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Abstract

A statistical method is developed to estimate the maximum amplitude of the base pair fluctua-

tions in a three dimensional mesoscopic model for nucleic acids. The base pair thermal vibrations

around the helix diameter are viewed as a Brownian motion for a particle embedded in a stable

helical structure. The probability to return to the initial position is computed, as a function of

time, by integrating over the particle paths consistent with the physical properties of the model

potential. The zero time condition for the first-passage probability defines the constraint to select

the integral cutoff for various macroscopic helical conformations, obtained by tuning the twist, the

bending and the slide motion between adjacent base pairs along the molecule stack. Applying the

method to a short homogeneous chain at room temperature, we obtain meaningful estimates for

the maximum fluctuations in the twist conformation with ∼ 10.5 base pairs per helix turn, typical

of double stranded DNA helices. Untwisting the double helix, the base pair fluctuations broaden

and the integral cutoff grows. The cutoff is found to increase also in the presence of a sliding

motion which shortens the helix contour length, a situation peculiar of dsRNA molecules.

PACS numbers: 87.14.gk, 87.15.A-, 87.15.B-, 05.10.-a
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I. Introduction

Mesoscopic Hamiltonian models provide a convenient approach for studies of the struc-

tural and mechanical properties of nucleic acids as they reduce the number of degrees of

freedom required to describe the nucleotide, i.e. the unit comprising the nitrogenous base

and the sugar-phosphate group in the molecule backbone [1–5]. Among the models proposed

over the last decades, the Peyrard-Bishop-Dauxois (PBD) model [6] stands out as it yields

a simple and appealing description of the main forces at play in the DNA molecule in terms

of a single continuous variable, accounting for the dynamics of the nucleotides on comple-

mentary strands through the stretch mode between the base pair mates. Although initially

proposed to study the thermally driven DNA denaturation in the thermodynamic limit of

an infinite chain, this one-dimensional model with first neighbors interactions has been later

applied in different contexts to study DNA thermodynamical and flexibility properties, bub-

ble statistics and dynamics both in short and kilo-base long sequences [7–19]. The same

model has been also used to estimate the force constants of RNA chains and DNA/RNA

hybrids by fitting the melting temperatures of short duplexes [20, 21].

While the original PBD model, with onsite Morse potential for hydrogen bonds, predicts

base pair lifetimes of open and closed states [22] much shorter than those inferred from pro-

ton–deuterium exchange experiments [23], successive extensions of the model [24, 25] have

added solvent potential terms which i) enhance the threshold for base pair dissociation over

the Morse plateau and ii) introduce a re-closing barrier accounting for the hydrogen bonds

that the open bases may establish with the solvent, albeit at an higher cost as bases are

hydrophobic [26]. Although such improved model potentials partly reconcile the calculated

base pair lifetimes with the experimental estimates, the fact remains that the PBD model is

intrinsically 1D whereas a consistent analysis of the thermodynamics and dynamical prop-

erties of DNA should not overlook the helical structure of the molecule with its twisting and

bending degrees of freedom [27, 28]. Furthermore, in a realistic picture for the DNA molecule

in solution both strands recombination and large amplitude base pair fluctuations should

be allowed but the pair mates should not be free to go infinitely apart. Accordingly, this

requires a truncation of the base pair configuration space which is in fact always performed

in computational techniques for the PBD models, with or without solvent potentials, e.g.

Monte Carlo and molecular dynamics simulations and Transfer Integral methods [29, 30].
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While the truncation removes the divergence of the thermodynamic quantities otherwise en-

countered for chains with a finite number of base pairs, the cutoff is a measure of the largest

separation of a fluctuating base pair identified with the width of the first bound state of

the PBD Hamiltonian and generally depends on the Hamiltonian parameters [31]. However,

even for a specific sequence, the upper bound in the base pair fluctuations is somewhat

arbitrary and markedly affects the estimated melting temperature [32, 33]. Consequently,

large discrepancies exist as for the values used in calculations of the partition function and

thermodynamical properties of DNA chains with cutoffs ranging from ∼ 30 Å up to about

ten times the average helix diameter (which is ∼ 20 Å) [31, 34]. Also, these values hold

solely for 1D molecules described by the PBD ladder Hamiltonian whereas the cutoffs may

differ significantly in 3D models.

