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We demonstrate the rise-and-fall of multiple pseudogaps in the Bardeen-Cooper-Schrieffer-Bose-
Einstein-condensation (BCS-BEC) crossover in two-band fermionic systems having different pairing
strengths in the deep band and in the shallow band. The striking features of this phenomenon are
an unusual many-body screening of pseudogap state and the importance of pair-exchange couplings,
which induces multiple pseudogap formation in the two bands. The multi-band configuration sup-
presses pairing fluctuations and the pseudogap opening in the strongly-interacting shallow band
at small pair-exchange couplings by screening effects, with possible connection to the pseudogap
phenomenology in iron based superconductors. On the other hand, the multiple pseudogap mecha-
nism accompanies with the emergence of binary preformed Cooper pairs originating from interplay
between intra-band and pair-exchange couplings.

PACS numbers: 03.75.Ss, 74.20.-z, 74.25.-q

The discovery of unconventional superconductors,
which started with heavy fermions, followed by organic
superconductors, and then by cuprate compounds, has
prompted an era of tremendous growth of activities in
condensed matter research [1, 2]. The complex struc-
ture of the order parameter in these systems brought
a plethora of unique phenomena and effects, with no
counterparts in conventional superconductors, such as
a broken time-reversal symmetry, collective modes, and
an unusual Josephson effect [3–5]. The new degrees of
freedom in multi-component and multi-band supercon-
ductors has been anticipated to be a promising root to-
ward the realization of room-temperature superconduc-
tivity [6]. Such unconventional superconductors can ex-
hibit anomalous normal state characteristics above their
critical temperature Tc, which are interpreted as the
pseudogap state [7, 8], corresponding to the presence of
gap-like features above Tc but with a finite spectral inten-
sity at low frequencies [9]. The origin of the pseudogap is
a key for understanding of the pairing glue in unconven-
tional superconductors. Pseudogap effects have also been
discussed in the context of the Bardeen-Cooper-Schrieffer
(BCS) to Bose-Einstein condensation (BEC) crossover,
where the BCS state of overlapping Cooper pairs changes
continuously to the BEC of tightly bound molecules with
increasing attractive interaction [13–22]. It is experimen-
tally achieved in ultracold Fermi atomic gases exploiting
Fano-Feshbach resonances [23–25]. Also ultracold Fermi
gases in the BCS-BEC crossover regime exhibit strong
pairing fluctuations and pseudogap effects [26–29].

Among unconventional superconductors, the recently

discovered iron-based superconducting compounds at-
tract attention, since some of them are expected to place
in the BCS-BEC crossover regime due to their large ra-
tio between the superconducting gap and the Fermi en-
ergy [30–33]. This new class of superconductors opens
a new frontier for the study of the multi-band BCS-
BEC crossover, where non-trivial features have been dis-
cussed [34–47]. Like for other unconventional super-
conductors, there is now expanding experimental evi-
dence that the pseudogap is realized in iron-based com-
pounds [48–52], despite some reports about the miss-
ing of strong pairing fluctuations and pseudogap ef-
fects [53, 54]. In order to understand the controver-
sial pseudogap physics in multiband and multicompo-
nent systems like iron-based superconductors, a unified
description of the multi-band BCS-BEC crossover is re-
quired. Such a theory can be useful to describe also
many-body physics in Yb Fermi gases near the orbital
Feshbach resonance [55–63], thus bridging these atomic
systems with multiband superconductors. The multi-
channel many-body theory is also of importance to un-
veil pairing properties in nanostructured superconduc-
tors [34, 35, 64] and electron-hole systems [65–67].

