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We present a complete theory for laser cooling of a macroscopic radio-frequency LC electrical circuit by
means of an optoelectromechanical system, consisting of an optical cavity dispersively coupled to a nanome-
chanical oscillator, which is in turn capacitively coupled to the LC circuit of interest. The driven optical cavity
cools the mechanical resonator which in turn sympathetically cools the LC circuit. We determine the optimal
parameter regime where the LC resonator can be cooled down to its quantum ground state, which requires a
large optomechanical cooperativity, and a larger electromechanical cooperativity. Moreover, comparable op-
tomechanical and electromechanical coupling rates are preferable for reaching the quantum ground state.

I. INTRODUCTION

Over the past decade, the experimental realization of
quantum states of macroscopic objects has made significant
progress in the fields of opto- and electromechanics. These
include mechanical ground state cooling [1–5], mechani-
cal squeezing [6, 7], entanglement between mechanical, mi-
crowave and optical modes [8–12]. Also facilitated by this
progress, hybrid quantum systems [13] provide interesting op-
portunities and a variety of novel platforms for new techno-
logical applications. In particular, optoelectromechanical de-
vices has received significant attention, especially in transduc-
ing radio-frequency (rf) and microwave signals to the optical
domain [14–32].

However, most of optoelectromechanical systems are using
a GHz microwave resonator. Here, we focus onto the case of
a MHz rf resonator, for which operation in the quantum do-
main is more difficult because, due to the lower resonance fre-
quency, it is normally in a thermally excited state even at ultra-
cryogenic temperatures. Radio-frequency signals in the MHz
and kHz regimes are used in a large variety of research field
and applications [14], ranging for example from astronomical
signal detection at long wavelength (Astronomical Plasmas,
sun activity and exoplanets research) [33] to ultra-low Mag-
netic field Nuclear Magnetic resonance and imaging (SQUID
coupled to an LC circuit) [34]. Therefore the possibility of op-
erating in a quantum regime at the MHz and even kHz range
with extremely low noise can be advantageous either for po-
sitioning, timing and sensing (imaging) applications, and for
more fundamental science applications, such as the sensitive
detection of rf-signals of astrophysical nature.
Quantum operation of rf circuits requires cooling them close

to their quantum ground state, and here we show that this
can be achieved by appropriately engineering the interactions
in a hybrid tripartite optoelectromechanical system. This
result could be considered as a further example of quan-
tum manifestation at macroscopic level, involving photons
with macroscopic wavelengths and typically realised with
macroscopically-sized circuit elements.

Laser cooling of an LC circuit via the intermediate cou-
pling to a mechanical resonator has been first proposed in
Ref. [15]. Here we extend that analysis, showing that one can
cool down the LC resonator to its quantum ground state, pro-
viding an alternative route to what has been recently demon-
strated through the coupling to a superconducting qubit [35],
or to an ultra-cryogenic microwave cavity [36]. In this paper
we provide a detailed analysis of the system, by first determin-
ing its optimal working point, and then analysing its stationary
state, focusing onto the parameter regime in which the rf LC
resonant circuit can be ground state cooled. From a physical
point of view, this occurs when the energy exchange process
of the LC circuit with its own thermal reservoir is dominated
by the exchange process with the much colder reservoir rep-
resented by the mechanical resonator cooled by the driven op-
tical cavity mode. In more intuitive terms, the driven cavity
cools the mechanical resonator which in turn sympathetically
cools the rf resonator [37]. In general, we find that ground
state cooling of the rf resonator is possible when the optome-
chanical cooperativity is large, and the electromechanical co-
operativity is even larger. A preliminary study of the quantum
behavior of the same optoelectromechanical system has been
recently shown in Ref. [38], which however focused only on
the entanglement between the mechanical and the rf resonator.
Ground state cooling and stationary entanglement are gener-
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FIG. 1: Schematic description of the system. A metal coated
nanomembrane is coupled via radiation pressure to a cavity field,
and capacitively coupled to an rf resonant circuit via the position-
dependent capacitance Cm(x). The rf resonator is modelled as a
lumped-element RLC series circuit with an additional tunable capac-
itance C0 in parallel with Cm(x), a resistance R, and an inductance L.
The rf-circuit is driven by a DC bias VDC and by the Johnson-Nyquist
voltage noise δV .

ally related quantum phenomena, but, as already verified in
optomechanics [39, 40], they are optimised under quite differ-
ent conditions.

The paper is organized as follows. In Sec. II, we intro-
duce our tripartite optoelectromechanical system and provide
its Hamiltonian and the corresponding Langevin equations. In
Sec. III we determine the working point of the system and
derive the linearized equations for the system quantum fluc-
tuations. In Sec. IV we show how to exactly solve these lin-
earized equations and determine the steady state of the system,
while in Sec. V we provide an approximate analytical theory
for the steady state occupancy of the rf resonator. In Sec. VI
we describe the results and determine the optimal parameter
regime for laser cooling the LC circuit to its quantum ground
state. Then, in Sec. VII we discuss in detail the challenges
one has to face for an unambiguous detection of the stationary
state of rf resonator, while Sec. VIII is for concluding remarks.

II. THE SYSTEM

We consider a generic hybrid optoelectromechanical sys-
tem, which consists of an optical cavity, a nanomechanical
oscillator, and a radiofrequency (rf) resonant circuit. Differ-
ent kind of systems and configurations have been already pro-
posed and characterized experimentally [15–22, 24, 25, 27–
31] and the treatment presented here can be applied to all the
cases in which the electromechanical coupling is capacitive,
and the optomechanical coupling is dispersive. Nonetheless,
in order to be more specific, we will refer to the configuration
in which the optomechanical system is the membrane-in-the-
middle (MIM) one [41–45], i.e., a driven optical Fabry-Perót
cavity with a thin semitransparent membrane inside. The
membrane is metalized [15, 19, 20, 24, 46] and capacitively
coupled via an electrode to an LC resonant circuit formed by a
coil and additional capacitors, see Fig. 1. The Hamiltonian of
the system can be written in general as the sum of an optical,
mechanical and electrical term,

Ĥ = Ĥopt + Ĥmech + ĤLC, (1)

where

Ĥopt = ~ω(x) â†â + i~E
(
â†e−iωLt − âeiωLt

)
, (2)

Ĥmech =
p̂2

2m
+

mω2
0 x̂2

2
, (3)

ĤLC =
φ̂2

2L
+

q̂2

2C(x̂)
− q̂V̂ . (4)

In the optical contribution we consider a specific cavity mode,
with photon annihilation (creation) operator â (â†), with the
usual bosonic commutation relations [â, â†] = 1, which is
driven by a laser of frequency ωL and input power P. Conse-
quently, the driving rate can be written as E =

√
2κinP/~ωL,

with κin the cavity amplitude decay rate through the input port.
The mechanical Hamiltonian corresponds to a resonator with
mass m, displacement operator x̂ and conjugated momentum
p̂, with commutation relation [x̂, p̂] = i~, which is associ-
ated to a given vibrational mode of the metalized membrane
with bare frequency ω0. The dispersive optomechanical cou-
pling arises due to the dependence of the cavity mode fre-
quency ω(x̂) upon the membrane displacement x̂, as discussed
in Refs. [41–45].

