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Abstract. Cyber-Physical Systems (CPS) consist of inter-wined computational (cyber)
and physical components interacting through sensors and/or actuators. Computational
elements are networked at every scale and can communicate with each other and with
humans. Nodes can join and leave the network at any time or they can move to different
spatial locations. In this scenario, monitoring spatial and temporal properties plays a key
role in the understanding of how complex behaviors can emerge from local and dynamic
interactions. We revisit here the Spatio-Temporal Reach and Escape Logic (STREL), a logic-
based formal language designed to express and monitor spatio-temporal requirements over
the execution of mobile and spatially distributed CPS. STREL considers the physical space
in which CPS entities (nodes of the graph) are arranged as a weighted graph representing
their dynamic topological configuration. Both nodes and edges include attributes modeling
physical and logical quantities that can evolve over time. STREL combines the Signal
Temporal Logic with two spatial modalities reach and escape that operate over the weighted
graph. From these basic operators, we can derive other important spatial modalities such
as everywhere, somewhere and surround. We propose both qualitative and quantitative
semantics based on constraint semiring algebraic structure. We provide an offline monitoring
algorithm for STREL and we show the feasibility of our approach with the application to
two case studies: monitoring spatio-temporal requirements over a simulated mobile ad-hoc
sensor network and a simulated epidemic spreading model for COVID19.

1. Introduction

From contact tracing devices preventing the epidemic spread to vehicular networks and
smart cities, Cyber-Physical Systems (CPS) are pervasive information and communication
technologies augmenting the human perception and control over the physical world. CPS
consist of engineering, physical and biological systems that are tightly interacting with
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computational entities through sensors and actuators. CPS are networked at every scale and
they are connected to the Internet (Internet of Things) enabling humans and other software
systems to inter-operate with them through the World Wide Web.

A prominent example of CPS is present in the modern automotive systems where the
substantial embedding of sensors, actuators, and computational units has facilitated the
development of various driving assistance features such as the adaptive cruise control or
the collision avoidance system. Furthermore, the upcoming 5G networks will empower
soon vehicles also with the possibility to access real-time information about each other
(position and speed of vehicles) and the condition of the other roads (accidents or traffic
jams). Thus, this dynamic network infrastructure promises to enhance further autonomous
driving applications, reduce traffic congestion and improve safety.

The benefits brought by this increasingly pervasive technology have also a price: unex-
pected failures can potentially manifest causing fatal accidents. Due to their safety-critical
nature [RKG+19], engineers must verify that their behavior is correct with respect to rigor-
ously defined requirements. However, given the uncertainty of the environment in which
these systems operate, detecting all the failures at design time is usually unfeasible. Ex-
haustive verification techniques such as model checking are limited to very small instances
due to state-space explosion. An alternative approach is to simulate a digital replica of the
CPS (its digital twin) and to test the behavior under different scenarios. Requirements are
generally expressed in a formal specification language that can be monitored online (during
the simulation) or offline over the simulation traces. Most of the available specification
languages [MN13, Mal16, BDG+20, ACM02] can specify only temporal properties. However,
spatio-temporal patterns play a key role in the understanding of how emergent behaviors
can arise from local interactions in such complex systems of systems. Thus, an important
problem is then how to specify in a formal language spatio-temporal requirements, and how
to efficiently monitor them on the actual CPS or on the simulation of its digital twin.

In this paper, we propose the Spatio-Temporal Reach and Escape Logic (STREL),
a spatio-temporal specification language originally introduced in [BBLN17] and that we
further revisit and extend in this manuscript. STREL allows to specify spatio-temporal
requirements and their monitoring over the execution of mobile and spatially distributed
entities and it is supported by the MoonLight [BBL+20] monitoring tool.

STREL considers the space, where the single components are spatially arranged, as
a weighted graph representing the dynamical topological configuration. Both nodes and
edges include attributes modeling the physical and logical quantities that can evolve in
time. STREL combines the Signal Temporal Logic [MN04] with two spatial operators reach
and escape. Other spatial operators such as everywhere, somewhere and surround can be
derived from them. The use of reach and escape opens the possibility to monitor the STREL
property locally at each node by observing the value of satisfaction of its neighbors. The
verdict of a STREL monitor can be evaluated using different semantics (Boolean, real-valued)
based on the constraint semirings algebraic structures.

The use of STREL is by no means restricted to CPS as an application domain, but
it is capable of capturing many interesting notions in other spatio-temporal systems, in-
cluding biological systems (e.g. Turing patterns [BBM+15, BAGHB16, NBC+18]), epidemic
spreading scenarios (in real space or on networks) [PSCVMV15], or ecological systems. In
these cases, monitoring algorithms typically act as key subroutines in statistical model
checking [BBM+15].

This paper extends our preliminary work [BBLN17] as follows:
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● we guide the reader through the all paper using a running example to facilitate the
comprehension of our framework in each step;

● we simplify the definition of dynamical spatial model and of the spatio-temporal semantics;
● we extend spatial STREL operators to support interval constraints on distances;
● we propose new monitoring algorithms, more efficient and able to work with interval

constraints. We also provide correctness proofs and discuss in detail its algorithmic
complexity;

● we consider a second case study where we monitor spatio-temporal requirements in STREL
on a simulated epidemic spreading model for COVID19;

The rest of the paper is organized as follows. We discuss the related work in Section 2.
In Section 3 we introduce the reader with a running example while in Section 4 we present
the considered model of space and the type of signals. The STREL specification language is
presented in Section 5 and the offline monitoring algorithms are discussed in Section 6. In
Section 7 and 8 we discuss the two case studies: the ZigBee protocol and the COVID-19
epidemic spreading. Finally, Section 9 presents the conclusions.

2. Related Work

The study of spatial logics dates back to at least twenty years ago. A first systematic study
of spatial logics was proposed in a dedicated handbook [APHvB07]. These works discuss
several important theoretical problems such as expressivity and decidability. However,
the lack of verification procedures and available tools made these specification languages
less practical to use. More recently, Ciancia and others proposed spatial [CLLM14] and
spatial-temporal [CGG+18] model checking algorithms to verify the Spatial Logic for Closure
Spaces [CLLM14] (SLCS) and its later extension [CGG+18] with the temporal modality
of the Computation Tree Logic [EH83]. SLCS considers a discrete and topological notion
of space that is based on closure spaces [Gal99]. Another example of the spatial model
checker is VoxLogicA [BCLM19, BBC+20], a specialized tool designed for image analysis.
VoxLogicA does not consider time and due to its specialization to image analysis, it cannot
be employed to verify spatio-temporal properties over cyber-physical systems. Spatial-
temporal model checking algorithms are also very computationally expensive due to the
state-space explosion that is further exacerbated by the spatial domain. Here, we consider
instead a more lightweight verification technique that consists in monitoring spatial properties
over a single execution trace of the system. This approach can be applied both on a simulated
model of the system or on the system itself by properly instrumenting it and collecting its
execution traces.

In the field of runtime verification several logical frameworks for monitoring spatial-
temporal properties [NBB+20] are recently gaining momentum: Spatial-Temporal Logic
(SpaTeL) [HJK+15], Signal Spatio-Temporal Logic (SSTL) [NBC+15], Spatial Aggregation
Signal Temporal Logic (SaSTL) [MBL+20, MBL+21] and Spatio-Temporal Reach and Escape
Logic (STREL) [BBLN17]. SpaTeL combines the Signal Temporal Logic [MN04] (STL)
with the Tree Spatial Superposition Logic [AGBB14] (TSSL). Spatial patterns in TSSL are
specified in terms of properties over quad trees [FB74] spatial data structures. Specifications
in this logic can capture even complex fractal spatial patterns. However, finding the right
formulation manually can be extremely cumbersome.

SSTL [NBC+15, NBC+18] extends the STL temporal logic with two spatial modalities
somewhere and surrounded that operate over a weighted graph where nodes represent
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spatial locations while edges their topological relations. The somewhere operator specifies
that a property is true in at least one of the nodes nearby, while the surround operator
specifies the property of being surrounded by a region of nodes satisfying its nested formula.
SSTL can be interpreted using both Boolean and real-valued semantics. One limitation
of SSTL is that the topological relation of the nodes is fixed: the nodes cannot change
their position. STREL [BBLN17] overcomes this limitation by operating over a dynamic
topological space. STREL introduces also two new spatial operators (reach and escape) that
generalize and substitute the SSTL operators and it simplifies the monitoring procedure
that is now computed locally in each node.