In this article, we develop a theory of the two-band
BCS-BEC crossover in the normal state above Tc based
on the T -matrix approach [68], which has been suc-
cessfully applied to strongly interacting attractive Fermi
gases [69]. We address the single-particle density of states
(DOS) and elucidate competing mechanisms of screening
and enhancement of the pseudogap in two-band systems.
The screening of pairing fluctuations and resulting reduc-
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FIG. 1: (a) Two-band electronic structure considered in this
work. The two bands (i = 1, 2) are separated in energy by
E0. Resulting Fermi energies EF,i have the relation EF,1 =
EF,2 + E0. (b) Illustration of how the interactions Uij work
in our configuration. While U11 and U22 cause intra-band
Cooper pairing in each band, U12 (= U21) introduces pair-
tunneling between the two bands. (c) and (d) show Feynman
diagrams for the self-energy Σi and the multi-band T -matrix
Γij in our T -matrix approach, respectively.

tion of the pseudogap regime are found in our results at
the unitarity limit of the shallow band for weak pair-
exchange couplings. This result suggests that, in the
two-band system, the Fulde-Ferrel-Larkin-Ovchinnikov
state [70, 71], tending to be disrupted by pairing fluctua-
tions [72, 73], is more stable compared to the single-band
case, as observed in recent experiments [74, 75].

On the other hand, the strong pair-exchange coupling
leads to multiple pseudogap and the emergence of binary
preformed Cooper pairs in the crossover regime. This is
in contrast with the pseudogap in ultracold Fermi gases,
which is induced by strong intra-band couplings. Here-
after, we take h̄ = kB = 1 and unit volume.

As shown in Fig. 1(a), we consider a two-band model
where the second shallow band (i = 2) is coupled with
the first deep band (i = 1) [76, 77], as described by the
Hamiltonian [78]

H =
∑

k,σ,i

ξk,ic
†
k,σ,ick,σ,i +

∑

i,j

Uij

∑

q

B†
q,iBq,j, (1)

where ξk,i = k2/(2mi) − µ + E0δi,2 is the kinetic en-
ergy measured from the chemical potential µ with the
energy separation E0 between two bands and δi,2 is
the Kronecker delta. We use equal effective masses
m = m1 = m2, for simplicity. ck,σ,i and Bq,i =
∑

k c−k+q/2,↓,ick+q/2,↑,i are spin-σ =↑, ↓ fermion and
spin-singlet pair annihilation operators in the i-band, re-
spectively. In this work, we use E0 = 0.6EF,1 where

EF,i = (3π2ni)
2

3 /(2m) is the non-interacting Fermi en-
ergy in the i-band, defined in terms of the number density
ni. The intra-band couplings Uii can be characterized in

terms of the intra-band scattering lengths aii as

m

4πaii
=

1

Uii
+

k0
∑

k

m

k2
, (2)

where k0 is the momentum-cutoff taken to be 100kF,t.
Here, kF,t ≡

√

2mEF,t is the Fermi wavevector associ-

ated with the total Fermi energy EF,t = (3π2n)2/3/(2m),
defined in terms of the total number density n. In
a similar way, one defines the Fermi wavevectors kF,i
in each band, which are used to define the dimen-
sionless intra-band coupling strengths (kF,1a11)

−1 and
(kF,2a22)

−1. In this work, we use (kF,1a11)
−1 ≤ −2

and −1 ≤ (kF,2a22)
−1 ≤ 1. With this choice of cou-

plings, pairs forming in the deep band (i = 1) have a
BCS character, while the BCS-BEC crossover is tuned in
the shallow band (i = 2). Although we consider the 3D
system, it is expected to be relevant to FeSe multi-band
superconductors since recent experiments exhibit a 3D
wave-vector dependence of the superconducting gap [79],
indicating that a 3D theoretical approach is applicable.
In addition, the strong-coupling regime from the unitar-
ity to the BEC side in 3D would be similar to the 2D
counterpart due to the presence of the two-body bound
state. For convenience, we also introduce a dimension-
less pair-exchange coupling λ12 = U12(k0/kF,t)