The electrical contribution ĤLC refers to the rf resonator,
which we will describe here as a lumped-element series RLC
circuit (see Fig. 1), whose dynamical variables are given by
the concatenated flux φ̂ and the total capacitor charge q̂, with
the canonical commutation relation [q̂, φ̂] = i~. We have also
included a driving term associated with the possibility to con-
trol the circuit via a voltage bias V̂ . The electromechanical
coupling is capacitive and it arises from the displacement de-
pendence of the effective circuit capacitance C(x̂). In the case
of the chosen optoelectromechanical setup based on a metal-
ized membrane, such as those of Refs. [15, 19, 20, 24], one
can write

C(x̂) = C0 + Cm(x̂) = C0 +
ε0Aeff

h0 + x̂
, (5)

i.e., the effective capacitance is the parallel of a tunable capac-
itance C0 with the capacitor formed by the metalized mem-
brane together with the electrodes in front of it. As shown in
Refs. [20, 24], we can assume a parallel plate model and de-
fine the effective area Aeff of the membrane capacitor; h0 is
the steady state distance between the membrane and the elec-
trodes, in the absence of any bias voltage and cavity laser driv-
ing, while ε0 is the vacuum permittivity.

A realistic RLC circuit is always quite involved, with its
behaviour determined by a number of parasitic capacitances
and resistances whose values depend upon the specific circuit
implementation. However, the simplified description adopted
here in terms of the three lumped-element effective quanti-
ties, the inductance L, the resistance R, and the capacitance
C(x̂), is possible and perfectly suited for our purposes. In fact,
our goal is to laser cool the rf circuit via its quasi-resonant
interaction with the mechanical resonator, and the dynami-
cal behaviour is essentially determined by the frequency com-
ponents around the rf resonance peak, which is characterised
by two easily measurable quantities, the rf-resonant frequency
ω(0)

LC and the width, γLC , of the uncoupled resonator. The two
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quantities define the rf-circuit quality factor QLC = ω(0)
LC/γLC ,

which must be large enough, QLC � 1, in order to achieve
an appreciable cooling [15]. A third circuit quantity that
can be directly measured is its effective inductance L, which
can be obtained from the low frequency behaviour of the cir-
cuit. Therefore, since in a high-Q series RLC circuit one has
ω(0)

LC = 1/
√

LC and γLC = R/L, once that the value of the cir-
cuit inductance L has been measured, one can define the other
two effective circuit parameters as

C(0) = C0 +
ε0Aeff

h0
≡

1

L
[
ω(0)

LC

]2 , (6)

R ≡ LγLC . (7)

The full quantum dynamics of the system and its stationary
state can be determined from the Heisenberg-Langevin equa-
tions of the system which are obtained from the Hamiltonian
of Eq. (1) and by including fluctuation-dissipation processes
for the three resonators, which in the frame rotating at the laser
frequency ωL, are given by

˙̂x = p̂/m, (8)

˙̂p = −mω2
0 x̂ − γm p̂ − ~

∂ω

∂x̂
(x̂)â†â

−
q̂2

2
ε0Aeff

[C0(h0 + x̂) + ε0Aeff]2 + F̂, (9)

˙̂q =
φ̂

L
, (10)

˙̂φ = −
q̂

C0 + ε0Aeff/(h0 + x̂)
− γLC φ̂ + VDC + δV̂ , (11)

˙̂a = i[ωL − ω(x̂)] â − κâ +E+
√

2κinâin+
√

2κexâex, (12)

where γm is the mechanical damping rate, and κ = κin + κex
is the total cavity amplitude decay rate, given by the sum of
the decay rate though the input port κin and the decay rate
through all the other ports κex. The latter optical loss processes
are associated with the corresponding input noise operators
âin and âex, which are uncorrelated and whose only nonzero
correlation is 〈âj(t) â†j (t′)〉 = δ(t − t′), j = in, ex.

We have included two zero-mean noise terms in the equa-
tions: F̂(t) is the Langevin force operator which accounts
for the Brownian motion of the mechanical oscillator, whose
symmetrized correlation function is in general equal to [47,
48]

1
2
〈F̂(t)F̂(t′) + F̂(t′)F̂(t)〉 (13)

= mγm

∫
dω
2π

cosω(t − t′)~ω coth
(
~ω

2kBT

)
,

which, in the case of a large mechanical quality factor
Qm = ω0/γm � 1 valid here, can be approximated with
the Markovian expression [48], 〈F̂(t)F̂(t′) + F̂(t′)F̂(t)〉/2 '
mγm~ω0(2n̄m + 1)δ(t − t′), where n̄m = [e~ω0/kBT − 1]−1 is the
equilibrium mean thermal phonon number, with kB the Boltz-
mann constant and T the environmental temperature. We have
also rewritten the external bias voltage as V̂(t) = VDC + δV̂(t),

i.e., the sum of a DC bias and the Johnson-Nyquist voltage
noise operator δV̂ with autocorrelation function [47, 49],

1
2
〈δV̂(t)δV̂(t′) + δV̂(t′)δV̂(t)〉 (14)

= R
∫

dω
2π

cosω(t − t′)~ω coth
(
~ω

2kBT

)
,

which again, in the case of a large LC quality factor can be
approximated with the Markovian expression 〈δV̂(t)δV̂(t′) +

δV̂(t′)δV̂(t)〉/2 ' R~ω(0)
LC(2n̄LC + 1)δ(t − t′), where n̄LC =

[e~ω
(0)
LC/kBTLC − 1]−1 is the mean thermal rf photon number. We

have assumed in general TLC , T because the rf circuit tends
to pick up ambient noise and the effective rf noise temperature
can be larger than ambient temperature.