In the finite temperature path integral method for the PBD model, the upper bound in

the integration over the base pair paths can be technically determined by the normalization

condition for the free particle action [35–37]. Likewise, this condition holds in the path

integral for the DNA helical model developed over the last years and applied to compute

cyclization, distribution lengths and stretching properties of short chains [38–43]. However,

for the latter purpose, one may need to take a cutoff larger than the value set by the minimal

normalization condition in order to include those large amplitude fluctuations which affect

the flexibility of the chain. This points to the importance of defining a rigorous physical

criterion which restricts the base pair configuration space selecting a cutoff consistently with

the model potential. Here we argue that the cutoff may also vary with the specific helical

conformation of the molecule which, in turn, essentially depends on the three variables, i.e.

twisting, bending and sliding, describing the motion of any base pair relative to its neighbor

in the stack.

Extending to the more realistic and complex three dimensional case an idea previously

applied to the PBD ladder model [44], we notice that the base pair thermal fluctuations

are an example of Brownian motion for a particle subjected to the interactions which shape

the helix. Following this observation we develop a novel statistical method which sets the

integration cutoff independently of the melting temperature of the specific fragment. Taking

a single base pair of the chain as the Brownian particle, we compute its time dependent

first passage probability making use of the path integral formalism and derive a general

benchmark to select the proper cutoff for the base pair fluctuations. As the argument
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applies in principle to any base pair in the chain, the method permits to truncate the base

pairs space configuration and provides a rich relation between the amplitude of the base

pair fluctuations and the helical conformation. Further, the method is general enough to be

applied to any 3D helical molecule for which a Hamiltonian description is feasible.

The geometrical representation for the helix together with the Hamiltonian model are

outlined in Section II while the computational method for the first passage probability is

presented in Section III. The results are contained Section IV and some final remarks are

made in Section V.

II. Model

We consider the helical model for a linear DNA chain of N point-like base pairs, with

reduced mass µ, first proposed in ref.[38] and depicted in Fig. 1(a). Essentially, the coor-

dinate ri is the distance between the bases on complementary strands with respect to the

mid helical axis and it measures the base pair radial fluctuations. When B overlaps Oi,

the i-th fluctuation vanishes and the pair mates distance equals the average helix diameter

R0. Neighboring base pairs along the molecule stack can be twisted and bent. In our 3D

model, the angular degrees of freedom are represented by the twist θi and by the bending

φi between adjacent vectors ri and ri−1. In the absence of bending, the radial fluctuations

occur within the ovals and the model reduces to a fixed-planes representation for the helix

[45]. Besides twisting and bending, there is a third relative motion in a dimer i.e., the sliding

of the base pairs past each other, whose value depends in general on the specific pyrimidine-

purine step and also on the base pair propeller twist, the latter however not accounted for

by our point-like model. While the interplay of twisting, bending and sliding generates a

manifold of helical conformations at the macroscopic scale [46], the slide motion depicted in

Fig. 1(b) has the main effect to shorten the rise along the helical axis and reduce the chain

contour length, as found e.g., in dsRNA after comparison with dsDNA molecules having

the same sequence [47, 48]. In fact, A-form structures (such as dsRNA) tipically display

an average absolute value of slide larger than B-form structures although the average slide

is largely dependent on the oligomer sequence. For instance, in dsDNA, a sizeable slide is

observed at pyrimidine-purine steps and also at GG/CC steps whereas S is essentially zero

at AA/TT steps [46]. Some average structural parameters found for dsRNA and dsDNA
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FIG. 1: (Color online) (a) Geometric model for a helical chain with N point-like base pairs. ri is

the inter-strand distance between the mates of the i − th base pair. It is defined with respect to

the point Oi lying along the helix mid-axis. The Oi’s are separated by the rise distance d. The

angles θi and φi define the local twist and bending between neighboring base pairs. AB is the

distance between the radial displacements ri, ri−1. (b) Neighboring base pairs with relative sliding

perpendicular to the helix mid-axis. The upper pair (i − th) may go either to the left or to the

right with respect to the i−1 pair. Note that, due to the slide S, the rise along the helix axis (HS)

is smaller than d.

are summarized in Table I. Note that the bending angle is essentially a measure of the roll

angle from one base pair to the next, defined in a rigid body parametrization for the local

geometry of the base pair steps [54]. Such parametrization also comprises the tilt angles

which however contribute much less to the bending as they are generally smaller than the

roll angles [55].