SaSTL [MBL+20, MBL+21] is yet another spatio-temporal monitoring language recently
developed to monitor the internet of things of smart cities. SaSTL is equipped with new
logical spatial operators to express spatial aggregation and spatial counting and similarly to
SSTL the monitoring procedure is limited to only a static topological space.

Another important key characteristic of STREL with respect to all the aforementioned
spatio-temporal specification languages is the possibility to define the semantics using con-
straint semirings algebraic structures. This provides the possibility to elegantly define a
unified monitoring framework for both the qualitative and quantitative semantics (similarly
to [JBGN18] for the STL case). Finally, it is also worth mentioning several recent applica-
tions of STREL ranging from mining spatio-temporal requirements from data [MDN21] to
synthesizing neural network-based controllers for multi-agent systems [AMBB21].

3. Running Example: A Mobile ad hoc sensor network

A mobile ad-hoc sensor network (MANET) can consist of up ten thousand mobile devices
connected wirelessly, usually deployed to monitor environmental changes such as pollution,
humidity, light, and temperature. Each sensor node is equipped with a sensing transducer,
data processor, radio transceiver, and an embedded battery. A node can move independently
in any direction and indeed can change its links to other devices frequently. Two nodes can
communicate with each other if their Euclidean distance is at most their communication
range as depicted in Figure 1 (right). Moreover, the nodes can be of different type and their
behavior and communication can depend on their types. In the next section, we consider the
simplest MANET with all nodes of the same type, while in Section 5 we will differentiate
them to describe more complex behaviors.

4. Spatial Models, Signals and Traces

In this section, we introduce the model of space we consider, and the type of signals that
the logic specifies.

4.1. Constraint Semirings. An elegant and general way to represent the result of moni-
toring is based on constraint semiring [BMR97]. This is an algebraic structure that consists
of a domain and two operations named choose and combine. Constraint semirings are a
subclass of semirings that have been shown to be very flexible, expressive, and convenient
for a wide range of problems, in particular for optimization and solving problems with soft
constraints and multiple criteria [BMR97], and in model checking [LM05].
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Figure 1: Proximity graph (left) and Connectivity graph (right)

Definition 4.1 (Semiring). A semiring is a tuple ⟨A,⊕,⊗,�,⊺⟩ composed by a set A, two
operators ⊕, ⊗ and two constants �, ⊺ ∈ A such that:

● ⊕ ∶ A ×A→ A is an associative, commutative operator to “choose” among values1, with �
as unit element (� ⊕ a = a,∀a ∈ A).

● ⊗ ∶ A ×A → A is an associative operator to “combine” values with ⊺ as unit element (
⊺ ⊗ a = a,∀a ∈ A) and � as absorbing element (� ⊗ a = �,∀a ∈ A )

● ⊗ distributes over ⊕;

Definition 4.2 (c-semiring). A constraint semiring (c-semiring) is a semiring ⟨A,⊕,⊗,�,⊺⟩
such that:

● ⊕ is defined over 2A, idempotent ( a ∈ A a⊕ a = a⊗ a = a) and has ⊺ as absorbing element
( ⊺ ⊕ a = ⊺)

● ⊗ is commutative
● ⊑, which is defined as a ⊑ b iff a⊕ b = b, provides a complete lattice ⟨A,⊑,�,⊺⟩.
We say that a semiring A is total when ⊑ is a total order .

With abuse of notation, we sometimes refer to a semiring ⟨A,⊕,⊗,�,⊺⟩ with the carrier
A and to its components by subscribing them with the carrier, i.e., ⊕A, ⊗A, �A and ⊺A. For
the sake of a lighter notation, we drop the subscripts when clear from the context.

Example 4.3. Typical examples of c-semirings are2:

● the Boolean semiring ⟨{true, false},∨,∧, false, true⟩;
● the tropical semiring ⟨R∞

≥0,min,+,+∞,0⟩;
● the max/min semiring: ⟨R∞,max,min,−∞,+∞⟩ ;
● the integer semiring: ⟨N∞,max,min,0,+∞⟩.
All the above semirings are total.

One of the advantages of semirings is that these can be easily composed. For instance, ifA
andB are two semirings, one can consider the cartesian product ⟨A×B, (�A,�B), (⊺A,⊺B),⊕,⊗⟩
where operations are applied elementwise.

1We let x⊕ y to denote ⊕({x, y}).
2We use R∞ (resp. N∞) to denote R ∪ {−∞,+∞} (resp. N ∪ {∞}).
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4.2. Spatial model. Space is represented via a graph with edges having a weight from a
set A. We consider directed graphs (undirected graphs can consider symmetric relation).

Definition 4.4 (A−spatial model). An A−spatial model S is a pair ⟨L,W⟩ where:

● L is a set of locations, also named space universe;
● W ⊆ L × A × L is a proximity function associating at most one label w ∈ A with each

distinct pair `1, `2 ∈ L.

We will use SA to denote the set of A-spatial models, while SLA indicates the set of
A-spatial models having L as a set of locations. In the following, we will equivalently write

(`1,w, `2) ∈ W as W(`1, `2) = w or `1
w↦ `2, saying that `1 is next to `2 with weight w ∈ A.

Example 4.5. R∞
≥0-spatial model can be used to represent standard weighed graphs as

Figure 2. L is the set of nodes and the proximity function W defines the weight of the edges,
e.g. W(`2, `7) = W(`7, `2) = 5.
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Figure 2: Example of a weighted undirected graph; e.g. W(`2, `7) = W(`7, `2) = 5.

A special class of spatial models is the ones based on Euclidean spaces.

Definition 4.6 (Euclidean spatial model). Let L be a set of locations, R ⊆ L×L a (reflexive)
relation and λ ∶ L→ R2 a function mapping each location to a point in R2, we let E(L,R,λ)
be the R∞ ×R∞-spatial model3 ⟨L,Wλ,R⟩ such that:

Wλ,R = {(`1, λ(`1) − λ(`2), `2)∣(`1, `2) ∈ R}

Note that we label edges with a 2-dimensional vector w describing how to reach `2
from `1, i.e., λ(`1) −w = λ(`2). This obviously allows us to compute the Euclidean distance
between `1 and `2 as ∥w∥2, but, as we will see, allows us to compute the Euclidean distance
of any pair of locations connected by any path, not necessarily by a line in the plane. Note
that, in the general case, a Euclidean spatial model is not a planar graph. A planar graph is
obtained when, for instance, one considers the proximity graph of Figure 1.

Example 4.7. When considering a MANET, we can easily define different proximity
functions for the same set of locations, where each location represents a mobile device. Given
a set of n reference points in a two-dimensional Euclidean plane, a Voronoi diagram [Aur91]
partitions the plane into a set of n regions, one per reference point, assigning each point
of the plane to the region corresponding to the closest reference point. The dual of the
Voronoi diagram is the proximity graph or Delaunay triangulation [Del34]. In Figure 1
(left) we can see an example of the Voronoi diagram (in blue) and proximity graph (in red).

3R∞ is the max/min semiring considered in Example 4.3.
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The proximity function can then be defined with respect to the Cartesian coordinates, as
in Definition 4.6: Wµ,R(`i, `j) = µ(`i) − µ(`j) = (xi, yi) − (xj , yj) = (xi − xj , yi − yj), where
(xi, yi) are the plane coordinates of the location `i.

The proximity function can be also equal to a value that depends on other specific
characteristics or behaviors of our nodes. For instance, Figure 1 (right) represents the
connectivity graph of MANET. In this case, a location `i is next to a location `j if and only
if they are within their communication range.

Given an A-spatial model we can define routes.

Definition 4.8 (Route). Let S = ⟨L,W⟩, a route τ is an infinite sequence `0`1⋯`k⋯ in Lω

such that for any i ≥ 0, `i
d↦ `i+1.

Let τ = `0`1⋯`k⋯ be a route, i ∈ N and `i ∈ L, we use:

● τ[i] to denote the i-th node `i in τ ;
● τ[i..] to indicate the suffix route `i`i+1⋯;
● ` ∈ τ when there exists an index i such that τ[i] = `, while we use ` /∈ τ if this index does

not exist;
● τ(`) to denote the first occurrence of ` in τ :

τ(`) = { min{i∣τ[i] = `} if ` ∈ τ
∞ otherwise

We also use Routes(S) to denote the set of routes in S, while Routes(S, `) denotes the set
of routes starting from ` ∈ L.

We can use routes to define the distance among two locations in a spatial model. This
distance is computed via an appropriate function f that combines all the weights in a route
into a value taken from an appropriate total ordered monoid B.