2n/EF,t

where U21 = U12 [76, 77].
The i-band self-energy in the multi-band T -matrix ap-

proach reads

Σi(k, iωs) = T
∑

q,iνl

Γii(q, iνl)G
0
i (q − k, iνl − iωs), (3)

where ωs = (2s + 1)πT and νl = 2lπT (s and l integer)
are fermionic and bosonic Matsubara frequencies, respec-
tively. G0

i (k, iωs) = [iωs − ξk,i]
−1 is the bare Green’s

function. The many-body T -matrix {Γij}2×2, which
sums up the ladder-type diagram shown in Fig. 1(d), is
given by

Γij(q, iνl) = Uij +
∑

ℓ=1,2

UiℓΠℓℓ(q, iνl)Γℓj(q, iνl), (4)

where Πℓℓ is

Πℓℓ(q, iνl) = −T
∑

p,iωs

G0
i (p+ q, iωs + iνl)G

0
i (p,−iωs).(5)

Fixing µ by solving the number equation n = n1 + n2

with

ni = 2T
∑

k,iωs

Gi(k, iωs), (6)

where Gi(k, iωs) = [iωs − ξk,i − Σi(k, iωs)]
−1 is

the dressed Green’s function, we obtain the super-
fluid/superconducting critical temperature Tc from the

Thouless criterion [80] [Γ22(q = 0, iνl = 0)]
−1

= 0.
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FIG. 2: DOS Ni=1,2(ω) in the multi-band BCS-BEC
crossover. The left (right) panels show N1(ω) (N2(ω))
at weak coupling (kF,2a22)

−1 = −1 [(a1), (a2)], unitar-
ity (kF,2a22)

−1 = 0 [(b1), (b2)], and strong coupling
(kF,2a22)

−1 = 1 [(c1), (c2)]. In all panels, we fix (kF,1a11)
−1 =

−4. The dimensionless pair-exchange coupling is taken as
λ12 = 0, 2, and 4. For reference, we present the spectral
weight A2(k, ω)EF,t = −ImG2(k, ω + iδ)EF,t/π at λ12 = 0.5
in the inset of panel (b2). The inset of (c2) shows N2(ω) at
λ12 = 4 because of the large energy gap. N0 = mk2

F,t/(2π
2)

is the non-interacting DOS associated with total number den-
sity n.

[While, in the presence of U12, all the matrix elements
Γij(q = 0, iνl = 0) diverge simultaneously at Tc, in the
case of vanishing U12 only Γ22 diverges, due to our choice
of the coupling strengths.] We numerically evaluated the
Matsubara frequency sum in Eqs. (3) and (6) with finite
cutoffs [3] and checked their convergences [82].
The DOS is obtained from

Ni(ω) = − 1

π

∑

k

ImGi(k, iωs → ω + iδ), (7)

where we take δ = O(10−3)EF,t. For simplicity, the ana-
lytic continuation is numerically performed by using the
method of Padè approximants [82, 83] (see Supplemental
Material).
Figure 2 shows the DOS Ni(ω) in the multi-band BCS-

BEC crossover. In the case of λ12 = 0, while the small
intraband coupling in the deep band (kF,1a11)

−1 = −4
does not suppress a square-root behavior typical of non-
interacting gases, N0(ω) ∝ √

ω + µ, N2(ω) exhibits the
pseudogap around ω = 0 [2] due to strong pairing fluc-
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FIG. 3: The band-dependent pseudogap temperatures T ∗

i=1,2

and the critical temperature Tc as functions of λ12. The
intra-band couplings are chosen as (kF,2a22)

−1 = 0 and
(kF,1a11)

−1 = −2. The regions where Tc < T < T ∗

1 and
T ∗

1 < T < T ∗

2 are double-pseudogap (DPG) and single-
pseudogap (SPG) regimes, respectively. The inset shows the
ratio (T ∗

2 − Tc)/Tc as a function of λ12 which characterizes
how the pseudogap regime in the shallow band is shrunk by
multi-band effects. The horizontal dashed line in the inset
shows the single-band counterpart.