Straightforward geometrical rules permit to derive the distances between adjacent radial

displacements, i.e. AB in Fig. 1(a) and A′B′ in Fig. 1(b). For instance AB is given by

di,i−1 =
[

(d+ ri sinφi)
2 + r2i−1 + (ri cosφi)

2 − 2ri−1 · ri cosφi cos θi
]1/2

, (1)

where d is the bare rise distance in the absence of fluctuations, i.e. the bond length for

beads arranged along a linear chain in the freely jointed model [56, 57]. Likewise di,i−1(S)
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dsRNA dsDNA

R0 24 20

HS 2.8 3.3

S -1.48 0.03

θ̄ 32o 34.6o

φ̄ 8.6o 3.5o

TABLE I: Average structural parameters reported for A-form dsRNA and B-form dsDNA helices

[48–50]. R0, in units Å, is the average helix diameter. HS and S, in units Å, are respectively the

rise distance per base pair and the slide as depicted in Fig. 1(b) [51]. θ̄ and φ̄ are respectively the

average twist and bending angles between adjacent base pairs. The rise, slide, twist and bending

angle may vary significantly along the specific sequence according to the dinucleotide step [52, 53].

is the measure of A′B′. Note that also the twist and bending angles in Fig. 1(b) may differ

from those in Fig. 1(a) due to the sliding motion.

From Eq. (1), setting to zero both the intrinsic stiffness d and the angular variables, one

recovers the original PBD model. Later works, which have gone beyond the PBD ladder

model introducing helicity without bending of the base pair planes, have assumed either

finite values for d and θi [58] or a non vanishing twist θi with zero d [59].

For the helical linear chain with first neighbors interactions in Fig. 1(a), the Hamiltonian

reads:

H = Ha[r1] +

N
∑

i=2

Hb[ri, ri−1, φi, θi] ,

Ha[r1] =
µ

2
ṙ21 + V1[r1] ,

Hb[ri, ri−1, φi, θi] =
µ

2
ṙ2i + V1[ri] + V2[ri, ri−1, φi, θi] ,

V1[ri] = Di

[

exp(−bi(|ri| − R0))− 1
]2
,

V2[ri, ri−1, φi, θi] = Ki,i−1 ·
(

1 +Gi,i−1

)

· di,i−1
2
,

Gi,i−1 = ρi,i−1 exp
[

−αi,i−1(|ri|+ |ri−1| − 2R0)
]

. (2)

For the chain in Fig. 1(b), di,i−1 is replaced by di,i−1(S) in the fifth of Eqs. (2).
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Ha[r1] is taken out of the sum, as the first base pair is coupled only to the successive base

pair along the chain. Being the sum of a one-particle inter-strands potential V1[ri] and a

two-particles intra-strand potential V2[ri, ri−1, φi, θi], H contains the essential forces which

stabilize the helix [60–64].

V1[ri] is usually expressed by a Morse potential whose hard core represents the repulsive

electrostatic interaction between negative phosphates on complementary strands. Di is the

base pair dissociation energy which defines the Morse plateau. bi sets the potential range

through its inverse value. As the bases vibrate, the pair relative distance may become

even smaller than R0. However, radial fluctuations have a lower bound which follows from

the fact that the potential hard core reduces the statistical weight of too negative base

pair contractions. Hence, by imposing the condition V1[ri] ≤ Di we incorporate in the

calculation only fluctuations satisfying the inequality, |ri| −R0 ≥ − ln 2/bi.

A solvent potential term can be added to the Morse potential in V1[ri] to enhance the

height of the energy threshold below which the base pair is closed and introduce a hump

over the Morse plateau thus accounting for the re-closing barrier and possible strand re-

combination with the solvent. While several analytical choices have been proposed in the

literature [22], we take in the following a widely used expression which well accounts for the

mentioned physical effects [26, 45, 65]:

VSol[ri] = −Difs
(

tanh((|ri| −R0)/ls)− 1
)

(3)

where fs is the factor which increases the energy barrier for base pair dissociation and

the length ls defines the spatial range of the solvent.

The two-particle potential V2[ri, ri−1, φi, θi] extends to the 3D helical model the peculiar

stacking term chosen in the 1D PBD model. The choice was motivated to account for the

cooperativity effects in the melting transition of DNA chains, in the thermodynamic limit

[6]. The potential displays the stacking dependence on the angular variables and contains

three parameters per dimer i.e., the elastic Ki,i−1 and the anharmonic force constants ρi,i−1,

αi,i−1. Enforcing the condition αi,i−1 < bi, the range of the stacking is taken larger than

that of the Morse potential. Accordingly, if the inequality |ri| − R0 ≫ α−1
i,i−1 holds, the

hydrogen bond breaks and the local stacking interaction drops from ∼ Ki,i−1(1 + ρi,i−1)

to ∼ Ki,i−1 thus favoring the breaking also of the adjacent base pair. This may trigger
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cooperatively the formation of local bubbles.