III. WORKING POINT AND LINEARIZED DYNAMICS OF
THE QUANTUM FLUCTUATIONS

In order to look for the possibility to reach the quantum
regime for the macroscopic rf resonator, we have to evalu-
ate the stationary quantum fluctuations around the classical
steady state of the system, which is obtained by replacing all
the operators in the Heisenberg-Langevin equations Eqs. (8)-
(12) with the corresponding average values, neglecting all
noise terms, and setting all the derivatives to zero. In this way
one defines the working point of the system, which is deter-
mined by the two external drivings, i.e., the laser driving rate
E and the DC bias voltage VDC. If stability conditions are sat-
isfied (see Appendix), the steady state is characterized by the
cavity mode in a coherent state with amplitude αs, the mem-
brane in an equilibrium position displaced by xs, the rf circuit
with no current, and the capacitor with a stationary charge qs.
Using the fact that ps = φs = 0, one can express the working
point parameters in terms of xs only, i.e.,

αs =
E

κ + i∆
, (15)

qs = C(xs)VDC, (16)

where ∆ = ω(xs) − ωL is the effective cavity mode detuning,
and it is the parameter which is actually fixed in an experiment
by the cavity stabilisation system. The static membrane dis-
placement xs is the solution of the equilibrium condition for
the three forces applied to the membrane, i.e., the membrane
elastic force, the electrostatic force and the radiation pressure
force ,

mω2
0xs = −

ε0AeffV2
DC

2(h0 + xs)2 − ~
∂ω

∂x
(xs)ncav, (17)

where ncav = |αs|
2 = E2/(κ2 + ∆2) is the intracavity photon

number.
The quantum fluctuations dynamics can be described with

very good approximation by linearizing the exact Heisenberg-
Langevin equations Eqs. (8)-(12) around the classical station-
ary state defining the system working point, i.e., by keeping
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only first order terms in such fluctuations. In fact, if sta-
bility conditions are satisfied, the system dynamics will not
significantly depart from the steady state defined above, and
higher order terms in the fluctuation operators can be ne-
glected [39, 40]. It is convenient to express these equations
in terms of dimensionless fluctuation operators, scaled by the
corresponding quantum zero-point fluctuation units, i.e., by
redefining

x̂ → xs + xzpfδx̂ = xs +

√
~

mω0
δx̂, (18)

p̂ → ps + pzpfδp̂ =
√
~mω0δ p̂, (19)

q̂ → qs + qzpfδq̂ = qs +

√
~

Lω(0)
LC

δq̂, (20)

φ̂ → φs + φzpfδφ̂ =

√
~Lω(0)

LCδφ̂, (21)

so that the commutation relations are rewritten as [δx̂, δp̂] =

[δq̂, δφ̂] = i. By introducing also the two intracavity quadra-
ture fluctuation operators

δX̂ =
δâeiθ + δâ†e−iθ

√
2

, (22)

δŶ =
δâeiθ − δâ†e−iθ

i
√

2
, (23)

where θ = arctan ∆/κ, one gets the following linearized
Heisenberg-Langevin equations

δ ˙̂x = ω0δp̂, (24)

δ ˙̂p = −
ω2

m

ω0
δx̂ − γmδ p̂ + GδX̂ − gδq̂ + ξ̂, (25)

δ ˙̂q = ω(0)
LCδφ̂, (26)

δ ˙̂φ = −
ω2

LC

ω(0)
LC

δq̂ − γLCδφ̂ − gδx̂ + δV̂, (27)

δ ˙̂X = ∆δŶ − κδX̂ +
√

2κX̂vac, (28)

δ ˙̂Y = −∆δX̂ − κδŶ + Gδx̂ +
√

2κŶvac. (29)

We have introduced the two relevant coupling rates, the op-
tomechanical coupling rate

G = −xzpf
∂ω(xs)
∂x

√
2ncav, (30)

and the electromechanical coupling rate

g =
ε0AeffVDC

C(xs)(h0 + xs)2
√

mLω(0)
LCω0

. (31)

We notice that both the mechanical and the LC resonance
frequencies, ω0 and ω(0)

LC respectively, are modified when the
cavity is driven and the DC voltage bias is applied, acquiring
new values: from Eq. (5) and Eq. (6) one has

ω2
LC = [LC(xs)]−1 =

[
L
(
C0 +

ε0Aeff

h0 + xs

)]−1

, (32)

FIG. 2: Electro-mechanical coupling g versus the DC voltage VDC

and the membrane-electrode distance h0. The black dotted line in-
dicates the value of h0 which is used in the plots of Sec. VI, cor-
responding to 2 µm. The other electro-mechanical parameters are:
ω0/2π = ω(0)

LC/2π = 1 MHz, Qm = 106, m = 0.7 × 10−10 kg, L = 1
mH, Aeff = 1.1 × 10−7 m2.

while the modified mechanical resonance frequency ωm is
given by the expression

ω2
m = ω2

0 +
~

m
∂2ω(xs)
∂x2 ncav −

V2
DCε0Aeff

m(h0 + xs)3 . (33)

We recall that the system is stable provided that ω2
m > 0 and

the latter expression shows that there is a maximum value for
VDC, the pull-in voltage, beyond which the effective mechan-
ical frequency ωm becomes imaginary and the membrane is
pulled onto the other electrode of the capacitor (see Appendix
A). We also notice that for physically interesting parameter
regimes, the shift xs may be not negligible with respect to h0
and tends to −h0/3 when approaching the pull-in voltage (see
Appendix A). As a consequence, due to Eq. (17) and Eq. (31),
the coupling g has a nonlinear dependence upon VDC, and it
never surpasses a maximum value when VDC approaches its
maximum value Vpull. This is explicitly shown in Fig. 2, where
the electromechanical coupling g is shown versus the elec-
trode distance h0 and VDC. The stationary membrane shift xs is
determined by the equilibrium between the mechanical stress,
the electrostatic force and the radiation force. As shown in
Appendix B, where we provide the explicit expressions for the
membrane-in-the-middle case based on the treatment of Ref.
[44], the contribution of the radiation force on xs is negligible.

Finally we have also introduced rescaled noise operators: i)
the mechanical thermal noise term ξ̂(t) = F̂(t)/pzpf , with sym-
metrized autocorrelation function (in the high Qm Markovian
limit)

1
2

〈
ξ̂(t)ξ̂(t′) + ξ̂(t′)ξ̂(t)

〉
= γm(2n̄m + 1)δ(t − t′); (34)

ii) the rescaled Nyquist noise operator on the rf circuit δV̂ =

δV̂(t)/φzpf , with symmetrized autocorrelation function (in the
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high QLC Markovian limit)

1
2
〈δV̂(t)δV̂(t′)+δV̂(t′)δV̂(t)〉 = γLC(2n̄LC +1)δ(t− t′); (35)

iii) the two vacuum optical noises

X̂vac =
1
√

2κ

[√
κin

(
âineiθ + â†ine−iθ

)
(36)

+
√
κex

(
âexeiθ + â†exe−iθ

)]
,

Ŷvac =
−i
√

2κ

[√
κin

(
âineiθ − â†ine−iθ

)
(37)

+
√
κex

(
âexeiθ − â†exe−iθ

)]
,

which are uncorrelated and possess the same autocorrelation
function

1
2

〈
X̂vac(t)X̂vac(t′) + X̂vac(t′)X̂vac(t)

〉
(38)

=
1
2

〈
Ŷvac(t)Ŷvac(t′) + Ŷvac(t′)Ŷvac(t)

〉
=

1
2
δ(t − t′).