Definition 4.9 (Distance Domain). We say that distance domain (B,�B,⊺B,+B,≤B) when-
ever ≤B is a total order relation over B where �B is the minimum while ⊺B is the maximum
and (B,�B,+B) is a monoid. Given a distance domain B, we use �B, ⊺B, +B and ≤B to
denote its elements.

Definition 4.10 (Distance Function and Distance over paths). Let S = ⟨L,W⟩ be an
A-spatial model, τ a route in S, ⟨B,�B,⊺B,+B,≤B⟩ a distance domain, we call f ∶ A → B
the distance function, associating elements of A to the distance domain B. The distance

dfτ [i] up-to index i ∈ N∞ is defined as follows:

dfτ [i] =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�B i = 0

∞ i =∞
f(w) +B dfτ[1..][i − 1] (i > 0) and τ[0] w↦ τ[1]

Given a locations ` ∈ L, the distance over τ up-to ` is then dfτ [`] = dfτ [τ(`)] if ` ∈ τ , while it
is ⊺B if ` /∈ τ .

Example 4.11. Considering again a MANET, one could be interested in different types
of distances, e.g., counting the number of hop, or distances induced by the weights of the
Euclidean space structure.



4:8 L. Nenzi, E. Bartocci, L. Bortolussi, and M. Loreti Vol. 18:1

To count the number of hop, we can simply use the function hop ∶ A→ N∞, taking values in
the distance domain ⟨N∞,0,∞,+,≤⟩:

hop(w) = 1

and in this case dhopτ [i] = i.
Considering the proximity function Wµ,R(`i, `j) computed from the Cartesian co-

ordinates and the distance domain ⟨R∞,0,∞,+,≤⟩, we can use the Euclidean distance
∆(x, y) = ∥(x, y)∥, where (x, y) are the coordinates of the vectors returned by Wµ,R.

It is easy to see that for any route τ and for any location ` ∈ L in τ , the function d∆
τ (`)

yields the sum of lengths of the edges in R2 connecting ` to τ(0).
Given a distance function f ∶ A → B, the distance between two locations `1 and `2 in

a A-spatial model is obtained by choosing the minimum distance along all possible routes
starting from `1 and ending in `2:

df
S
[`1, `2] = min{dfτ [`2]∣τ ∈ Routes(S, `1)} .

Example 4.12. Consider again the distance functions defined for a MANETS. For hop, we
are taking the minimum hop-length over all paths connecting `1 and `2, resulting in the
shortest path distance.

4.3. Spatio-Temporal Signals.

Definition 4.13. A signal domain is a tuple ⟨D,⊕,⊗,⊙,�,⊺⟩ where:

● ⟨D,⊕,⊗,�,⊺⟩, is a c-semiring ;
● ⊙ ∶D →D, is a negation function such that:

– ⊙⊺ = �;
– ⊙� = ⊺;
– ⊙(v1 ⊕ v2) = (⊙v1)⊗ (⊙v2)
– ⊙(v1 ⊗ v2) = (⊙v1)⊕ (⊙v2)
– for any v ∈D, ⊙(⊙v) = v.

In this paper, we consider two signal domains:

● Boolean signal domain ⟨{⊺,�},∨,∧,¬, ,�,⊺, ⟩ for qualitative monitoring;
● Max/min signal domain ⟨R∞,max,min,−,�,⊺, ⟩ for quantitative monitoring.

For signal domains, we use the same notation and notational conventions introduced for
semirings.

Definition 4.14. Let T = [0, T ] ⊆ R≥0 a time domain and ⟨D,⊕,⊗,⊙,�,⊺⟩ a signal domain,
a temporal D-signal ν is a function ν ∶ T→D.
Consider a finite sequence:

ν̃ = [(t0, d0), . . . , (tn, dn)]
such that for ∀i, ti ∈ T, ti < ti+1 and di ∈D. We let ν̃ denote a piecewise constant temporal
D-signal in T = [t0, T ], that is

ν̃(t) =
⎧⎪⎪⎨⎪⎪⎩

di for ti ≤ t < ti+1,

dn for tn ≤ t ≤ T ;
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Given a piecewise constant temporal signal ν̃ = [(t0, d0), . . . , (tn, dn)] we use T (ν̃) to
denote the set {t0, . . . , tn} of time steps in ν̃; start(ν̃) to denote t0; while we say that ν̃ is
minimal if and only if for any i, di /= di+1. We also let ν̃[t = d] denote the signal obtained
from ν̃ by adding the element (t, d). Finally, if ν1 and ν2 are two D-temporal signals,
and op ∶ D ×D → D, ν1 op ν2 denotes the signal associating with each time t the value
ν1(t) op ν2(t). Similarly, if op ∶ D1 → D2, op ν1 denotes the D2−signal associating with t
the value op ν1(t).

Definition 4.15 (Spatial D-signal). Let L be a space universe, and ⟨D,⊕,⊗,⊙,�,⊺⟩ a signal
domain. A spatial D-signal is a function s ∶ L→D.

Definition 4.16 (Spatio-temporal D-signal). Let L be a space universe, T = [0, T ] a time
domain, and ⟨D,⊕,⊗,⊙,⊺,�⟩ a signal domain, a spatio-temporal D-signal is a function

σ ∶ L→ T→D

such that σ(`) = ν is a temporal signal that returns a value ν(t) ∈D for each time t ∈ T. We
say that σ is piecewise constant when for any `, σ(`) is a piecewise constant temporal signal.
Piecewise constants signal are denoted by σ̃. Moreover, we use T (σ̃) to denote ⋃` T (σ̃(`)).
Finally, we let σ̃@t denote the spatial signal associating each location ` with σ̃(`, t).

Given a spatio-temporal signal σ, we use σ@t to denote the spatial signal at time t,
i.e. the signal s such that s(`) = σ(`)(t), for any ` ∈ L. Different kinds of signals can be
considered while the signal domain D is changed. Signals with D = {true, false} are called
Boolean signals; with D = R∞ are called real-valued or quantitative signals.

Definition 4.17 (D-Trace). Let L be a space universe, a spatio-temporal D-trace is a
function x⃗ ∶ L→ T→D1 ×⋯ ×Dn such that for any ` ∈ L yields a vector of temporal signals
x⃗(`) = (ν1, . . . , νn). In the rest of the paper, we use x⃗(`, t) to denote x⃗(`)(t).

Example 4.18. We can consider a (R ×R)-spatio-temporal trace of our sensor network as
x⃗ ∶ L→ T→ R ×R that associates a set of temporal signals x⃗(`) = (νB, νT ) at each location,
where νB and νT respectively correspond to the temporal signals of the battery and the
temperature in location `, and each signal has domain ⟨R,max,min,−,�,⊺, ⟩.

We plan to work with spatial models that can dynamically change their configurations.
For this reason, we need to define a function that returns the spatial configuration at each
time.

Definition 4.19 (Dynamical A-Spatial Model). Let L be a spatial universe, a dynamical
A-spatial model is a function S ∶ T→ SLA associating each element in the time domain T with
A-spatial model S(t) = ⟨L,W⟩ that describes the spatial configuration of locations.

With an abuse of notation, we use S for both a dynamical spatial model and a static
spatial model, where, for any t, S = S(t).

Example 4.20. Let us consider a MANET with a proximity graph. Figure 3 shows two
different snapshots, S(t1) = ⟨L,W1⟩ and S(t2) = ⟨L,W2⟩, of the the dynamical spatial
model S for time t1 and t2. We can see that locations `1 and `2 change their position, this
changed also the Voronoi diagram and the proximity graph.
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Figure 3: Two snapshots of a spatial model with 7 locations `1, . . . , `7 that move in a 2D
Euclidean space. The plane is partitioned using a Voronoi Diagram (blue). In red
we have the proximity graph.

5. Spatio-temporal Reach and Escape Logic

In this section, we present the Spatio-Temporal Reach and Escape Logic (STREL), an
extension of the Signal Temporal Logic. We define the syntax and the semantics of STREL,
describing in detail the spatial operators and their expressiveness.

The syntax of STREL is given by

ϕ ∶= µ ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 U[t1,t2] ϕ2 ∣ ϕ1 S[t1,t2] ϕ2 ∣ ϕ1Rf ∶A→B[d1,d2] ϕ2 ∣ Ef ∶A→B[d1,d2] ϕ

where µ is an atomic predicate (AP ), negation ¬ and conjunction ∧ are the standard Boolean
connectives, U[t1,t2] and S[t1,t2] are the Until and the Since temporal modalities, with [t1, t2]
a real positive closed interval. For more details about the temporal operators, we refer the

reader to [MN13, MN04, DFM13]. The spatial modalities are the reachability Rf ∶A→B
[d1,d2]

and

the escape Ef ∶A→B
[d1,d2]

operators, with f ∶ A→ B a distance function (see Definition 4.11), B a

distance domain, and d1, d2 ∈ B with d1 ≤B d2. In what follows, we omit the type info about
function f when it is clear from the context or where it does not play any role.