The Hamiltonian in Eq. (2) differs substantially from the original PBD. First, the in-

clusion of the bending degree of freedom permits to address the cyclization and flexibility

properties of open ends chains which are beyond the range of a ladder model. Second, the

model with bending can be adapted to deal with circular molecules whereas a ladder model

cannot [66]. Third, the presence of the twist angle provides a restoring force which stabilizes

the stacking potential [67]. Precisely, if a base pair undergoes a large fluctuation ri, the

neighboring fluctuation ri−1 can take only a restricted range of values so that the energy

scale of V2 remains of order Di or below. These fluctuations are those which contribute

most to the partition function. Instead, in the absence of a twist, both adjacent base pair

may fluctuate independently and still yield a low V2 value. In this sense, the stacking of the

PBD model potential does not sufficiently discourage large base pair fluctuations whereas

the twisted stacking V2 in Eq. (2) confers stability to the double stranded molecule. Impor-

tantly, it also follows that a twisted model avoids the well known divergence of the partition

function found in the 1D ladder model [31]. Such divergence can be tackled in 1D only by

truncating the real space available to base pair fluctuations.

Then, Eq. (2) models the essential interactions through five parameters which can be

tweaked to account for sequence heterogeneity in chains of any length. For short linear

chains, finite size effects are relevant and should be implemented by taking open boundary

conditions [68] and parameter values at the chain ends consistent with looser hydrogen bonds

and/or weaker stacking, although the strength of the latter may vary with the specific dimer

[69].

Computation of the thermodynamics and mechanical properties for the model in Eq. (2)

requires integration over both the radial and the angular variables with suitable choice of

the respective integration cutoffs. In general, to perform such calculations, one has first

to minimize the free energy over a broad range of possible twist angles and then select the

equilibrium twist conformation, as explained in detail in ref. [70]. As a result, this procedure

can be significantly time consuming even for short fragments [71].

However, for the task of establishing a consistent relation between model parameters and

radial cutoff, the details of the base pair fluctuations over the twist and bending angles

make a minor contribution. Accordingly we chose to replace φi and θi by average values φ̄

and θ̄ which are taken as input parameters. This permits to retain the 3D nature of the
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model whereas the computational time is markedly reduced. Further, by tuning φ̄ and θ̄,

one can study: i) the relation between radial cutoff and macroscopic helical conformation,

ii) to which extent such relation is affected by the sliding motion depicted in Fig. 1(b). To

this purpose we refer hereafter to the helical repeat i.e., the average number of base pair per

helix turn defined by, h = 2π/θ̄ as a macroscopic measure of the twist conformation of the

molecule.

III. First-passage probability for a base pair

While DNA breathing can be tuned by binding enzymes that enhance the lifetime of the

open states [72, 73] and change the helical repeat [74], it is recognized that nucleic acids

molecules display an intrinsic dynamics due to the conformational fluctuations around the

average helix diameter which expose the bases to the solvent and allow regulatory proteins

to access the code [75–78].

The idea underlying the computational method is that the base pair thermal fluctuations

are trajectories, providing an example of Brownian motion albeit subjected to the constraint

that the base pairs are organized, at room temperature, in a stable helical structure. Ac-

cordingly, in the finite temperature path integration [79], the fluctuation ri in Eq. (2) is

conceived as a trajectory ri(τ) where τ is the Euclidean time varying in the range [0, β]

and β is the inverse temperature. Imposing the closure condition ri(0) = ri(β) [80], we can

expand ri(τ) in Fourier series around R0:

ri(τ) = R0 +

∞
∑

m=1

[

(am)i cos
(2mπ

β
τ
)

+ (bm)i sin
(2mπ

β
τ
)

]

, (4)

whereby a set of coefficients defines a base pair state and measures the fluctuational

amplitude. The path integral method applied to DNA has been discussed in a number of

papers, e.g. refs.[36, 45], to which we refer for details. While the expansion in Eq. (4) holds

for any base pair in the chain, the focus is now on the motion of the j−th base pair identified,

for instance, with the mid-chain base pair in Fig. 1(a). For the latter, the assumed initial

condition for the average pair mates separation is, < rj >= R0. It is remarked that, for

the argument proposed hereafter, any other base pair in the chain could have been picked

besides the mid-chain one.
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Due to thermal fluctuations, at any successive time t, rj may exceed R0 or even shrink

compatibly with the physical constraint defined by the hard core Morse potential. Accord-

ingly, Pj(R0, t) is defined as the probability that rj does not return to R0 until t whereas

Fj(R0, t) = −dPj(R0, t)dt is the probability that the path will return for the first time to

the initial R0 in the time interval dt past t. The need to introduce two time variables, t

and τ , arises from the fact that, for a given t, the probabilities are given as a sum over the

particle histories rj(τ) in the time lapse [0, t] [82].