IV. DETERMINATION OF THE STEADY STATE

The linearized Heisenberg-Langevin Equations in (24)-(29)
can be rewritten in the following compact matrix form

˙̂u(t) = Aû(t) + n̂(t), (39)

where û(t) = [δx̂(t), δp̂(t), δq̂(t), δφ̂(t), δX̂(t), δŶ(t)]T is the col-
umn vector of fluctuations (the superscript T denotes trans-
position), n̂(t) = [0, ξ̂(t), 0, δV̂(t),

√
2κX̂vac(t),

√
2κŶvac(t)]T is

the corresponding column vector of noises, and A is the matrix

A =



0 ω0 0 0 0 0
−
ω2

m
ω0
−γm −g 0 G 0

0 0 0 ω(0)
LC 0 0

−g 0 −
ω2

LC

ω(0)
LC
−γLC 0 0

0 0 0 0 −κ ∆

G 0 0 0 −∆ −κ


. (40)

The formal solution of Eq. (39) is

û(t) = M(t)û(0) +

∫ t

0
dsM(s)n̂(t − s),

where M(t) = exp{At}. The system is stable and reaches its
steady state for t → ∞ when all the eigenvalues of A have
negative real parts so that M(∞) = 0. Here we will consider
the parameter region where the driven cavity mode cools the
mechanical resonator, corresponding to a driving laser red-
detuned with respect to the cavity, ∆ > 0 [40]. Within this
parameter region, the stability condition is violated only at
very large values of the optomechanical coupling G, which
are detrimental for cooling, correspond to the onset of optical
bistability [50], and which are of no interest here.

In the linearized regime, the steady state of the tripar-
tite optoelectromechanical system can be fully character-
ized because the noise terms are zero-mean quantum Gaus-
sian noises, and as a consequence, the steady state of
the system is a zero-mean tripartite Gaussian state, fully
determined by its 6 × 6 correlation matrix (CM) Vi j =(
〈ûi(∞)û j(∞) + û j(∞)ûi(∞)〉

)
/2.

Starting from Eq. (39), this steady state CM can be de-
termined in two equivalent ways, either as an integral (see
Eqs. (45)-(46) below), or as solution of a matrix equation (see
Eq. (47) below). Using the Fourier transforms ûi(ω) of ûi(t),
one has

Vi j(t)=

∫∫
dωdω′

(2π)2 e−it(ω+ω′)1
2

〈̂
ui(ω)û j(ω′)+û j(ω′)ûi(ω)

〉
. (41)

Then, by Fourier transforming Eq. (39) and the correlation
functions of the noises in the Markovian limit, Eqs. (34), (35)
and (38), one gets〈

ûi(ω)û j(ω′)+û j(ω′)ûi(ω)
〉

2
=
[
M(ω)DM(ω′)T

]
i j
δ(ω+ω′), (42)

where we have defined the 6 × 6 matrix

M(ω) = (iω + A)−1 , (43)

and the diagonal diffusion matrix

D =



0 0 0 0 0 0
0 γm(2n̄m + 1) 0 0 0 0
0 0 0 0 0 0
0 0 0 γLC(2n̄LC + 1) 0 0
0 0 0 0 κ 0
0 0 0 0 0 κ


. (44)

The δ(ω + ω′) factor is a consequence of the stationarity of
the noises, and inserting Eq. (42) into Eq. (41), one gets the
following expression for the stationary correlation matrix

V∞ =

∫ ∞

−∞

dω
2π

M(ω)DM(ω)†, (45)

which can be equivalently rewritten as an integral in the time
domain as

V∞ =

∫ ∞

0
dtM(t)DM(t)T . (46)

From the latter expression one can derive an alternative way
to get the stationary CM V∞. In fact, when the stability condi-
tions are satisfied [M(∞) = 0], one can verify, by an explicit
integration, that Eq. (46) is equivalent to the following Lya-
punov equation for the steady-state CM,

AV∞ + V∞AT = −D. (47)

This is a linear equation for V∞ which can be analytically
solved, but the general exact expression of the matrix elements
is too cumbersome and will not be reported here. We have
adopted this latter method, and the numerical analysis and the
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plots of Sec. VI are obtained from the numerical solution of
Eq. (47).

In this paper we are interested only in the stationary state
of the rf resonator and in its stationary energy in particular,
which is equal to

ULC =
~ω(0)

LC

2

[
〈δq̂2〉 + 〈δφ̂2〉

]
=
~ω(0)

LC

2

(
V∞33 + V∞44

)
(48)

≡ ~ω(0)
LC

(
n̄eff

LC +
1
2

)
,

where n̄eff
LC is the effective mean occupation number of the LC

oscillator.

V. APPROXIMATE EXPRESSION FOR THE RF
RESONATOR OCCUPANCY

One can adapt standard resolved sideband cooling theory of
optomechanical systems for the derivation of an approximate
expression of the stationary occupancy of the rf resonator. In
the case of a standard optomechanical system, the stationary
occupancy of the mechanical resonator, far from the strong
coupling regime, can be very well approximated as [51–53]:

n̄eff
m =

γmn̄m + Γmn̄c + A+

γm + Γm
, (49)

where n̄c ' 0 is the mean excitation of the optical reservoir at
zero temperature, Γm = A− − A+ > 0 is the net laser cooling
rate, with

A± =
G2κ/2

κ2 + (∆ ± ωm)2 (50)

the scattering rates into the Stokes (A+) and anti-Stokes (A−)
sidebands, corresponding respectively to the absorption or
emission of a mechanical vibrational quantum. Eq. (49) can
be seen as the result of the balance between the two energy
exchange processes involving the mechanical resonator: i) the
one with rate γm with its thermal reservoir with n̄m mean ex-
citations; ii) the other one with rate Γm with the effective op-
tical reservoir at zero temperature (n̄c ' 0) represented by
the driven and decaying cavity, and which is responsible for
cooling. The scattering rate A+ is responsible for the quantum
back-action limit associated with the quantum fluctuations of
the radiation pressure force.

In the optoelectromechanical system under study, the rf res-
onator we are interested in is directly coupled to the mechan-
ical resonator, which is in turn coupled to the driven optical
cavity. In the proposal of Ref. [15] one can laser cool the rf
resonator by driving on the red sideband of the optical cav-
ity as in the usual optomechanical sideband cooling, and then
exploiting the resonant electromechanical interaction in order
to extend cooling to the rf circuit. This is why one can view
this process as sympathetic cooling [37] of the LC resonator
by means of the laser cooling of the mechanical resonator.