tuations associated with U22. It is consistent with the
results obtained in the single-band counterpart. On the
other hand, in the presence of the non-zero pair-exchange
coupling, N1(ω) also shows the pseudogapped DOS even
with the weak intraband coupling. This is thus a “pair-
exchange-induced pseudogap”. In addition, the coupling
λ12 enlarges the pseudogap inN2(ω). The pair-exchange-
induced pseudogap in N1(ω) becomes larger when the
intra-band coupling in the shallow band (kF,2a22)

−1 gets
stronger. Eventually, at very strong pair-exchange cou-
pling such as λ12 = 4, both N1(ω) and N2(ω) show a
fully-gapped structure due to the large two-body bind-
ing energy.

These features can be qualitatively understood as fol-
lows. Quite generally, the size of pseudogap effects in
the band i can be roughly estimated by the energy scale
∆2

∞,i = −T
∑

q,iνl
Γii(q, iνl) introduced in Ref. [85] for a

single band, and here generalized to the multiband case.
Even though in general ∆∞ is related to the so-called
Tan’s contact C [86], it was shown in Ref. [87] that in
the intermediate crossover regime and close to Tc, ∆∞

is close to the pseudogap scale energy determined from
N(ω). In the two-band case in the presence of a finite
λ12, Γ11(q, iνl) and Γ22(q, iνl) diverge simultaneously at
Tc, for q = 0 and νl = 0. For this reason, the scales ∆∞,1

and ∆∞,2 become interconnected, explaining in this way
the pair-exchange-induced pseudogap in the deep band.

To characterize the pseudogap state, we introduce the
band-dependent pseudogap temperatures T ∗

i=1,2 where
the minimum of Ni(ω) around ω = 0 disappears [26].
Figure 3 shows the obtained phase diagram at unitar-
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FIG. 4: The pseudogap sizes Epg,i estimated from the single-
particle DOS at T = Tc (symbols) are compared with the
mean-field gaps ∆0,i at T = 0 (dashed lines) as a function of
the dimensionless pair-exchange coupling λ12. The intraband
interaction parameters are chosen as (kF,2a22)

−1 = 0 and
(kF,1a11)

−1 = −2. The inset shows the chemical potential
µi ≡ µ− E0δi,2 referred to the bottom of each band.

ity (crossover regime) of the shallow band coupled with
the weakly interacting deep band, where (kF,2a22)

−1 = 0
and (kF,1a11)

−1 = −2. In this figure, we plot the criti-
cal temperature Tc and pseudogap temperatures T ∗

1,2 as
functions of λ12. While the single pseudogap (SPG) ap-
pears in the region T ∗

1 < T < T ∗
2 , the double pseudo-

gaps (DPG) can be found below T = T ∗
1 . In the case

of vanishing λ12, since the deep band does not exhibit
pseudogap behavior, we obtain T ∗

1 = Tc. However, if λ12

is shifted from zero to strong coupling, T ∗
1 deviates from

Tc due to the interband pairing fluctuations. Thus, the
pseudogap regime in the deep band (Tc < T < T ∗

2 ) origi-
nates purely from the pseudogap induced by the transfer
of pair-fluctuations due to the pair-exchange (rise of in-
duced pseudogap).

The inset of Fig. 3 shows the ratio (T ∗
2 − Tc)/Tc as a

function of λ12. For a reference, we plot in this figure
the numerical value obtained in the single-band coun-
terpart at the unitarity limit. The pseudogap regime
(Tc < T < T ∗

2 ) in the two-band case with small λ12

is clearly reduced compared to the single-band counter-
part (fall of pseudogap). This tendency is consistent with
the experiments for FeSe multi-band superconductors in
the BCS-BEC crossover regime [53, 54] as well as with
previous theoretical work [44, 76]. This screening effect
is related to the Pauli-blocking produced by the large
Fermi surface in the deep band for our two-band config-
uration [39]. However, such a regime is destroyed if one
shifts λ12 to the strong-coupling regime (λ12 >∼ 1) due to
strong interband pairing fluctuations.