The reachability operator φ1Rf[d1,d2]φ2 describes the behavior of reaching a location

satisfying property φ2, through a path with all locations that satisfy φ1, and with a distance

that belongs to [d1, d2]. The escape operator Ef
[d1,d2]

φ, instead, describes the possibility of

escaping from a certain region via a route passing only through locations that satisfy φ,
with the distance between the starting location of the path and the last that belongs to
the interval [d1, d2]. Note that the main difference between these two operators is that the
distance of the reach operator is with respect to the path, instead, the distance of the escape
operator is between the locations, so it considers the shortest path distance between the
starting location and the last.
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As customary, we can derive the disjunction operator ∨ and the future eventually F[t1,t2]

and always G[t1,t2] operators from the until temporal modality, and the corresponding past
variants from the since temporal modality, see [MN13] for details. We can define also other

three derived spatial operators: the somewhere �f ∶A→B
≤d φ and the everywhere �f ∶A→B

≤d φ that
describe behaviors of some or of all locations at a certain distance from a specific point, and
the surround that expresses the topological notion of being surrounded by a φ2-region, while
being in a φ1-region, with additional metric constraints. A more thorough discussion of the
spatial operators will be given after introducing the semantics.

5.1. Semantics. The semantics of STREL is evaluated point-wise at each time and at each
location. We stress that each STREL formula ϕ abstracts from the specific domain used
to express the satisfaction value of ϕ. These, of course, are needed to define the semantics.
In the following, we assume that D1 is the domain of the spatio-temporal traces, D2 is the
semiring where the logic is evaluated and B is a distance domain as defined in Definition 4.9.

Definition 5.1 (Semantics). Let S be a dynamical A-spatial model with L the space
universe, D1 and D2 be two signal domains, and x⃗ be a spatio-temporal D1-trace for L. The
D2-monitoring function m of x⃗ is recursively defined in Table 1.

m(S, x⃗, µ, t, `) = ι(µ, x⃗(`, t))

m(S, x⃗,¬ϕ, t, `) = ⊙D2m(S, x⃗, ϕ, t, `)

m(S, x⃗, ϕ1 ∧ ϕ2, t, `) = m(S, x⃗, ϕ1, t, `)⊗D2 m(S, x⃗, ϕ2, t, `)

m(S, x⃗, ϕ1 U[t1,t2] ϕ2, t, `) = ⊕D2 t′∈[t+t1,t+t2]
(m(S, x⃗, ϕ2, t

′, `)⊗D2 ⊗D2 t′′∈[t,t′]m(S, x⃗, ϕ1, t
′′, `))

m(S, x⃗, ϕ1 S[t1,t2] ϕ2, t, `) = ⊕D2 t′∈[t−t2,t−t1]
(m(S, x⃗, ϕ2, t

′, `)⊗D2 ⊗D2 t′′∈[t′,t]m(S, x⃗, ϕ1, t
′′, `))

m(S, x⃗, ϕ1Rf ∶A→B[d1,d2]
ϕ2, t, `) =

⊕D2τ∈Routes(S(t),`) ⊕D2 i∶(dfτ [i]∈[d1,d2])
(m(S, x⃗, ϕ2, t, τ[i])⊗D2 ⊗D2 j<im(S, x⃗, ϕ1, t, τ[j]))

m(S, x⃗,Ef ∶A→B[d1,d2]
ϕ, t, `) = ⊕D2τ∈Routes(S(t),`) ⊕D2 `′∈τ ∶(dfS(t)[`,`

′]∈[d1,d2])
⊗D2 i≤τ(`′)m(S, x⃗, ϕ, t, τ[i])

Table 1: Monitoring function.

Given a formula φ, the function m(S, x⃗, φ, t, `) corresponds to the evaluation of the
formula at time t in the location `. The procedure is exactly the same for different choices of
the formula evaluation domain, just operators have to be interpreted according to the chosen
semirings and signal domains. In particular, the choice of the signal domain D2 produces
different types of semantics. In this paper, we consider two signal domains: B and R∞, giving
rise to qualitative and quantitative monitoring, corresponding respectively to a Boolean
answer and a real satisfaction value. For the Boolean signal domain (D2 = ⟨{⊺,�},∨,∧,¬⟩ ),
we say that (S, x⃗(`, t)) satisfies a formula φ iff m(S, x⃗, φ, t, `) = ⊺. For max/min signal domain
⟨R∞,max,min,−,�,⊺, ⟩ we say that (S, x⃗(`, t)) satisfies a formula φ iff m(S, x⃗, φ, t, `) > 0.

In the following, we use σ̃S,x⃗φ to denote the spatio-temporal D2-signal such that for any t

and ` m(S, x⃗, φ, t, `) = σ̃S,x⃗φ (`, t).
We describe now in detail the semantics through the sensor network example as the

system on which we specify our properties, in particular, we use the graph in Figure 4 to
describe the spatial operators.
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Example 5.2 (ZigBee protocol). In Figure 4, the graph represents a MANET. In particular,
we consider the nodes with three different roles such as the ones implemented in the ZigBee
protocol: coordinator, router and EndDevice. The Coordinator node (coord), represented in
green color in the graph, is unique in each network and is responsible to initialize the network.
After the initialization of the network has started, the coordinator behaves as a router. The
Router node (router), represented in red color in the graph, acts as an intermediate router,
passing on data from other devices. The EndDevice node (end dev), represented in blue,
can communicate only with a parent node (either the Coordinator or a Router) and it is
unable to relay data from other devices. Nodes move in space and the figure corresponds
to the spatial configuration at a fixed time t. As spatio-temporal trace, let us consider a
{coord, router, end dev} × R-trace x⃗ ∶ L → T → Z × R∞ denoting the pair: (kind of node,
level of battery), i.e. x⃗(`, t) = (coord, b) if ` is a coordinator, x⃗(`, t) = (router, b) if ` is a
router, and x⃗(`, t) = (end dev, b) if ` is an end node, where b is the level of the battery.

Atomic Proposition. The function ι ∶ AP ×Dn
1 →D2 is the signal interpretation function

and permits to translate the input trace in a different D2-spatio temporal signal for each
atomic proposition in AP , which will be the input of the monitoring procedure. Different
types of atomic propositions and signal interpretations are admissible. E.g., we can simply
consider a finite set {p1, . . . , pn} = AP and an interpretation function ι(pi, x⃗(`, t)) = ⊺ iff
xi(`, t) = ⊺. In Figure 4, we can consider atomic propositions describing the type of node, i.e.,
the Boolean propositions {coord, router, end dev} are true if the node is of the corresponding
type. In case of real valued signals and of a quantitative interpretation of the logic (D2 being
in this case the real valued max/min semiring), we can consider inequalities µ = (g(x⃗) ≥ 0)
for some real function g and define ι(µ, x⃗(`, t)) = g(x⃗(`, t)), e.g. b > 0.5, that means ”the
level of the battery is greater than 50%
Negation. The negation operator is interpreted with the negation function ⊙D2 of the
chosen signal domain; e.g. m(S, x⃗,¬ϕ, t, `) = ¬m(S, x⃗, ϕ, t, `) for the Boolean signal domain
and m(S, x⃗,¬ϕ, t, `) = −m(S, x⃗, ϕ, t, `) for the quantitative ones.
Conjunction and Disjunction The conjunction operator ϕ1 ∧ ϕ2 is interpreted with
the combine operator ⊗D2 , i.e. m(S, x⃗, ϕ1 ∧ ϕ2, t, `) = m(S, x⃗, ϕ1, t, `)⊗D2 m(S, x⃗, ϕ2, t, `),
which corresponds to wedge ∧ operator for the Boolean semantics. This means that
m(S, x⃗, ϕ1 ∧ ϕ2, t, `) = 1 iff both m(S, x⃗, ϕ1) and m(S, x⃗, ϕ2) are equal to 1. For the
quantitative semantics ⊗D2 is interpreted ad the minimum operator, so, m(S, x⃗, ϕ1 ∧
ϕ2, t, `) = min(m(S, x⃗, ϕ1, t, `),m(S, x⃗, ϕ2, t, `)). Similarly the disjunction ϕ1 ∨ ϕ2 is in-
terpreted through the choose operator ⊕D2 , i.e. m(S, x⃗, ϕ1 ∨ ϕ2, t, `) = m(S, x⃗, ϕ1, t, `)⊕D2

m(S, x⃗, ϕ2, t, `), which corresponds to the ∨ for the Boolean semantics and to the max for
the quantitative one.