An equivalent description of the desired cooling process is
the following: the rf resonator is cooled because the energy

exchange process at rate γLC with its own thermal reservoir
with n̄LC mean excitations is dominated by the exchange pro-
cess with the much colder “polariton” reservoir represented
by the mechanical resonator hybridized with the driven optical
cavity mode in the regime of efficient sideband cooling. This
latter effective reservoir is characterised by an effective decay
rate γeff

m = γm + Γm, a nonzero mean number of excitations
n̄eff

m [see Eq. (49)], and the LC resonator will scatter polaritons
into the corresponding Stokes and anti-Stokes sidebands with
rates that are respectively given by

ALC
± =

g2γeff
m(

γeff
m

)2
+ 4 (ωm ± ωLC)2

. (51)

An intuitive explanation of the present expression is the
fact that, when comparing with the optomechanical case of
Eq. (50), the rate γeff

m /2 plays the role of the cavity decay rate
κ, and the electromechanical coupling g plays the role of the
optomechanical coupling G. As a consequence one has an
effective polariton cooling rate

ΓLC = ALC
− − ALC

+ > 0. (52)

One can then apply the same arguments used for deriving
Eq. (49) to the present situation, and arrive at the following
expression for the rf resonator occupancy

n̄eff
LC =

γLC n̄LC + ΓLC n̄eff
m + ALC

+

γLC + ΓLC
. (53)

This is the desired approximation we were looking for. It
works in the optimal regime for sideband cooling, that is,
∆ ∼ ωm ∼ ωLC > κ > G as well as γeff

m /2 ∼ G2/4κ > g. From
Eq. (53) one can see that the rf resonator cannot be cooled
more than the mechanical resonator and that therefore at best
one can achieve n̄eff

LC ∼ n̄eff
m . The latter condition is achieved

when ΓLC ∼ ALC
− � ALC

+ , γLC , which is obtained at resonance
∆ ∼ ωm ∼ ωLC � γeff

m ∼ G2/2κ, when 2g2κ/G2 � γLC .
Defining the two relevant cooperativities, the optomechani-
cal cooperativity Com = G2/2κγm and the electromechanical
cooperativity Cem = g2/γLCγm, the necessary condition to
achieve simultaneous ground state cooling, n̄eff

LC ∼ n̄eff
m < 1,

can be written as

Cem � Com � 1. (54)

This latter condition for the cooperatives can be satisfied only
for an LC circuit with a large enough value of its quality factor,
so that γLC � g, κ, because the electromechanical coupling g
cannot be too large with respect to G2/κ for the validity of
the above expressions. Nonetheless, the results of Sec. VI
based on the exact numerical solution of the Lyapunov equa-
tion of Eq. (47) show that cooling of the rf resonator close to
the quantum regime is possible also when the above assump-
tions are not fully satisfied and Eq. (53) is not too accurate.

VI. RESULTS FOR THE COOLING OF THE LC
RESONATOR

Let us now determine the optimal parameter conditions un-
der which one can cool a MHz rf circuit down to its quantum
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ground state. We show the main results in Fig. 3 and Fig. 4,
where we apply the exact treatment of Eqs. (47)-(48). Then
in Fig. 5 we compare these results with the approximate treat-
ment of Sec. V and the corresponding analytical prediction of
Eq. (53), showing a satisfactory agreement between them.

As we have seen above, the most relevant parameters one
has to optimise are the optomechanical coupling G, the elec-
tromechanical coupling g, the ambient temperatures T and
TLC (which here will be taken to be identical for simplicity),
and the quality factor of the rf resonant circuit, QLC .

The other parameters will be kept fixed and corresponding
to typical experimental values for a metalized membrane-in-
the-middle configuration [20, 24], that is, laser optical wave-
length λ = 1064 nm, membrane effective mass m = 0.7×10−10

kg, membrane intensity reflectivity (in the non-metalized sec-
tion) R = 0.4, bare mechanical resonance frequency ω0 =

2π × 1 MHz, mechanical quality factor Qm = 106, opti-
cal cavity length Lc = 8 × 10−3 m, optical cavity finesse
F = 5 × 104, yielding a total optical cavity amplitude decay
rate κ = 2π× 374.74 kHz. We have also chosen κin = 0.4κ and
a laser driving around the red mechanical sideband, that is,
∆ ' ω0. Finally, we have chosen an equivalent circuit induc-
tance L = 1 mH, and a membrane capacitor with an effective
area Aeff = 1.1× 10−7 m2 and distance between the electrodes
equal to h0 = 2 µm. As a consequence, the two coupling rates
G and g, and the corresponding system working point, can be
tuned by varying the two external parameters, the driving laser
power P which fixes the intracavity photon number ncav, and
the DC voltage bias VDC.

In Fig. 3 we assume a cryogenic temperature T = TLC = 10
mK, and a rf resonator quality factor QLC = 4 × 104. Then
in Fig. 3a)-3b) we take identical bare frequencies of the LC
and mechanical resonators, ω(0)

LC = ω0, and display the be-
haviour of the stationary rf circuit occupancy n̄eff

LC predicted
by Eqs. (47)-(48). In Fig. 3a) n̄eff

LC is plotted versus the scaled
electromechanical and optomechanical coupling rates, g/κ
and G/κ respectively, while in Fig. 3b) we plot n̄eff

LC versus
g/κ at four fixed values of G/κ corresponding to the horizon-
tal lines with the same color and style in Fig. 3a). These plots
clearly show that an experimentally achievable parameter re-
gion exists where it is possible to reach the quantum regime
with an LC resonator occupation number below 1.

However, the analysis of Sec. V predicts that optimal laser
cooling of the LC resonator occurs when the modified me-
chanical and rf resonance frequencies of Eqs. (32)-(33) are
resonant, ωm = ωLC , rather than their bare counterparts, ω(0)

LC
and ω0. Therefore, in Fig. 3c)-3d) we display the same plots
of Fig. 3a)-3b) but now under the optimal resonance condi-
tion ωm = ωLC , which can always be obtained by adjusting, at
each working point, the value of ωLC by means of the tuning
capacitance C0 [see Eq. (32)]. As expected, cooling of the LC
resonator is improved, with a wider parameter region where
laser cooling is efficient, even though the qualitative behavior
is not appreciably modified.