Figure 4 shows a comparison between the pseudogap
energies Epg,i obtained from our T -matrix approach at
T = Tc and the mean-field gaps ∆0,i at T = 0 [77].
Here, Epg,i is the half width of the dip structure in Ni(ω)
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FIG. 5: Two-band BCS-BEC crossover phase diagram in the
temperature vs intraband coupling (kF,2a22)

−1 plane for a
strong pair-exchange coupling λ12 = 2 and (kF,1a11)

−1 = −2.
Tµ=0 shows the temperature where µ = 0.

around ω = 0. Specifically, we define Epg,i = (ω′
i −

ωLM,i)/2 where ωLM,i < 0 is the frequency where Ni(ω)
has a local maximum due to the pseudogap and ω′

i > 0 is
determined such that Ni(ω

′
i) = Ni(ωLM,i) [26, 88]. The

dependence of Epg,i and ∆0,i on λ12 are qualitatively
similar. As for the single-band BCS-BEC crossover, the
pseudogap can be regarded as half the energy needed to
excite a single-particle by breaking a preformed Cooper
pair. The coexistence and different magnitudes of the
pseudogap energies Epg,1 and Epg,2 indicates the emer-
gence of binary preformed Cooper pairs. It is consistent
with our prediction of binary molecular BEC with differ-
ent pair sizes in the strong-coupling regime [76]. Indeed,
different intraband pair-correlation lengths, correspond-
ing to different Cooper pair size in each band, are ob-
tained also within the mean-field approach at T = 0 [77].
In addition, this picture is supported by the emergence
of binary Tan’s contacts characterizing two kinds of pair
correlations in the two-band system [68]. The finding
that Epg,i is smaller compared to ∆0,i is also consis-
tent with the single-band result [88]. We note that
in the strong pair-exchange coupling regime λ12 >∼ 1.5,
µ2 = µ − E0 changes its sign (where µi = µ − E0δi,2 is
the chemical potential measured from the bottom of each
band) due to the large two-body binding energy associ-
ated with U22 as well as with λ12 (see the inset of Fig. 4).
In such a regime, Ni(ω) exhibits a fully-gapped structure
and Epg,i progressively approaches the two-body binding
energy. Although not shown here, µ1 also changes sign
in the stronger coupling regime.

Finally, we report the phase diagram of the two-band
BCS-BEC crossover for strong pair-exchange coupling
λ12 = 2, as shown in Fig. 5. At weak intra-band cou-
plings, two pseudogaps simultaneously open in the two
bands. These multiple pseudogaps originate from the
strong pair-exchange coupling. On the other hand, when
the intraband coupling in the shallow band increases, the
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two pseudogap temperatures deviate from each other, in-
dicating multiple energy scales of pseudogaps as shown in
Fig. 4. This multiple pseudogap regime evolves eventu-
ally into a molecular binary Bose gas regime. Although
the boundaries between these regimes are not sharp, the
temperature Tµ=0 at which the chemical potential µ goes
below the bottom of the deep band could be used as a
qualitative crossover line separating the two regimes at
low temperature.

In conclusion, we have demonstrated how multi-
ple pseudogaps appear and when pair fluctuations are
screened in the two-band BCS-BEC crossover at arbi-
trary pair-exchange couplings. While the pair fluctua-
tions inducing the pseudogap are screened by multi-band
effects at weak pair-exchange couplings, this screening
regime turns into multiple pseudogaps at strong pair-
exchange due to interband pairing fluctuations. We have
constructed the phase diagram of the two-pseudogap
state in the temperature and pair-exchange plane, and
show the pseudogap temperatures where single and mul-
tiple pseudogaps appear in the single-particle density of
states. Examining the pseudogap temperature in the
shallow band, we have confirmed that the screening of
pairing fluctuations due to the multi-band nature can be
found in the BCS-BEC crossover regime. Furthermore,
the different magnitudes of the pseudogaps indicates the
presence of binary preformed Cooper pairs with different
binding energies and sizes, as also confirmed from the
comparison between the pseudogap size at the critical
temperature and the mean-field energy gaps at T = 0.