In the rest of the description, we focus on the Boolean semantics, i.e. D2 = ⟨{⊺,�},∨,∧,¬⟩,
the Quantitative semantics can be derived substituting ∨,∧ with min,max, as seen for
conjunction and disjunction.
Until.

m(S, x⃗, ϕ1 U[t1,t2] ϕ2, t, `) = ⋁
t′∈t+[t1,t2]

(m(S, x⃗, ϕ2, t
′, `) ∧ ⋀

t′′∈[t,t′]

m(S, x⃗, ϕ1, t
′′, `)).

As customary, (S, x⃗(`, t)) satisfies ϕ1 U[t1,t2] ϕ2 iff it satisfies ϕ1 from t until, in a time
between t1 and t2 time units in the future, ϕ2 becomes true. Note how the temporal
operators are evaluated in each location separately.
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Since.

m(S, x⃗, ϕ1 S[t1,t2] ϕ2, t, `) = ⋁
t′∈t−[−t2,−t1]

(m(S, x⃗, ϕ2, t
′, `) ∧ ⋀

t′′∈[t′,t]

m(S, x⃗, ϕ1, t
′′, `))

(S, x⃗(`, t)) satisfies ϕ1 S[t1,t2] ϕ2 iff it satisfies ϕ1 from now since, in a time between t1 and
t2 time units in the past, ϕ2 was true.

Except for the interpretation function, the semantics of the Boolean and the temporal
operators is directly derived from and coincident with that of STL (qualitative for Boolean
signal domain and quantitative for an R∞ signal domain), see [MN04, DFM13] for details.
Reachability.

m(S, x⃗, ϕ1Rf[d1,d2]ϕ2, t, `) = ⋁
τ∈Routes(S(t),`)

⋁
i∶(dfτ [i]∈[d1,d2])

(m(S, x⃗, ϕ2, t, τ[i])∧⋀
j<i

m(S, x⃗, ϕ1, t, τ[j]))

(S, x⃗(`, t)) satisfies ϕ1Rfd ϕ2 iff it satisfies ϕ2 in a location `′ reachable from ` through a

route τ , with a length dfτ [`′] belonging to the interval [d1, d2], and such that τ[0] = ` and
all its elements with index less than τ(`′) satisfy ϕ1. In Figure 4, we report an example
of reachability property, considering f as the hop function described in Example 4.11. In
the graph, the location `6 (meaning the trajectory x⃗ at time t in position `6) satisfies

end dev Rhop
[0,1]

router. Indeed, there exists a route τ = `6`5 such that dhopτ [1] = 1, where

τ[0] = `6, τ[1] = `5, τ[1] satisfies the red property (it is a router) and all the other elements
of the route satisfy the blue property (they are end-devices).
Escape.

m(S, x⃗,Ef
[d1,d2]

ϕ, t, `) = ⋁
τ∈Routes(S(t),`)

⋁
`′∈τ ∶(df

λ(t)[`,`
′]∈[d1,d2])

⋀
i≤τ(`′)

m(S, x⃗, ϕ, t, τ[i]).

(S, x⃗(`, t)) satisfies Efd ϕ if and only if there exists a route τ and a location `′ ∈ τ such
that τ[0] = ` and dS[τ[0], `′] belongs to the interval [d1, d2], while `′ and all the elements
τ[0], ...τ[k − 1] (with τ(`′) = k) satisfy satisfies ϕ. In Figure 4, we report an example of

escape property. In the graph, the location `10 satisfies Ehop
[2,∞]

¬end dev. Indeed, there exists

a route τ = `10`7`8 such that τ[0] = `10, τ[2] = `8, dhopS [`10, `1] = 2 and `10, `7 and `8 do not
satisfy the blue property, i.e. they are not end-devices. Note that the route `10`11`16 is not

a good route to satisfy the property because the distance dhopS [`10, `16] = 1.
We can also derive other three spatial operators: somewhere, everywhere and surround.

Somewhere. �f
[0,d]

ϕ ∶= trueRf
[0,d]

ϕ is satisfied by (S, x⃗(t, `)) iff there exists a location that

satisfies ϕ reachable from ` via a route τ with a distance belonging to the interval [0, d].
This length is computed via the function f . In Figure 4, all the locations satisfy the property

�hop
[0,3]

coord because, for all `i, there is always a path τ = `i . . . `10 with a length dhopτ (k) ≤ 3,

where τ[0] = `i, τ[k] = `10, and `10 satisfies the green property (it is a coordinator).

Everywhere. �f
[0,d]

ϕ ∶= ¬�f
[0,d]

¬ϕ is satisfied by (S, x⃗(`, t)) iff all the locations reachable

from ` via a path, with length belonging to the interval [0, d], satisfy ϕ. In Figure 4, there

are no locations that satisfy the property �hop
[0,2]

router because for all the locations `i there

is a path τ = `i`j such that `j does not satisfy the red property (it is not a router).

Surround. ϕ1⊚f[0,d]ϕ2 ∶= ϕ1∧¬(ϕ1Rf[0,d]¬(ϕ1∨ϕ2)∧¬(Ef¬[d,∞]
ϕ1) expresses the topological

notion of being surrounded by a ϕ2-region, while being in a ϕ1-region, with an additional
metric constraint. The operator has been introduced in [CLLM16] as a basic operator, while
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Figure 4: Example of spatial properties. Reachability: end dev Rhop
[0,1]

router. Escape:

Ehop
[2,∞]

¬end dev. Somewhere: �hop
[0,4]

coord. Everywhere: �hop
[0,2]

router. Sur-

round: (coord ∨ router)⊚hop
[0,3]

end dev.

here it is a derived one. The idea is that one cannot escape from a ϕ1-region without passing
from a location that satisfies ϕ2 and, in any case, one has to reach a ϕ2-location via a
path with a length less or equal to d. In Figure 4, the location `10 satisfies the property

(coord ∨ router)⊚hop
[0,3]

end dev. In fact, it satisfies the green property, it cannot reach a

location that does not satisfy the blue or the red property via a path with length lesser or
equal to 3 and it cannot escape through a path satisfying the green or red properties at a
distance more than 3.

The operators can be arbitrarily composed to specify complex properties as we will see
in Section 7 and 8.

5.2. Invariance properties of the Euclidean spatial model. The properties we con-
sider with respect to the Euclidean spatial model are typically local and depend on the
relative distance and position among nodes in the plane. As such, they should be invariant
with respect to the change of coordinates, i.e. with respect to the isometric transformations
of the plane. This class of transformations include translations, rotations, and reflections,
and can be described by matrix multiplications of the form

⎡⎢⎢⎢⎢⎢⎣

x′`
y′`
1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

β cos(α) −β sin(α) βtx
γ sin(α) γ cos(α) γty

0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x`
y`
1

⎤⎥⎥⎥⎥⎥⎦
where β, γ are the stretching, α the rotation, and tx, ty the translation factor respectively.
Invariance of satisfaction of spatial properties holds in STREL logic, for the Euclidean
space model of Definition 4.6. Consider an Euclidean space model E(L,µ,R) = ⟨L,Wµ,R⟩
and E(L,µ′,R) = ⟨L,Wµ′,R⟩, obtained by applying an isometric transformation A: µ′(`) =
A(µ(`)), for invariance to hold, we need to further require that distance predicates used
in spatial operators are invariant for isometric transformations. More specifically, for
any isometry A, we require a distance predicate d on the semiring R∞ × R∞ to satisfy
d((x, y)) = d(A((x, y))). This is the case for the norm-based predicates used in the examples,
of the form d((x, y)) = ∥(x, y)∥2 ≤ r.
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Notice that, the path structure is preserved (the edges given by R is the same), and the
truth of isometry-invariant distance predicates along paths in E(L,µ,R) and E(L,µ′,R) is
also the same. This straightforwardly implies that the truth value of spatial operators will
be unchanged by isometry.