By comparing the upper and lower plots in Fig. 3, we no-
tice that the coupling g spans a shorter interval of possible
values in the latter resonant case. In fact, for a given choice of
h0 and Aeff , g is already upper limited by the maximum VDC

FIG. 3: a) and c): Stationary LC circuit occupancy n̄eff
LC from the so-

lution of the Lyapunov equation, Eq. (47), as a function of the scaled
electromechanical coupling g/κ, and of the scaled optomechanical
coupling G/κ. b) and d): n̄eff

LC versus g/κ, at fixed values of the op-
tomechanical coupling rate, corresponding to the horizontal lines in
a)-c): G/κ = 0.2 (full yellow lines), G/κ = 0.5 (dashed red lines),
G/κ = 0.8 (dash-dotted blue lines), G/κ = 1.1 (dotted black lines).
The upper plots a) and b) refer to the resonance of the bare mechan-
ical and LC frequencies, ω0 = ω(0)

LC , while the lower plots c) and d)
refer to the resonance of the effective mechanical and LC frequen-
cies, ωm = ωLC . We have chosen a quality factor of the rf resonator
QLC = 4 × 104 and a temperature T = 10 mK (see text for the other
system parameters). The dash-dotted black horizontal line in b) and
d) refers to n̄eff

LC = 1.

that can be applied before the pull-in effect (see Fig. 2); when
we impose the resonance condition ωm = ωLC , since the me-
chanical frequency ωm decreases due to the applied DC bias
[see Eq. (33)], the overall capacitance of the LC circuit must
be increased, implying a further limitation to the value of g
[see Eq. (31)]. From Fig. 3 we can conclude that ground state
cooling of the LC circuit is achievable for comparable values
of the coupling rates G and g, with the latter ones obtained
with a voltage bias VDC always far enough from the pull-in
voltage (see Fig. 2).

The more demanding experimental condition assumed in
Fig. 3 is the one on the rf resonator quality factor, because
typical values are in the range 102 . QLC . 103 [20, 35],
even though very recently Ref. [36] demonstrated a rf res-
onator with QLC ∼ 1.7×104. For this reason in Fig. 4 we have
studied the LC circuit occupancy n̄eff

LC also as a function of the
rf resonator quality factor QLC and of temperature T = TLC ,
at a fixed value of the optomechanical coupling, G/κ = 0.8
(blue dash-dotted line of Fig. 3) and ω(0)

LC = ω0 for simplic-
ity. At each point of the plot, we have chosen the optimal
value of the electromechanical coupling g minimising n̄eff

LC . As
expected, cooling improves for lower temperature and larger
QLC , and the dash-dotted line sets the boundary of the “quan-
tum region” where n̄eff

LC ≤ 1.
Finally, in Fig. 5 we compare the exact numerical result

of Eq. (47) with the approximate analytical theory developed
in Sec. V. We show the mean rf photon number n̄eff

LC versus



8

FIG. 4: Stationary LC circuit occupancy n̄eff
LC from the solution of

the Lyapunov equation, Eq. (47), as a function of the rf resonator
quality factor QLC and of temperature T (we have assumed here T =

TLC), for a chosen value of the optomechanical coupling, G/κ = 0.8
(dash-dotted blue line of Fig. 3), choosing ω0 = ω(0)

LC , and by fixing,
for any given pair of values of QLC and T , the optimal value of the
electromechanical coupling g minimising n̄eff

LC . The dash-dotted line
refers to the upper bound of the “quantum region”, n̄eff

LC = 1.

g/κ for the numerical solution (full lines) and for the approx-
imate analytical theory of Eq. (53) (dashed lines) at T = 300
K, choosing again ω(0)

LC = ω0, and for two different, realis-
tic values of the LC quality factor, QLC = 102 (red upper
curves), and QLC = 103 (blue lower curves). The approxi-
mate theory well reproduces the numerical solution for rela-
tively low values of the electromechanical coupling g, up to
the value roughly corresponding to the minimum occupancy.
For larger g, the prediction of Eq. (53) increases more than
the numerical solution, which is somehow expected because
the approximated theory is valid as long as g is not larger than
the effective optomechanical decay rate G2/2κ. Nonetheless,
the approximate theory provides a very good estimate of the
achievable cooling limit as well as of the g-interval where the
minimum rf-photon occupancy could be achieved.

VII. DETECTION OF THE RF RESONATOR STEADY
STATE

The effective mean photon number of the rf circuit at the
steady state can be measured following two ways: i) measur-
ing directly the rf voltage signal between two points of the cir-
cuit; ii) measuring the optical output of the cavity and trying
to get information about the rf circuit state from it. In both
cases these measurements are carried out in the frequency
domain and therefore here we will focus on the solution of
the Fourier transform of the Heisenberg-Langevin equations,
Eq. (39). This solution has been already given in compact
form in Sec. IV, but it will be convenient to re-express it in
more physical terms using effective susceptibilities.

Solving separately the two quadrature equations for each

FIG. 5: LC resonator photon occupation number n̄eff
LC versus g/κ, at

the same value of the optomechanical coupling, G/κ = 0.8, chosen
in Fig. 4, at temperature T = TLC = 300K, choosing ω0 = ω(0)

LC , and
for two different values of the quality factor, QLC = 102 (red full and
dashed upper curves), and QLC = 103 (blue full and dashed lower
curves). Full lines refer to the exact numerical solution of Eq. (47),
while dashed lines refer to the approximate treatment of Sec. V [see
Eq. (53)].

mode in equations from Eq. (24) to Eq. (29), we get

χ−1
c (ω)δX̂(ω)=Gδx̂(ω) +

√
2κ

[
κ − iω

∆
X̂vac(ω)+Ŷvac(ω)

]
,(55)

χ−1
m (ω)δx̂(ω)=GδX̂(ω) − gδq̂(ω) + ξ̂(ω), (56)

χ−1
LC(ω)δq̂(ω)=−gδx̂(ω) + δV̂(ω), (57)

where χc(ω), χm(ω), and χLC(ω) are the natural susceptibil-
ities of the cavity, mechanical, and electrical modes, respec-
tively, given by

χc(ω) =
∆

∆2 + (κ − iω)2 ,

χm(ω) =
ω0

ω2
m − ω

2 − iγmω
,

χLC(ω) =
ω(0)

LC

ω2
LC − ω

2 − iγLCω
.

(58)

The mutual interactions among the three modes lead to the
modification of their natural susceptibilities. Inserting δX̂(ω)
and δq̂(ω) in Eq. (56) into the equation for δx̂(ω), we obtain[
χeff

m (ω)
]−1

δx̂(ω) = χc(ω)G
√

2κ
[
κ − iω

∆
X̂vac(ω) +Ŷvac(ω)

]
+ ξ̂(ω) − χLC(ω)gδV̂(ω), (59)

where χeff
m (ω) is the effective mechanical susceptibility, de-

fined by [
χeff

m (ω)
]−1

= χ−1
mc(ω) − g2χLC(ω), (60)
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with

χ−1
mc(ω) = χ−1

m (ω) −G2χc(ω), (61)

where χmc(ω) is the effective mechanical susceptibility in the
presence of only the optomechanical interaction. Eq. (59) to-
gether with δ p̂(ω) = −i(ω/ω0)δx̂(ω) provides the mechanical
response of the system to external perturbations.

Following the same approach, for the electrical mode we
obtain[
χeff

LC(ω)
]−1

δq̂(ω) = δV̂(ω) − χmc(ω)g (62)

×

{
χc(ω)G

√
2κ

[
κ − iω

∆
X̂vac(ω) + Ŷvac(ω)

]
+ ξ̂(ω)

}
,

where χeff
LC(ω) is the effective rf circuit susceptibility, given by

[χeff
LC(ω)]−1 = χ−1

LC(ω) − g2χmc(ω). (63)

In the same way Eq. (62) together with δφ̂(ω) =

−i(ω/ωLC)δq̂(ω) provides the rf response of the system to ex-
ternal perturbations.