We believe our results to be quite general: by relax-
ing, if required, some restrictions of the model consid-
ered here, such as the fixed energy shift and the electron-
like character of bands, the idea of multi-channel pair-
ing fluctuations could be applied to a variety of strongly
correlated multi-component systems such as cold atoms,
electron-hole systems, nuclear matter, and nanostruc-
tured materials.
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Shibauchi, J. Wosnitza, N. E. Hussey, and Y. Matsuda,
Evidence for an Fulde-Ferrell-Larkin-Ovchinnikov State
with Segmented Vortices in the BCS-BEC-Crossover Su-
perconductor FeSe, Phys. Rev. Lett. 124, 107001 (2020).

[75] S. Molatta,D. Opherden,J. Wosnitza, Z. T. Zhang, T.
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proximants and the cutoff dependence.

[83] H. J. Vidberg and J. W. Serene, Solving the Eliashberg
equations bu means of N-point Padé approximants, J. Low
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Supplemental Materials: Mechanism of screening or enhancing the pseudogap
throughout the two-band Bardeen-Cooper-Schrieffer to Bose-Einstein condensate

crossover

ANALYTIC CONTINUATION WITH THE PADÉ APPROXIMANTS
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FIG. S1: Comparison of the DOS Ns(ω) in the single-band system at T = Tc, 1.2Tc, and 1.4Tc obtained from the exact
analytical continuation from Ref. [S1] as well as the Padé approximants (thin curves). The parameters are set at (kFa)

−1 = 0.

Ns,0 = m
√

2mEF,s/(2π
2) is the DOS at the Fermi level for a non-interacting Fermi gas at T = 0.

In this Supplemental Material, we show the validity of the Padé approximants, which assume that Σi(p, z) with
the complex frequency argument z for given p is in the form

Σi(p, z) =
α1 + α2z + · · ·+ αjz

j−1

β1 + β2z + · · ·+ βjzj−1 + zj
. (S1)

The parameters {αk, βk} (k = 1, · · · , j) are determined by the 2j numerical values of Σi(p, iωℓ) along the imaginary
axis. In this work, we use 200 (= 2j) data.
In the T -matrix approach, one can analytically perform the analytic continuation [S1]. The imaginary part of the

retarded self-energy in this approximation can be written as

ImΣi(k, ω) = −
∑

q

ImΓii(q, ω + ξq−k,i) [b(ω + ξq−k,i) + f(ξq−k,i)] , (S2)

where b(x) = [ex/T − 1]−1 and f(x) = [ex/T + 1]−1 are Bose and Fermi distribution functions, respectively. The real
part of the self-energy can be obtained via the Kramers-Kronig relation

ReΣi(k, ω) =
1

π
P
∫ ∞

−∞

dω′ ImΣi(k, ω)

ω′ − ω
, (S3)

where P is the Cauchy principal value. To see how the Padé approximants work in the analytic continuation procedure,
we compare the DOS with the exact analytic continuation in Ref. [S1] and that with the Padé approximants in the
T -matrix approach. For simplicity, we consider the single-band system (i = s). Here we define the non-interacting