For the j − th base pair embedded in the chain and interacting with its first neighbors

via the stacking potential in Eq. (2), we write Pj(R0, t) as:

Pj(R0, t) =

∮

Dr1 exp
[

−Aa[r1]
]

·

N
∏

i=2, i 6=j

∮

Dri exp
[

−Ab[ri, ri−1, φ̄, θ̄]
]

·

∫ rj(t)

rj(0)

Drj exp
[

−Ab[rj , rj−1, φ̄, θ̄]
]

·

t
∏

τ=0

Θ
[

rj(τ)− R0

]

,

(5)

where the Heaviside function Θ[..] enforces the condition that rj(τ) has to remain larger

than R0 for any τ ∈ [0, t]. This is implemented in the code by evaluating at any τ the

amplitude of rj(τ) in Eq. (4) and discarding those sets of coefficients which don’t comply

with such condition.

The action functionals in Eq. (5) are obtained by the following dτ integrals:

Aa[r1] =

∫ β

0

dτHa[r1(τ)] ,

Ab[ri, ri−1, φ̄, θ̄] =

∫ β

0

dτHb[ri(τ), ri−1(τ), φ̄, θ̄] ,

Ab[rj, rj−1, φ̄, θ̄] =

∫ t

0

dτHb[rj(τ), rj−1(τ), φ̄, θ̄] , (6)

while the measures of integrations over closed (
∮

Dri) and open (
∫

Drj) trajectories are

coupled via the two particle potential which connects the i− th and j − th base pairs along

the stack. For the two measures however, different criteria should be applied to set the

integration cutoffs on the radial fluctuations.

Consistently with Eq. (4),
∮

Dri is explicitly defined by
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∮

Dri ≡

∞
∏

m=1

(mπ

λcl

)2

×

∫ Λi(T )

−Λi(T )

d(am)i

∫ Λi(T )

−Λi(T )

d(bm)i , (7)

where λcl is the classical thermal wavelength and Λi(T ) is the temperature dependent

cutoff which sets the maximum amplitude for the base pair Fourier coefficients. In turn,

the cutoff can be determined by using the property that the path integral measure
∮

Dri

normalizes the kinetic action, i.e.,

∮

Dri exp
[

−

∫ β

0

dτ
µ

2
ṙi(τ)

2
]

= 1 . (8)

In fact, using Eqs. (4), (7), the l.h.s. of Eq. (8) yields a product over the Fourier compo-

nents of decoupled Gaußian integrals. Setting Λi(T ) ≡ Uiλcl/mπ3/2, it is numerically found

that Ui = 2 suffices to satisfy Eq. (8). While this provides a formal criterion to establish a

minimum Ui for the closed trajectories in the chain, it is understood that larger cutoffs may

be also assumed for practical tasks e.g., for the computation of flexibility properties which

essentially depend on large amplitude base pair fluctuations [35].

As for the j − th base pair, while the path expansion in Eq. (4) can be performed, one

cannot apply the normalization condition in Eq. (8). This follows from the observation

that, for any τ , rj(τ) is defined up to rj(t) which is in fact an open trajectory for any t < β.

Hence, a new criterion should be developed to estimate the integral cutoff on the amplitude

of the j − th radial fluctuation.

To this purpose we examine Eq. (5) and ask the question: what is the probability that,

at the initial time, the j − th fluctuation is larger than R0 ?

From Eq. (4), at t = 0, the j − th trajectory is rj(0) = R0 +
∑∞

m=1(am)j with the

Fourier coefficients being integrated on an even domain. Accordingly, the initial probability

Pj(R0, 0) is expected to be ∼ 1/2 [83]. This is the benchmark to be met in the computation

of the first-passage probability as a function of time. In order to implement this criterion, we

first truncate the Fourier integration
∫ rj(t)

rj(0)
Drj in Eq. (5) by a cutoff Λj(T ) = Ujλcl/mπ3/2,

with tunable Uj and then determine the value Uj such that Pj(R0, 0) ∼ 1/2. In this way one

selects the cutoff on the base of a physical constraint for a specific set of model parameters

and for a given helical conformations.