Eq. (48) can be rewritten as

n̄eff
LC =

〈δq̂2〉 + 〈δφ̂2〉 − 1
2

, (64)

that is, the effective stationary rf photon number can be ex-
pressed in terms of the dimensionless charge and flux vari-
ances. In turn, using Eq. (45), these variances are given by the
integral over the corresponding noise spectra

〈δq̂2〉=

∫ +∞

−∞

dω
2π

[
M(ω)DM(ω)†

]
33
=

∫ +∞

−∞

dω
2π

Sδq(ω), (65)

〈δφ2〉=

∫ +∞

−∞

dω
2π

[
M(ω)DM(ω)†

]
44
=

∫ +∞

−∞

dω
2π

ω2

ω2
LC

Sδq(ω).(66)

Therefore laser cooling of the rf resonator can be experimen-
tally verified by measuring the charge noise spectrum S δq(ω),
which can be explicitly written in terms of the effective sus-
ceptibilities defined above as

Sδq(ω) =
∣∣∣χeff

LC(ω)
∣∣∣2 [

g2
∣∣∣χmc(ω)

∣∣∣2 (
S rp + Sξ

)
+ SδV

]
, (67)

where Srp is the radiation pressure noise spectral contribution

Srp(ω) = G2κ
∆2 + κ2 + ω2

(∆2 + κ2 − ω2)2 + 4κ2ω2 , (68)

and Sξ and SδV are, respectively, the Brownian force noise
and the voltage noise spectra, which are constant, white, con-
tributions due to the Markovian approximation made on the
Brownian and Johnson-Nyquist noise,

Sξ = γm(2n̄m + 1), (69)
SδV = γLC(2n̄LC + 1). (70)

The charge noise spectrum can be measured by measuring
either the voltage noise across the circuit capacitance C(xs),

δVC(ω), or the voltage noise across the circuit inductance
L, δVL(ω). Since δVC(ω) = [qzpf/C(xs)]δq(ω), δVL(ω) =

−(ω2φzpf/ωLC)δq(ω), and both measurements will be affected
by an imprecision noise originating from the environment and
the detection apparatus, one can write for the two cases

SδVC =
q2

zpf

C(xs)2 S δq(ω) + S C
imp, (71)

SδVL =
ω4φ2

zpf

ω2
LC

S δq(ω) + S L
imp, (72)

=
ω4

ω4
LC

q2
zpf

C(xs)2 S δq(ω) + S L
imp,

where S C
imp and S L

imp are the voltage imprecision noise spec-
tra for the measurement cases, we have assumed that they are
uncorrelated from the other noise terms, and we have used
Eq. (6) and Eq. (21) in Eq. (72). These expressions show
that measured voltage noise spectra can provide the station-
ary photon occupancy of the rf resonant circuit provided that
the spectra are properly calibrated and, above all, that the im-
precision noise is small enough so not to alter the evaluation
of the area below the measured spectrum [see Eqs. (64)-(66)].

We can express this condition on the imprecision noise
S C,L

imp in more quantitative terms by exploiting the fact that the
shape of the charge spectrum S δq(ω) is determined by the ef-
fective LC susceptibility of Eq. (63). The parameter regime
which is optimal for cooling the LC resonator is distinct from
the strong electromechanical regime where the electrical and
mechanical modes hybridize yielding two spectrally resolved
peaks. On the contrary, in the cooling regime of interest here,
the effective LC susceptibility χeff

LC is characterized by a single
peak, significantly broadened by the interaction with the op-
tomechanical system, and therefore one can approximate χeff

LC
as a standard susceptibility with modified effective frequency
ωeff

LC and damping γeff
LC [53, 54],

∣∣∣χeff
LC(ω)

∣∣∣2 ' [
ω(0)

LC

]2[(
ωeff

LC

)2
− ω2

]2
+

(
ω γeff

LC

)2
, (73)

where

ωeff
LC '

√
ω2

LC +
g2κ2

G2 ' ωLC , (74)

under typical experimental conditions, and

γeff
LC ' γLC + ΓLC , (75)

in agreement with the analysis of Sec. V. Therefore the charge
noise spectrum S δq(ω) is peaked at ω ' ωeff

LC ' ωLC , and,
using Eqs. (67)-(70), one can write its maximum value with
very good approximation as

S peak
δq ' S δq(ωLC) = 1

(γeff
LC )2 {γLC(2n̄LC + 1) (76)

+
g2ω2

0

(ω2
m−ω

2
LC )2+(ωLC γ

eff
m )2

[
γm(2n̄m + 1) +

G2(2ω2
LC+κ2)

κ(4ω2
LC+κ2)

]}
,
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where we have approximated also the effective optomechani-
cal susceptibility in the Lorentzian-like form [53, 54]

|χmc(ω)|2 '
ω2

0(
ω2

m − ω
2)2

+
(
ωγeff

m

)2 . (77)

Due to the peaked structure of S δq(ω), one has ω4 ' ω4
LC

in Eq. (72), and therefore the calibration factor for the two
voltage noise measurements is practically the same, implying
that the condition for a faithful, direct, spectral measurement
of the LC resonator photon occupancy reads

S C,L
imp �

q2
zpf

C(xs)2 S peak
δq . (78)

We also notice that, again due to the peaked form of S δq(ω),
one has 〈δφ2〉 ' 〈δq2〉 [see Eqs. (65)-(66)] and therefore

n̄eff
LC ' 〈δq

2〉 −
1
2
. (79)

If we consider experimentally achievable parameters, en-
abling to approach the quantum regime for the rf circuit,
n̄eff

LC ' 1, one sees that the condition of Eq. (78) is nontriv-
ial to satisfy, because its right hand side is of the order of
10−20 V2/Hz. In fact, in this regime the charge noise spectrum
peak is flattened and broadened because γeff

LC becomes larger
and larger. Under these conditions the resonance peak height
becomes comparable to the background noise level and a di-
rect measurement of the rf photon occupancy becomes hard.
Nonetheless, this charge spectrum detection method is cer-
tainly able to detect a significant laser cooling of the circuit.