DOS at the Fermi level N0,s =
m
√

2mEF,s

2π2 where EF,s is the Fermi energy at T = 0 in the single-band system.
Figure S1 shows the DOS at unitarity in the single-band system at T = Tc, 1.2Tc, and 1.4Tc. The results with
the Padé approximants represented by the thin curves show an excellent agreement with those with exact analytic
continuation done in Ref. [S1] even near T = Tc.
For comparison, we calculate the single-particle Green’s function Gi(r, τ) with the spatial position r and the

imaginary time τ , which is given by

Gi(r, τ) = T
∑

k,iωl

Gi(k, iωl)e
i(k·r−ωlτ). (S4)
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FIG. S2: Comparison of the DOS Ns(ω) obtained from the Padé approximants (solid curve) and −Gs(r = 0, τ = β/2)β/π =
0.405N0,s (dashed line) in the single-band model at T = Tc = 0.243TF,s in the unitarity limit. We also plot the square-root
type DOS in a non-interacting counterpart and −G0

s (r = 0, τ = β/2)β/π = 0.560N0,s (long-dashed line). The dash-dotted
curve shows the weight factor 1/ [2 cosh(βω/2)] in Eq. (S5).

At sufficiently low temperature, it is related to Ni(ω = 0) as [S2]

Gi(r = 0, τ = β/2) = −1

2

∫ ∞

−∞

dω
Ni(ω)

cosh(βω/2)

= −1

2
Ni(0)

∫ ∞

−∞

dω

cosh(βω/2)

[

1 +
ω

Ni(0)

dNi(ω)

dω

∣

∣

∣

∣

ω=0

+ · · ·
]

≃ −π

β
Ni(ω = 0), (S5)

where β = 1/T is the inverse temperature. The correction originating from the leading-order term is proportional to
T 2, which is neglected for simplicity. We evaluate Gi(r = 0, τ = β/2) as

Gi(r = 0, τ) =
∑

k

e−ξk,iτ [f(ξk,i)− 1]

+T
∑

k,iωl

[

Gi(k, iωl)−G0
i (k, iωl)

]

e−iωlτ , (S6)

where the Matsubara frequency sum is evaluated numerically (see Sec. ).
First, we consider the single-band case. Figure S2 shows the comparison between Ns(ω) and Gs(r = 0, τ = β/2)β/π

whereGs is the single-particle Green’s function in the single-band Fermi gas. In a non-interacting case with same µ and
T , we obtain G0

s (r = 0, τ = β/2)β/π = 0.560N0,s, which is close to N0,s(ω = 0) = m
√
2mµs/2π

2 ≃ 0.606N0,s where
µs is the single-band chemical potential. The difference between them originates from the leading-order correction in
Eq. (S5). In the strongly interacting case, we obtain Gs(r = 0, τ = β/2)β/π ≃ 0.405N0,s. Although it is smaller than
the non-interacting counterpart, it is larger than the result with the analytic continuation with the Padé approximants
given by Ns(ω = 0) = 0.186N0,s. This is also expected to be the leading-order corrections in Eq. (S5), which involve
not only Ns(ω = 0) but also Ns(ω 6= 0) multiplied by the weight factor 1/[2 cosh(βω/2)] shown in Fig. S2. To see
this, we evaluate the same quantity using Ns(ω) obtained from the analytic continuation with the Padé approximants,
resulting in Gs(r = 0, τ = β/2)β/π ≃ 0.408N0,s Indeed, it is close to that obtained from Eq. (S6) with the Matsubara
Green’s function Gs(k, iωl).
Figure S3 shows the comparison between Ni(ω) obtained by the analytic continuation with the Padé approximants

and −Gi(r = 0, τ = β/2)β/π in a strongly interacting two-band Fermi gas with (kF,1a11)
−1 = −2, (kF,2a22)

−1 = −0.6,
and λ12 = 2 at T = Tc. In the weakly-interacting deep band (i = 1), we obtain −G1(r = 0, τ = β/2)β/π ≃ 0.815N0

which is close to the non-interacting counterpart given by 0.808N0 due to the cancellation of two contributions, that
is, the pseudogap suppression and the band-renormalization enhancement of the DOS. In the strongly-interacting
shallow band, we obtain −G2(r = 0, τ = β/2)β/π ≃ 0.317N0 which is smaller than the non-interacting counterpart
given by 0.397N0. However, it is larger than the results of Padé approximants given by N2(ω = 0) = 0.144N0 due to
the contribution from N2(ω 6= 0).
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FIG. S4: The real part of the self-energies ReΣi(p = 0, iωl = iπT ) in (a) the deep band (i = 1) and the shallow band (i = 2)
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−1 = 0, and λ12 = 1.