11



0 0,05 0,1 0,15 0,2
t /

0

0,2

0,4

0,6
P

j 
( 

R
0
 ,
 t

 )

U = 6
U = 7
U = 7.3
U = 7.4
U = 7.5
U = 8

β

h = 10

d = 0

N = 21

( a )

2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7

N
p
  x ( 10

6
 )

0

0,2

0,4

0,6

0,8

P
j 
( 

R
0
, 
t=

0
 )

U = 7
U = 7.3
U = 7.4
U = 7.5
U = 8

h = 10
d = 0

( b )

FIG. 2: (Color online) (a) First-passage probability versus time for the mid-chain base pair in

equilibrium with the N − 1 base pairs at room temperature. A homogeneous short chain with

average twist and bending angles is considered. Various values for the integral cutoff (Uj ≡ U)

over the radial base pair fluctuations are assumed. (b) For any integral cutoff, the zero time

probability is computed as a function of the number of trajectories for the chain dimer containing

the j − th base pair.

IV. Results

Our theory is first tested by setting in Eq. (5) the average bending at φ̄ = 6o consistently

with the indications of Fluorescence Resonance Energy Transfer studies probing the DNA

bending elasticity at short length scales [84]. The average twist angle is initially taken as

θ̄ = 36o, which means an average helical repeat h = 10, close to the usual experimental

value for kilo-base long DNA chains at room temperature [50]. Although the model potential

contains only first neighbors radial interactions, the base pairs are correlated along the stack

due to the helical conformation. In the following calculations, a short homogeneous chain

of N = 21 base pairs is considered which allows for about two turns of the helix whose

diameter is R0 = 20Å.

The potential parameters are those taken in ref.[11] namely, Di = 30meV , bi = 4.2 Å−1,

Ki ≡ Ki,i−1 = 60meV · Å−2, ρi ≡ ρi,i−1 = 1, αi ≡ αi,i−1 = 0.35 Å−1. This set is in line with

the parameters used by other groups in investigations of the PBD model [7, 31] and derived
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by fitting the experimental melting temperatures, though some discrepancies persist mostly

as for the stacking force constants [44, 85]. For the dimers containing the terminal base

pairs, subjected to end fraying effects [86], the stacking parameters K2,1 and KN,N−1 are

taken one half of the value assumed for the internal dimers. While this choice is arbitrary,

it permits to weigh the impact of chain end effects on the base pair cutoff.

We proceed by making, at first, the simplifying assumption to take a vanishing d (like in

the PBD ladder model) whose consequence will be pointed out below.

Given the set of parameters, the output of the calculation still essentially depends on a)

the cutoff Uj and b) the number of base pair trajectories included in the integrals of Eq. (5).

This is shown in Fig. 2(a) which plots the probabilities as a function of time for different Uj

values and in Fig. 2(b) which plots the zero time probabilities versus the number of possible

paths (Np) for the dimer associated to the j − th base pair. As the time axis partitioning

involves 1000 points, the zero time corresponds to t/β = 10−3.

Fig. 2(b) highlights the dependence of Pj(R0, 0) on the path ensemble size and also pro-

vides the rule to select the appropriate Np for a given Uj . In fact, the Pj(R0, t)’s in Fig. 2(a)

are computed by assuming, for each Uj, the Np values which maximize the correspond-

ing Pj(R0, 0)’s thus ensuring that the calculation is sampling the largest set of base pair

fluctuations, i.e. of molecule configurations, consistent with the model parameters.

It is found that, for Uj ∼ 7.3, the condition Pj(R0, 0) ∼ 1/2 is fulfilled provided that

the ensemble size for the dimer fluctuations is Np ∼ 3.2 · 106. Moreover, Np is constant

for all dimers in the stack but the terminal ones as all base pairs are subjected to the same

physical constraints imposed by the model potential. Since the chain is homogeneous, the

selected value is a good cutoff for all internal base pairs, thereby identified as Uj ≡ Ū .

Instead, for the terminal base pairs, the first passage probability remains smaller than 1/2,

e.g. Pj=N(R0, 0) ∼ 0.018, signalling that the average base pair separation is larger than R0.

This effect is ascribable to the softer stacking force constant which causes looser bonds and

fraying at the chain ends [87].