One can alternatively use the spectral analysis of the system
stationary state to get an indirect experimental detection of the
rf circuit cooling process. In fact, one can always probe the
linear response of the system by driving the rf circuit with a
tunable AC voltage VAC(ω), small enough in order not to mod-
ify its working point, but at the same time larger than Brow-
nian, Johnson-Nyquist and radiation pressure noises. From
Eq. (62) one has

δq(ω) ' χeff
LC(ω)VAC(ω), (80)

that is, one directly measures the effective susceptibility of the
LC circuit, and in particular its FWHM γeff

LC = γLC + ΓLC [see
Eq. (73)]. However, such a measurement provides also an in-
direct measurement of the rf photon occupancy in a large pa-
rameter regime, i.e., when the Johnson-Nyquist spectral con-
tribution dominates over the mechanical and radiation pres-
sure ones in the charge noise spectrum of Eq. (67). In fact, in
this regime, one has simply [see also Eq. (53)]

n̄eff
LC '

γLC

γeff
LC

n̄LC , (81)

that is, the temperature of the rf circuit is scaled down by the
ratio γLC/γ

eff
LC .

An alternative way to probe the system properties is to de-
tect the output of the optical cavity. However, any optical

cavity mode interacts directly only with the mechanical res-
onator, and therefore it detects the dynamics of the rf circuit
only indirectly, via its effects on the mechanical motion. As it
is customary in cavity optomechanics [40], the resulting opti-
cal output spectra allows a good measurement of the effective
mechanical occupancy, from which however it is hard to ex-
tract direct information about the steady state of the rf circuit.

VIII. CONCLUSIONS

We have investigated a tripartite optoelectromechanical
system formed by an optical cavity, a mechanical oscillator,
and a MHz rf resonator which, due to its low resonance fre-
quency, is normally in a thermally excited state even at ultra-
cryogenic temperatures. We have derived the optimal condi-
tions for achieving ground state, sympathetic, cooling of the rf
resonator, modeled as an LC circuit, by means of its interac-
tion with the mechanical resonator cooled by the laser-driven
optical cavity. This requires a large optomechanical coopera-
tivity, and an even larger electromechanical cooperativity. Un-
der these conditions, the LC resonator can be cooled close to
its quantum ground state, as confirmed by the exact numerical
results in the linearized regime around the optimal working
point of the circuit. Manipulating rf resonant circuits at the
quantum level would be extremely useful for the quantum-
limited detection of weak rf signals, such as those employed
for positioning, timing, and for the sensitive detection of rf
signals of astrophysical nature.
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Appendix A: Pull-in voltage

As discussed in the main text in Sec. III, soon after Eq. (33),
we cannot apply a too large value of the DC voltage bias VDC
due to the pull-in effect of the electrode in front of the metal-
ized membrane, softening the intrinsic spring constant of the
membrane mechanical mode. The quantity ω2

m of Eq. (33)
must be always positive, and using Eq. (17), one can rewrite
the stability condition of Eq. (33) as

mω2
0(h0+3xs)+~ncav[2ω′(xs)+ω′′(xs)(h0+ xs)]

h0+xs
> 0, (A1)
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where ω′(xs) and ω′′(xs) denote respectively the first and sec-
ond order derivatives of the cavity frequencies with respect to
x. The denominator h0 + xs is always positive because it is just
the distance between the two electrodes of the effective plane-
parallel capacitor modeling the membrane capacitor, so that
the stability condition is equivalent to impose the positivity of
the above numerator. However, it is possible to verify that the
static radiation pressure frequency shift proportional to ncav is
always negligible with respect to that of electrostatic origin
under typical experimental values, and therefore one gets the
very simple stability condition

xs > −
h0

3
. (A2)

Using Eq. (17) without the negligible radiation pressure term,
the critical point xs = −h0/3 can be re-expressed as a condi-
tion for the maximum applicable voltage, which is given by

Vpull =

√
8mω2

0h3
0

27ε0Aeff

, (A3)

which can be rewritten as a condition on the maximum elec-
trical field within the membrane capacitor

(
VDC

h0

)
max

=

√
8mω2

m

27Cm(0)
. (A4)

Appendix B: Explicit expressions in the case of a
membrane-in-the-middle setup

We have not specified in the text the explicit form of the
function ω(x), which is responsible for the radiation pres-

sure coupling between the optical mode and the mechanical
resonator. In fact, the results shown in the main text can
be applied to a generic geometry of the optoelectromechan-
ical setup. However, here we provide more details for the
membrane-in-the-middle case, based on the treatment of Ref.
[44]. One can always express the frequency of a chosen cavity
mode in the presence of a semi-transparent membrane with in-
tensity reflectivity R, placed at the static position z0 along the
cavity axis, as

ω(x) = ωc + Θ
c
Lc

arcsin
{√

R cos [2k(z0 + x)]
}
, (B1)

where Lc is the cavity length, k = ωc/c is the wave vector
associated with the chosen cavity mode, and Θ is the over-
lap parameter, 0 ≤ Θ ≤ 1, quantifying the transverse overlap
between the chosen optical and membrane vibrational modes.

The first order derivative determines the optomechanical
coupling according to Eq. (30), and it is given by

∂ω

∂x
(x)=−Θ

2ωc

Lc
sin[2k(z0 + x)]

√
R

1−R cos2[2k(z0 + x)]
. (B2)

The second order derivative instead enters into the expression
for the renormalized mechanical frequency of Eq. (33) and it
is given by

∂2ω

∂x2 (x)=−Θ
4ω2

c
cLc

√
R cos [2k(z0 + x)] 1−2R+R cos2[2k(z0+x)]

{1−R cos2[2k(z0+x)]}
3/2 . (B3)
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S. Gröblacher, M. Aspelmeyer, and O. Painter, Nature (London)
478, 89 (2011).

[4] M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser,
Nature (London) 563, 53 (2018).

[5] L. Qiu, I. Shomroni, P. Seidler, T. J. Kippenberg, Phys. Rev.
Lett. 124, 173601 (2020).

[6] E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald,
F. Marquardt, A. A. Clerk, and K. C. Schwab, Science 349, 952
(2015).

[7] J. M. Pirkkalainen, E. Damskagg, M. Brandt, F. Massel, and ¨
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lanpää, Nature (London) 556, 478 (2018).

[10] R. Riedinger, A. Wallucks, I. Marinkovic̀, C. Löschnauer, M.
Aspelmeyer, S. Hong, and S. Gröblacher, Nature (London) 556,
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Gröblacher, Nat. Phys. 16, 69–74 (2020).

[28] W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M.
Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini,
Nat. Commun. 11, 1166 (2020).

[29] J. M. Fink, M. Kalaee, R. Norte, A. Pitanti, O. Painter, Quantum
Sci. Technol. 5, 034011 (2020).

[30] X. Han, W. Fu, C. Zhong, C.-L. Zou, Y. Xu, A. Al Sayem, M.
Xu, S. Wang, R. Cheng, L. Jiang, H. X. Tang, Nat. Commun.
11, 3237 (2020).

[31] G. Arnold, M. Wulf, S. Barzanjeh, E. S. Redchenko, A. Rueda,
W. J. Hease, F. Hassani, J. M. Fink, Nat. Commun. 11, 4460
(2020).
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