MATSUBARA FREQUENCY SUM

We evaluate numerically the Matsubara frequency sum in the self-energy Σi(p, iωl) as

Σi(p, iωl) = Uiin
0
i + T

∑

p

|ℓ|≤ncut,b
∑

ℓ

[Γii(q, iνℓ)− Uii]G
0
i (q − p, iνℓ − iωl), (S7)

where n0
i is the number density for a non-interacting gas and we introduce the cutoff number ncut,b. We take

ncut,b = 1000 ∼ 50000, depending on the coupling parameters as well as the temperature. In addition, we add the
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contribution beyond ncut,b by approximately transforming the summation into continuous integration [S3]. In Fig. S4,
we show the dependence by ncut,b of the typical self-energy Σi(p = 0, iωl = iπT ) at T = Tc with (kF,1a11)

−1 = −2,
(kF,2a22)

−1 = 0, and λ12 = 1. We find sufficient convergences of them within the relative errors of 0.01% in both
bands.
We note that the Matsubara frequency sum in Πℓℓ(q, iνl) can analytically be performed as

Πℓℓ(q, iνl) =
∑

p

1− f(ξp+q,ℓ)− f(ξp,ℓ)

iνl − ξp+q,ℓ − ξp,ℓ
. (S8)

In the case of the number density ni, we decompose the equation with the non-interacting density n0
i , the NSR

correction δnNSR
i [S4], and the remaining part δni as

ni = 2
∑

k

f(ξk,i) + 2T
∑

k,iωn

{

G0
i (k, iωn)

}2
Σi(k, iωn)

+2T
∑

k,iωn

[

Gi(k, iωn)−G0
i (k, iωn)−

{

G0
i (k, iωn)

}2
Σi(k, iωn)

]

≡ n0
i + δnNSR + δni. (S9)

Using the same technique in Eq. (S8), we can analytically perform the fermionic Matsubara summation in δnNSR
i

as [S4]

δnNSR
i = −T

∑

q,iνl

Uii[1 + Uī̄iΠī̄i(q, iνl)]− U12U21Πī̄i(q, iνl)

[1 + U11Π11(q, iνl)][1 + U22Π22(q, iνl)]− U12U22Π11(q, iνl)Π22(q, iνl)

∂Πii(q, iνl)

∂µ
,

where ī denotes the opposite band index of i (e.g. ī = 1 when i = 2). We note that the bosonic Matsubara frequency
sum in Eq. (S10) is numerically evaluated with the same technique used for the self-energy calculation in Eq. (S7).
When we perform the fermionic Matsubara sum in δni, we introduce the cutoff number ncut,f as

δni = 2T
∑

p

|n|≤ncut,f
∑

n

[

Gi(k, iωn)−G0
i (k, iωn)−

{

G0
i (k, iωn)

}2
Σi(k, iωn)

]

, (S10)

in which the convergence with respect to ncut,f is faster compared to the summation of Gi(k, iωn) without the
decomposition. Figure S5 shows the ncut,f dependence of δni in a two-band Fermi gas at T = Tc with (kF,1a11)

−1 = −2,
(kF,2a22)

−1 = 0, and λ12 = 1. We find sufficient convergences for ncut,f at each coupling parameter and temperature.
We use ncut,f = 200 ∼ 300, checking their convergences within the relative errors of 0.01%.
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FIG. S5: The correction beyond the NSR approach to the number densities (a)δn1 and (b)δn2 as a function of the fermionic
Matsubara frequency cutoff ncut,b in a two-band Fermi gas at T = Tc with (kF,1a11)

−1 = −2, (kF,2a22)
−1 = 0, and λ12 = 1.