A. Twisting

Next we study the interplay between cutoff and twist conformation for the homogeneous

chain with d = 0. Keeping the same model parameters as above, the molecule unwinding
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FIG. 3: (Color online) (a) First-passage probability versus time for the mid-chain base pair in

equilibrium with the N − 1 base pairs at room temperature. The chain is taken as in Fig. 2 except

the average twist for which four h values are considered. The respective average twist angles θ̄

are (from top to bottom in the legend) 40o, 36o, 32.7o, 30o. For each twist conformation, the

probability is computed assuming the respective cutoff Ū (in the inset) that fulfills the initial time

condition. (b) Zero time probabilities versus integral cutoff for three twist conformations. The U

values for which the plots intersect the dashed line, are the Ū ’s reported in the inset in (a). •

marks the cutoff found for the PBD ladder model.

is simulated by increasing the helical repeat and the appropriate Ū is determined for each

h. The results are displayed in Fig. 3. The Pj(R0, t)’s in Fig. 3(a) are computed by taking

the Ū ’s obtained respectively from the plots in Fig. 3(b). As a main result, Ū markedly

decreases for larger h. This is understood by observing that our helical chains are considered

to be stable at room temperature also in the untwisted conformations although, in the latter,

large amplitude base pair fluctuations would easily disrupt the hydrogen bonds and unstack

the helix. Accordingly, helical molecules in a large h conformation sustain only short scale

fluctuations in order to preserve the overall stability. This result follows from the choice

of a model which has been assumed to have no intrinsic stiffness i.e., d = 0. By further

increasing h the helix unwinds and tends to the ladder representation. Consistently, it is

shown in Fig. 3(b), that the selected Ū ’s tend to the cutoff value determined for the PBD

model [44].
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FIG. 4: (Color online) As in Fig. 3(a) but with a finite rise distance d. Five twist conformations

are considered. The respective average twist angles θ̄ are (from top to bottom in the legend)

40o, 36o, 34.3o, 32.7o, 30o. For each h value, the first passage probability is computed assuming

the respective cutoff Ū (in the inset) that fulfills the initial time condition.

This trend is however reversed once we introduce a finite rise distance which provides a

more realistic model for the helical molecule and accounts for the intrinsic stiffness of the

chain. The results are shown in Fig. 4 where the time dependent probability is computed

as a function of time by varying the average twist angle. Now the finite d confers stability

to the helix which can sustain large amplitude base pair fluctuations also in the untwisted

conformations. Accordingly the cutoff value, for which the zero time probability condition

is fulfilled, grows versus h as shown in the inset. For instance, given a chain with h = 10.5

i.e. the standard DNA helical repeat at room temperature [88], the obtained value Ū = 5.2

yields a maximum amplitude Λj(T ) = 1.08Å for the first Fourier component in Eq. (7).

This, in turn, corresponds to a reasonable estimate of ∼ 2.2Å for the largest breathing

fluctuation of the j − th base pair with respect to the average helix diameter in the closed

state. This length is ∼ 10% of R0 and it is a fair measure for the threshold above which

hydrogen bonds are disrupted [22, 89].
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FIG. 5: (Color online) The cutoff Ū, which enforces the constraint for the initial time probability,

is plotted as a function of the ratio between absolute value of slide S and bare rise distance d. The

schematic of the molecule with sliding motion is given in Fig. 1(b). Three twist conformations are

considered while the average bending angle is φ̄ = 6o. The effect of a broader bending is shown in

the inset for the conformation with h = 10.

B. Sliding and bending

Now we focus on the geometrical model of Fig. 1(b) which contains a further parameter,

i.e. the sliding motion of neighboring base pairs having the overall effect to shorten the

helix. The model has a finite rise distance and the sliding S is tuned as a fraction of d

[51]. The probability in Eq. (5) is computed also for this more complex configuration and

the obtained cutoff Ū is plotted in Fig. 5 as a function of the ratio |S|/d, assuming three

twist conformations. As in the previous plots, the average bending angle is φ̄ = 6o. It is

found that Ū is enhanced in the presence of a finite S. This behavior holds for all helical

conformations and in particular for the case h = 11 with a sizeable sliding. The fact that a

double helix with a pronounced base pair sliding should sustain broader radial fluctuations

seems in accordance with the observation that dsRNA is wider than dsDNA [48].

If however the short chain has a larger average bending flexibility, for instance due to

melting bubbles formation or large angle deformations at specific dinucleotide steps [90–92],

then lower Ū ’s should suffice in order to to fulfill the first-passage probability constraint. This
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is in fact the situation emphasized in the inset, whereby a chain with φ̄ = 9o is assumed for

the twist conformation with h = 10. Accordingly the calculated Ū ’s are somewhat reduced

with respect to the case φ̄ = 6o.