Proposition 5.3 (Equisatisfiability under isometry). Let E(L,µ,R) = ⟨L,Wµ,R⟩ be an

Euclidean spatial model and E(L,µ′,R) = ⟨L,Wµ′,R⟩ an isometric transformation of the

former. Consider a spatial formula ϕ1Rfd ϕ2 or Efd ϕ1, where d is an isometry preserving
predicate. Assume m(S, x⃗, ϕj , t, `) = m′(S, x⃗, ϕj , t, `), j = 1,2, where m and m′ are the

monitoring functions for the two spatial models. Then it holds that m(S, x⃗, ϕ1Rfd ϕ2, t, `) =
m′(S, x⃗, ϕ1Rfd ϕ2, t, `) and m(S, x⃗,Efd ϕ1, t, `) = m′(S, x⃗,Efd ϕ1, t, `), for all ` and t.

6. Monitoring STREL

In this section, we present a monitoring algorithm that can be used to check if a given signal
satisfies or not a STREL property. The proposed algorithm follows an offline approach.
Indeed, the proposed algorithm takes as input the complete spatio-temporal signal together
with the property we want to monitor.

6.1. Offline monitor. Offline monitoring is performed via a function monitor that takes as
inputs a dynamical spatial model S, a trace x⃗ and a formula φ and returns the piecewise
constant spatio-temporal signal σ̃ representing the monitoring of φ. The function monitor is
defined by induction on the syntax of the formula (Algorithm 6.1). The spatio-temporal
signal resulting from the monitoring of atomic proposition µ is just obtained by applying
function ι(µ) to the trace x. The spatio-temporal signals associated with ¬ϕ and ϕ1 ∧ϕ2 are
obtained by applying operators ⊙D2 and ⊗D2 to the signals resulting from the monitoring
of ϕ and from the monitoring of ϕ1 and ϕ2 where ⊕D2 , ⊗D2 and ⊙D2 depend the signal
domain used to represent satisfaction values.

Monitoring of temporal properties, namely ϕ1U[t1,t2]ϕ2 and ϕ1S[t1,t2]ϕ2, relies on func-
tions Until and Since. These are defined by using the same approach of [DFM13]
and [MN13]. However, while their monitoring relies on classical Boolean and arithmetic
operators, here the procedure is parametrised with respect to operators ⊕D2 and ⊗D2 of the
considered semiring.

To monitor ϕ1 Rf ∶A→B[d1,d2]
ϕ2 we first compute the signals s1 and s2, resulting from the

monitoring of ϕ1 and ϕ2. After that, the final result is obtained by aggregating the spatial
signals s1@t and s2@t at each time t ∈ T (s1) ∪ T (s2) by using function Reach defined in
Algorithm 2. In this function two cases are distinguished: d2 /= ⊺B or d2 = ⊺B. In the first
case, the resulting monitoring value is calculated via function BoundedReach defined in
Algorithm 3. Conversely, when d2 = ⊺B monitoring is performed by relying on function
UnboundedReach defined in Algorithm 4.
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Algorithm 1 Monitoring algorithm

1: function Monitor(S, x⃗, ψ)
2: case ψ = ν
3: σ̃ = []
4: for all ` ∈ L do
5: for all t ∈ T (x⃗(`)) do
6: σ̃(`, t) = ι(µ)(x⃗(`, t))
7: end for
8: end for
9: return σ̃

10: case ψ = ¬ψ1

11: σ̃1 =Monitor(S, x⃗, ψ1)
12: σ̃ = []
13: for all ` ∈ L do
14: for all t ∈ T (σ̃1(`)) do
15: σ̃(`, t) = ⊙D2 σ̃1(`, t)
16: end for
17: end for
18: return σ̃
19: case ψ = ψ1 ∧ ψ2

20: σ̃1 =Monitor(S, x⃗, ψ1)
21: σ̃2 =Monitor(S, x⃗, ψ2)
22: σ̃ = []
23: for all ` ∈ L do
24: for all t ∈ T (σ̃1(`))∪T (σ̃2(`)) do
25: σ̃(`, t) = σ̃1(`, t)⊗D2 σ̃2(`, t)
26: end for
27: end for
28: return σ̃
29: case ψ = ψ1U[t1,t2]ψ2

30: σ̃1 =Monitor(S, x⃗, ψ1)
31: σ̃2 =Monitor(S, x⃗, ψ2)

32: σ̃ = []
33: for all ` ∈ L do
34: σ̃(`) = Until(t1, t2, σ̃1(`), σ̃2(`))
35: end for
36: return σ̃
37: case ψ = ψ1S[t1,t2]ψ2

38: σ̃1 =Monitor(S, x⃗, ψ1)
39: σ̃2 =Monitor(S, x⃗, ψ2)
40: σ̃ = []
41: for all ` ∈ L do
42: σ̃(`) = Since(t1, t2, σ̃1(`), σ̃2(`))
43: end for
44: return σ̃
45: case ψ = ψ1Rf[d1,d2]ψ2

46: σ̃1 =Monitor(S, x⃗, ψ1)
47: σ̃2 =Monitor(S, x⃗, ψ2)
48: σ̃ = []
49: for all t ∈ T (σ̃1) ∪ T (σ̃2) do
50: σ̃@t = Reach(S(t), f, d1, d2, σ̃1@t, σ̃2@t)
51: end for
52: return σ̃
53: case ψ = ψ1Efdψ2

54: σ̃1 =Monitor(S, x⃗, ψ1)
55: σ̃2 =Monitor(S, x⃗, ψ2)
56: σ̃ = []
57: for all t ∈ T (σ̃1) ∪ T (σ̃2) do
58: σ̃@t = Escape(S(t), f, d, σ̃1@t, σ̃2@t)
59: end for
60: return σ̃
61: end function

Algorithm 2 Monitoring function for reach operator

1: function Reach((L,W), f ∶ A→ B, d1 ∈ B, d2 ∈ B, s1 ∶ L→D2, s2 ∶ L→D2)
2: if d2 /= ⊺B then
3: return BoundedReach((L,W), f , d1, d2 , s1, s2)
4: else
5: return UnboundedReach((L,W), f , d1, s1, s2)
6: end if
7: end function

BoundedReach. Function BoundedReach, defined in Algorithm 3, takes as parameters
the spatial model ⟨L,W⟩ at time t, the function f ∶ A→ B, used to compute the distances
over paths, and the interval [d1, d2], describing the reachability bound. The proposed
algorithm is based on flooding that computes the output signal s. At line 3, we inizialite the
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Algorithm 3 Monitoring bounded reachability

1: function BoundedReach((L,W), f ∶ A→ B, d1 ∈ B, d2 ∈ B, s1 ∶ L→D2, s2 ∶ L→D2)

2: ∀` ∈ L.s[`] = { s2[`] d1 = �B
�D2 otherwise

3: Q = {(`, s2[`],�B)∣` ∈ L}
4: while Q /= ∅ do
5: Q′ = ∅
6: for all (`, v, d) ∈ Q do

7: for all `′ ∶ `′ w↦ ` do
8: v′ = v ⊗D2 s1[`′]
9: d′ = d +B f(w)

10: if (d1 ≤ d′ ≤ d2) then
11: s[`′] = s[`′]⊕D2 v

′

12: end if
13: if d′ < d2 then
14: if ∃(`′, v′′, d′) ∈ Q′ then
15: Q′ = (Q′ − {(`′, v′′, d′)}) ∪ {(`′, v′ ⊕D2 v

′′, d′)}
16: else
17: Q′ = Q′ ∪ {(`′, v′, d′)}
18: end if
19: end if
20: end for
21: end for
22: Q = Q′

23: end while
24: return s
25: end function

set Q, it contains all triples (`, s2[`],�B), where �B is the minimum element of the distance
domain B (e.g. if B = R≥0, �B = 0). Let us denote Qi the value of Q after i iterations of loop
starting at line 4. Qi contains a triple (`, v, d) if and only if there exists a path such that
with i-steps we reach a distance d <B d2 and a monitored value v. To compute the values in
Qi+1, for each element (`, v, d) ∈ Qi, we consider the locations `′ next to ` at a distance w

(`′
w↦ `) and we compute the items: v′ = v⊗s1(`′) and d′ = d+B f(w). The element (`′, v′, d′)

is added to Qi+1 if d′ <B d2, i.e. if the sum of the current distance plus the distance between
` and `′ is still less than d2. When d′ ∈ [d1, d2], s(`′) is updated to take into account the
new computed value. We recal that s stores the value of the semantics of the reach operator.

