148 0.088 33.509 95.903 162 5.375 85.122 -1.000 -1.000 1.186 -0.766
17 5 5 I 0.019 0.04 0.475 36.548 91.517 147 4.654 -346.672 82.689 12.85 0.697 -0.303
18 5 4 I 0.031 0.101 0.307 36.625 95.962 92 4.884 -30.778 -1.000 -1.000 0.740 1.082
19 5 6 I 0.004 0.055 0.073 29.899 85.265 166 4.454 -171.536 11.062 8.27 0.229 -1.648
20 1 6 I 6.652 23.279 0.286 36.854 90.155 59 4.554 -16.148 73.575 14.389 0.218 1.399
21 5 1 I 0.014 0.106 0.132 45.291 96.838 196 5.862 6.948 0.71 8 1.989 -0.656
22 2 1 K 0.795 0.213 3.732 40.636 96.762 164 4.646 -177.904 95.871 13.835 1.102 0.128
23 2 2 K 2.063 1.578 1.307 49.091 97.757 126 5.504 -550.28 97.38 32.02 1.664 1.263
24 2 3 K 1.326 0.709 1.870 46.6 97.335 155 4.868 -91.22 97.034 16.142 1.385 0.725
25 2 4 K 0.795 0.218 3.647 40.31 96.296 164 4.614 -187.832 93.601 13.948 1.058 0.077
26 2 5 K 2.065 1.63 1.267 50.133 97.803 126 5.626 -563.075 97.464 34.254 1.759 1.296
27 2 6 K 1.351 0.709 1.906 46.031 96.965 154 4.859 -79.771 95.36 15.629 1.344 0.673
28 2 7 K 1.982 1.262 1.571 32.326 91.168 85 4.536 30.812 81.613 15.054 0.217 0.625
29 2 8 K -2.227 1.332 -1.672 39.81 92.865 70 4.766 -64.058 85.803 17.326 0.569 1.551
30 2 10 K 0.8 0.208 3.846 41.086 96.852 164 4.703 -199.62 96.006 13.791 1.148 0.147
31 2 11 K 1.351 0.669 2.019 46.282 97.062 164 4.92 -84.862 95.369 16.497 1.429 0.476
32 2 12 K 1.087 0.508 2.140 41.227 95.608 164 4.64 -26.505 95.948 13.481 1.074 0.078
33 2 13 K 0.8 0.214 3.738 40.916 96.152 164 4.645 -197.501 95.159 13.303 1.087 0.098
34 2 14 K 1.102 0.495 2.226 41.636 95.808 165 4.637 -45.891 94.458 13.881 1.123 0.112
35 2 15 K 1.085 0.517 2.099 40.65 95.509 164 4.569 -6.188 94.382 12.881 1.017 0.055
36 1 3 Y 1.718 1.023 1.679 30.557 89.043 81 4.619 -43.274 78.851 16.586 0.101 0.350
37 3 1 Y 1.797 1.794 1.002 30.968 87.728 52 4.468 -374.438 78.095 15.104 -0.138 0.910
38 3 2 Y 0.668 1.037 0.644 34.246 86.134 81 4.403 -79.834 83.786 23.891 0.003 0.477
39 3 3 Y 0.948 1.067 0.888 38.779 92.614 74 5.444 -215.569 90.229 25.694 0.875 1.084
40 3 4 Y 1.043 1.342 0.777 33.352 90.282 68 4.896 -353.221 76.736 15.068 0.316 0.814
41 3 5 Y 1.106 1.975 0.560 41.844 88.807 100 4.905 -12.32 86.814 20.025 0.679 0.705
42 3 6 Y 0.631 1.146 0.551 31.472 79.052 59 4.457 -144.772 63.676 14.243 -0.429 0.071
43 3 7 Y 0.688 1.049 0.656 35.618 84.17 94 5.118 -345.894 78.936 18.107 0.378 -0.146
44 3 8 Y 0.87 1.043 0.834 28.543 85.44 61 4.468 -58.462 72.342 15.107 -0.264 0.347
45 6 1 Y 1.779 1.787 0.996 31.074 88.582 53 4.422 -376.179 78.704 15.211 -0.120 0.991
46 6 6 Y 0.631 1.146 0.551 31.472 79.052 59 4.457 -144.772 63.676 14.243 -0.429 0.071
47 6 11 Y 0.733 1.211 0.605 61.613 93.222 163 4.908 -388.96 92.733 24.88 1.767 1.359
48 6 7 Y 0.685 1.05 0.652 35.392 83.743 93 5.015 -343.31 77.453 17.654 0.299 -0.136
49 6 4 Y 1.042 1.342 0.776 33.322 90.439 68 4.854 -352.012 77.334 14.95 0.301 0.843
50 6 3 Y 0.951 1.068 0.890 38.794 92.772 74 5.434 -215.298 89.832 25.877 0.876 1.103
51 6 2 Y 0.67 1.036 0.647 34.181 86.195 81 4.429 -76.604 83.343 23.523 0.016 0.467
52 6 5 Y 1.104 1.974 0.559 41.879 88.925 100 4.897 -11.964 86.957 19.855 0.681 0.721
53 6 8 Y 0.874 1.048 0.834 28.492 85.82 61 4.436 -59.29 71.393 14.937 -0.267 0.389
54 6 9 Y 0.938 1.872 0.501 36.055 94.132 102 5.23 -361.949 94.077 21.774 0.864 0.536
55 6 10 Y 0.916 2.599 0.352 31.693 92.659 69 5.28 191.97 86.792 35.778 0.546 0.708

Table and row respectively indicate relevant time series considered

PC1 and PC2 are calculated on REC, DET, MAXLINE and ENT, Parameters: LAG=1, EMB=10, EUCLIDEAN DIST=3, MEANDIST=2, RADIUS=40, LINE=5

REC (percent recurrence) = # recurrent points within the set threshold (i.e., RADIUS) / # total points

LAM (percent laminarity) = # recurrent points forming vertical lines / # REC. Reported as -1.000 if # REC=0

TT (trapping time) = mean vertical line length. Reported as -1.000 if # LINE vertical=0
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