Altogether these findings are consistent with the interpretation that, at the microscopic

level, the contraction of the rise distance HS due to the slide may confer an enhanced

flexibility to the molecule which is then capable to sustain large scale fluctuations while

maintaining the stable helical conformations. It is emphasized that our calculation takes

S and h as independent variables whereas the structural parameters are intertwined in

nucleic acids that is, a larger slide is generally observed in helical molecules with a smaller

average twist angle. To meet these experimental observation, one may tune S and set up

a self-consistent procedure to compute, by free energy minimization, both radial cutoff and

ensemble averaged helical repeat.

Finally, we re-consider the Hamiltonian in Eq. (2) and add the solvent term in Eq. (3)

to the one-particle potential. By increasing fs, one can simulate the effect of a higher salt

concentration in the solvent which screens the electrostatic repulsion between complementary

strands thereby enhancing the base pair dissociation energy hence, an intrinsically more

stable molecule configuration [16, 34]. Assuming the twist conformation h = 10 with φ̄ = 6o,

we have re-run the program in order to test how the cutoff Ū varies in the presence of

the solvent factor. The results are shown in Fig. 6 where Ū is plotted as a function of

|S|/d. In accordance to the expectation, Ū is reduced with respect to the model without

solvent (fs = 0) and this holds both in the case with and without sliding motion. For the

intermediate sliding case |S|/d = 0.33, we find a cutoff reduction of ∼ 18% for a energy

barrier increase of ∼ 10% i.e., fs = 0.1.

V. Conclusions

Analysis of the thermodynamics and flexibility of nucleic acids at the mesoscopic scale

requires computation of a partition function obtained as an integral over the space configu-

ration available for the base pair fluctuations. Focusing on a three dimensional Hamiltonian

model for double stranded helical molecules, we have proposed a statistical method to select

the integration cutoff on the amplitude of the base pairs separation, a crucial parameter

for quantitative predictions of the physical properties. The method conceives the base pair
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FIG. 6: (Color online) The cutoff Ū is plotted as a function of the ratio between slide S and bare

rise distance d. The effect of the solvent potential in Eq. (3) is shown by tuning fs . The twist

conformation with h = 10 is considered while the average bending angle is φ̄ = 6o.

thermal fluctuations as a Brownian motion for a particle subjected to the interactions which

render the molecule stable hence, the base pair vibrates around the equilibrium helix di-

ameter. Setting a zero time condition for the particle trajectory, we have calculated the

time dependent probability for the base pair to return to the initial position by summing

over those particle histories which are physically consistent with the model potential. In

turn, the first-passage probability obeys a zero time condition which sets the constraint to

establish the proper cutoff on the base pair fluctuations. Applying the method to a short ho-

mogeneous molecule, we find that the cutoff depends significantly on the macroscopic helical

conformation defined by the three variables i.e. twist, bending and sliding for the relative

motion of two base pairs in any dimer of the chain. In particular, for a realistic Hamiltonian

model incorporating an intrinsic stiffness in the stacking potential, the room temperature

base pair fluctuations are estimated to be ∼ 10% of the helix diameter. It is also found that

the cutoff gets larger upon increasing the average twist angle in line with the expectation

that the base pair fluctuations should be broader in untwisted helices. Likewise, the radial

cutoff grows in molecules with a significant slide which shortens the rise per base pair along

the molecule axis. This seems consistent with the observation that A-form helices are indeed

wider and shorter than B-helices in which the slide is small. These main conclusions hold in

18



general and are not restricted to the chain here considered, although quantitative estimates

of the cutoff may vary according to the set of parameters chosen to model hydrogen bonds,

stacking forces and solvent environment for a helical molecule. Thus, the first-passage prob-

ability method provides a sound statistical benchmark to select potential parameters and

maximum base pair fluctuations for specific sequences and conformations of nucleic acids

and, in particular, may foster mesoscopic studies of RNA properties so far less investigated

than DNA.
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[52] I. Faustino, A. Pérez, M. Orozco, Biophys. J. 99, 1876-1885 (2010).

[53] M. Pasi, J.H. Maddocks, D. Beveridge, T.C. Bishop, D.A. Case, T. Cheatham, P.D. Dans,

B. Jayaram, F. Lankas, C. Laughton, J. Mitchell, R. Osman, M. Orozco, A. Pérez, D.
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