UnboundedReach. Function UnboundedReach defined in Algorithm 4 is used when the
interval in the reach formula is unbounded. In this case the function takes as parameters
the spatial model ⟨L,W⟩ at time t, the function f ∶ A→ B, used to compute the distances
over paths, and the lower bound d1, and returns a spatial signal s. If d1 = �B, i.e. when we
are considering a totally unbound reach with no constraints, we initialize s = s2. Otherwise,
when d1 /= �, we have first to call function boundedReach by passing as upper bound
d1 + dmax, where dmax is the max value that function f can associate to a single edge in W.
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Algorithm 4 Monitoring unbounded reachability

1: function UnboundedReach((L,W), f ∶ A→ B, d1 ∈ B, s1 ∶ L→D2, s2 ∶ L→D2)
2: if d1 = �B then
3: s = s2

4: else
5: dmax = max{f(w)∣∃.`, `′ ∈ L ∶ ` w↦ `′}
6: s = BoundedReach((L,W), f, d1, d1 +B dmax, s1, s2)
7: end if
8: T = L
9: while T /= ∅ do

10: T ′ = ∅
11: for all ` ∈ T do
12: for all `′ ∶ `′ w↦ ` do
13: v′ = (s[`]⊗D2 s1[`′])⊕D2 s[`′]
14: if v′ /= s[`′] then
15: s[`′] = v′
16: T ′ = T ′ ∪ {`′}
17: end if
18: end for
19: end for
20: T = T ′
21: end while
22: return s
23: end function

After that, s will contain the reachability value computed up to the bound [d1, d1 + dmax]
(lines (5)-(6)). Hence, the computed values are back propagated until a fixpoint is reached.
This will guarantee that for each location, only the values of s2 at a path distance [d1,⊺B]
are considered in the computation of reachability values.

Escape. Monitoring algorithm for Ef ∶A→B
[d1,d2]

ϕ is reported in Algorithm 5. Given a spatial

model ⟨L,W⟩ at time t, a distance function f ∶ A → B, an interval [d1, d2], it computes

the spatial signal representing the monitoring value of Efdϕ at time t. Function escape first
computes the matrix distance D (line 2), obtained from the given space model and distance
function f . After that, a matrix e ∶ L ×L→D2 is computed. The matrix e is initialised so
that all the elements e[`, `] in the diagonal are equal to s1(`), while all the other elements
are set to �D2 (lines 3-4). After that, iteratively, elements of e are updated by considering
the values in the neighbours in each location (lines 6-20). A value e[`′1, `2] is updated iff
s1(`′1) ⊗D2 e[`1, `2] >D2 e[`′1, `2], where `′1 is a neighbor of `1. The updates end when a
fixpoint is reached.4 At the end of the loop computation, the element e[`1, `2] contains the
escape value from `1 to `2, defined in the semantics without the distance constraint. This
latter is took into consideration in line 23, where the final monitored value s is computed.
For each `, the equation ⊕D2

({e[`, `′]∣D[`, `′] ∈ [d1, d2]}) considers the minimum values
e[`, `′] of all `′ that satisfies the distance contraint, i.e. such that D[`, `′] ∈ [d1, d2].

4We prove that the loop always terminates in Lemma 6.3.
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Algorithm 5 Monitoring escape

1: function Escape((L,W), f ∶ A→ B, d1 ∈ B,d2 ∈ B, s1 ∶ L→D2)
2: D =MinDistance(L,W, f))
3: ∀`, `′ ∈ L.e[`, `′] = �D2

4: ∀` ∈ L.e[`, `] = s1(`)
5: T = {(`, `)∣` ∈ L}
6: while T /= ∅ do
7: e′ = e
8: T ′ = ∅
9: for all (`1, `2) ∈ T do

10: for all `′1 ∶ `′1
w↦ `1 do

11: v = e[`′1, `2]⊕D2 (s1(`′1)⊗D2 e[`1, `2])
12: if v /= e[`′1, `2] then
13: T ′ = T ′ ∪ {(`′1, `2)}
14: e′[`′1, `2] = v
15: end if
16: end for
17: end for
18: T=T’
19: e=e’
20: end while
21: s = []
22: for all ` ∈ L do
23: s(`) =⊕D2

({e[`, `′]∣D[`, `′] ∈ [d1, d2]})
24: end for
25: return s
26: end function

6.2. Correctness. In this subsection, we discuss the correctness of the algorithms.

Lemma 6.1 (BoundedReach correctness). Given an A-spatial model S = (L,W), a function
f ∶ A → B, an interval [d1, d2] (with d1, d2 ∈ B, d1 ≤B d2 and d2 /= ⊺B), and two spatial
signals s1 ∶ L→D2, s2 ∶ L→D2 such that BoundedReach((L,W), f, d1, d2, s1, s2) = s, for
any ` ∈ L, we have that:

s(`) = ⊕D2τ∈Routes(S,`) ⊕D2 i∶(dfτ [i]∈[d1,d2])
(s2(τ[i])⊗D2 ⊗D2j<is1(τ[j]))

Proof. Let us denote by si and Qi the value of variables s and Q respectively in Algorithm 3
after i iterations of the while-loop at line (4). Considering that, since f(w) > 0 for any w ∈ A,
the algorithm terminates after a finite number of iterations, the statement follows directly
from the following properties:

P1: if (`, v, d) ∈ Qi then d ≤B d2;
P2: if (`, v1, d) ∈ Qi and (`, v2, d) ∈ Qi then v1 = v2;
P3: (`, v, d) ∈ Qi if and only if

v = ⊕D2τ∈Routes(S,`)∶dfτ [i]=d
s2(τ[i])⊗D2 (⊗D2j<is1(τ[j]))
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P4: for any ` ∈ L:

si[`] = ⊕D2τ∈Routes(S,`) ⊕D2k∶k≤i∧(dfτ [k]∈[d1,d2])
(s2(τ[k])⊗D2 ⊗D2j<ks1(τ[j]))

Properties P1 and P2 are direct consequences of instructions at lines (3) and (13)−(19)
of Algorithm 3. Indeed, (`, v, d) ∈ Q0 if and only if d = �B (line (3)), while (`, v, d) is inserted
in Q′ = Qi+1 if and only if d <B d2 (line (13)) and no other (`, v′, d) is already in Q′ (lines
(14) − (18)).

Property P3 can be proved by induction on i by observing that the property is satisfied
by Q0 and that for any i:

(`′, v′, d′) ∈ Qi+1 ⇔ d′ <B d2 and v′ = ⊕D2(`,v,d)∈Qi∶`′
w
↦`∧d+f(w)=d′

(s1(`′)⊗D2 v)

From the above, and from inductive hypothesis, we have that:

v′ =⊕D2(`,v,d)∈Qi∶`′
w↦`∧d+f(w)=d′ (s1(`

′)⊗D2 ⊕D2τ∈Routes(S,`)∶dfτ [i]=ds2(τ[i])⊗D2
(⊗D2 j<is1(τ[j])))

=⊕D2τ∈Routes(S,`′)∶dfτ [i+1]=d′s2(τ[i + 1])⊗D2
(⊗D2 j<i+1s1(τ[j]))

That is the statement of P3.
Finally, we can probe P4 by induction on i by using P3 and by observing that:

si+1[`′] = ⊕D2(`,v,d)∈Qi∶`′
w
↦`∧d+f(w)∈[d1,d2]

si[`′]⊕D2 (s1[`′]⊗ v)

Lemma 6.2 (UnboundedReach correctness). Given an A-spatial model (L,W), a function
f ∶ A → B, a value d1 ∈ B (d1 /= ⊺B), and two spatial signals s1 ∶ L → D2, s2 ∶ L → D2 such
that UnboundedReach((L,W), f, d1, s1, s2) = s, for any ` ∈ L, we have that:

s(`) = ⊕D2τ∈Routes(S(t),`) ⊕D2`′∈τ ∶(dfτ [`′]≥d1)
(s2(`′)⊗D2 ⊗D2j<τ(`′)s1(τ[j]))

Proof. Directly from the pseudo code in Algorithm 4 and from Lemma 6.2, we can observe
that the value s computed by function UnboundedReach is the limit (s = limi→∞ si) of
the sequence of signals si such that for any ` ∈ L:

si+1[`] = ⊕
`∈L∶`

w
↦`′

(si(`)⊕ s1(`′)⊗ si(`′))

The initial spatial signal is s0 = s2, if d1 = �B, while it is:

s0[`] = ⊕D2τ∈Routes(S,`) ⊕D2 i∶(dfτ [i]∈[d1,d1+dmax])
(s2(τ[i])⊗D2 ⊗D2j<is1(τ[j]))

when d1 /= �B and dmax = max{f(w)∣∃.`, `′ ∈ L ∶ ` w↦ `′}. In both the cases, the statement
follows by applying standard algebra and the properties of ⊕ and ⊗.

Lemma 6.3 (Escape correctness). Given an A-spatial model (L,W), a function f ∶ A→ B,
an interval [d1, d2] (with d1, d2 ∈ B, d1 ≤B d2 and) d2 /= ⊺B), and a spatial signal s1 ∶ L→D2

such that Escape((L,W), f, d1, d2, s1) = s, for any ` ∈ L, we have that:

s(`) =⊕
D2 τ∈Routes((L,W),`)

⊕
D2 `′∈τ ∶(df(L,W)[`,`

′]∈[d1,d2])

⊗
D2 i≤τ(`′)

s1(τ[i])

Proof. Let us denote by ei the content of data structures e after i iterations of the loop at
line (6) of Algorithm 5. We have only to prove the following properties:

P1 For any `1, `2, D[`1, `2] = df(L,W)
[`, `′]
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P2 For any i:

ei[`1, `2] =⊕
D2 τ∈Routes((L,W),`)

⊗
D2 j≤τ(`′)∧j≤i

s1(τ[j])

P3 The loop terminates after at most k = ∣L∣ iterations and

ek[`1, `2] =⊕
D2 τ∈Routes(S(t),`)

⊗
D2 j≤τ(`′)

s1(τ[j])

Property P1 follows directly from definition of df
(L,W)

[`, `′] and from the fact that

MinDistance(L,W, f) computes the matrix of min distances computed in ⟨L,W⟩ via f .
Property P2 can be proved by induction on i and follows directly from the code of Algorithm 5.
Finally, P3 is a consequence of the fact that after at most ∣L∣ iterations a fix point is reached
since all the locations have been taken into account. We can conclude that the statement of
the lemma follows directly from properties P1, P2 and P3 above by observing that:

s(`) = ⊕D2
({e[`, `′]∣D[`, `′] ∈ [d1, d2]})

= ⊕D2
({ek[`, `′]∣D[`, `′] ∈ [d1, d2]})

= ⊕D2τ∈Routes(S(t),`) ⊕D2`′∈τ ∶(df(L,W)[`,`
′]∈[d1,d2])

⊗D2j≤τ(`′)s1(τ[j])

Theorem 6.4. Given a dynamical spatial model S, a trace x⃗ and a formula φ, we have that:

Monitor(S, x⃗, φ) = σ̃S,x⃗φ

Proof. The proof easily follows by induction on φ by using Lemma 6.1, Lemma 6.2, and
Lemma 6.3.

6.3. Complexity. In this subsection, we discuss the complexity of each algorithm.

Proposition 6.5 (BoundedReach complexity). Given an A-spatial model S = (L,W), a
function f ∶ A → B, an interval [d1, d2] (with d1, d2 ∈ B, d1 ≤B d2 and) d2 /= ⊺B), and two
spatial signals s1 ∶ L→D2, s2 ∶ L→D2 such that BoundedReach((L,W), f, d1, d2, s1, s2) =
s, we define dmin = min(`,w,`′)∈W(f(w)) and k = min{i∣i∗dmin > d2}, where i∗dmin indicates
the sum of i copies of dmin, then the algorithm terminates after O(k ⋅βd2 ⋅ ∣L∣ ⋅m) steps, where
m is the number of edges and βd2 is an integer counting the different distances accumulated
after k steps.5

Proof. First, we need to compute the upper bound on the number of iterations of the while
loop starting at the line (4). Let us denote by Qk the value of Q after k iterations. If Qk = ∅,
the loop stops after at most k iterations. Qk is empty if no elements are added at that
iteration. An element (`′, v′, d′) is not added to Qk iff d′ ≥ d2 where d′ = d+Bf(w) ≥ d+Bdmin
. Note that, at the first iteration Q0, d = �B. At each iteration, we add a value greater or
equal to dmin, this means that after k iterations d′ ≥ k ∗ dmin but k ∗ dmin > d2 for definition.
Q can have at most βd2 ⋅ ∣L∣ elements and, at each iteration of the while loop, for each
elements in Q, we consider their connected ones. This implies that function BoundedReach
terminates after O(k ⋅ βd2 ⋅ ∣L∣ ⋅m) steps.

5This value is in practice a constant and depends on the weights associated with edges and on the bound
d2. For instance, in the case of function hop of Example 4.11, β = 1. In general, βd2 has the same order of
magnitude as k considered above.
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Proposition 6.6 (UnBoundedReach complexity). Given an A-spatial model (L,W), a
function f ∶ A→ B, a value d1 ∈ B (d1 /= ⊺B), and two spatial signals s1 ∶ L→D2, s2 ∶ L→D2

such that UnboundedReach((L,W), f, d1, s1, s2) = s and let dmin = min(`,w,`′)∈W(f(w)),
dmax = max(`,w,`′)∈W(f(w)) and k = min{i∣i ∗ dmin > d1 + dmax}, then the algorithm stops
after O(k ⋅βd2 ⋅ ∣L∣ ⋅m) steps, where m is the number edges and βd2 is an integer counting the
different distances accumulated after k steps. Furthermore, when d1 = �B, this complexity
reduces to O(∣L∣ ∗m).

Proof. We have already observed in Proposition 6.5 that the first part of Algorithm 4
terminates after O(k ⋅βd2 ⋅ ∣L∣ ⋅m). We can here observe that the second part of the algorithm
(lines (9)− (21)) needs at most ∣L∣ ⋅m steps. This is because the for-loop at lines (12)− (18)
consists of at most O(m) steps (indeed each edge is considered at most two times). Moreover,
a location can be inserted in T at most ∣L∣ times. Concluding, the algorithm terminates
after O(k ⋅ βd2 ⋅ ∣L∣ ⋅m) +O(∣L∣ ⋅m) = O(k ⋅ βd2 ⋅ ∣L∣ ⋅m) steps. When d1 = �B lines (9) − (21)
are not executed, then the algorithm terminates after O(∣L∣ ⋅m).

Proposition 6.7 (Escape complexity). Given an A-spatial model (L,W), a function f ∶
A → B, an interval [d1, d2], (d1, d2 ∈ B, d1 ≤B d2 and) d2 /= ⊺B), and a spatial signal
s1 ∶ L → D2 such that Escape((L,W), f, d1, d2, s1) = s. Algorithm terminates in at most
O(∣L∣ ⋅m) steps, where m is the number of edges.

Proof. The computation of function MinDistance(L,W, f) needs O(m log(∣L∣)) steps.
Moreover, from property P3 in the proof of Lemma 6.3, we have that the loop at the line
(6) terminates after at most ∣L∣ iterations. In each of these iterations, each edge is taken
into account at most 2 times (one for each of the connected locations). This means that
the loop terminates after O(∣L∣ ∗m) steps. Finally, to compute the resulting spatial signal,
O(∣L∣) steps are needed for the loop at line (22). Concluding, the algorithm terminates in
O(m log(∣L∣)) +O(∣L∣ ∗m) +O(∣L∣), that is O(∣L∣ ∗m).

We can conclude this section by observing that the number of steps needed to evaluate
function Monitor in Algorithm 6.1 is linear in the size of φ, in the length of the signal, and
in the number of edges in the spatial model and it is quadratic in the number of locations.

7. Case study: ZigBee protocol monitoring

In this section, we consider the running example used in the previous sections. We discuss
some properties to show the expressivity and potentiality of STREL.

Given a MANET with a ZigBee protocol (Example 5.2), we consider as spatial models
both its proximity and connectivity graphs computed with respect to the Cartesian coordi-
nates (Example 4.7). Nodes have three kind of roles: coordinator, router and EndDevice, as
described in Example 5.2. Moreover, each device is also equipped with a sensor to monitor
its battery level (b), the humidity (h) and the pollution (p) in its position. The semiring
is the union between the max/min semiring R∞ (for the proximity graph) and the integer
semiring N∞ (for the connectivity graph). We will use also two types of distances: hop and
the ∆ distances described in Example 4.11. Atomic propositions {coord, router, end dev}
describe the type of nodes. We also consider inequalities on the values that are read from
sensors, plus special propositions @` which encode the address of a specific location, i.e. they
are true only in the location `.
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In the following, we describe several properties of these ZigBee MANET networks that
are easily captured by STREL logic, to exemplify its expressive power.

A class of properties naturally encoded in STREL is related to the connectivity of the
network. First, we can be interested to know if a node is properly connected, meaning that
it can reach the coordinator through a path of routers:

φconnect = deviceRhop[0,1]
(routerRhopcoord) (7.1)

The meaning of this property is that one end node reaches in a step a node which is a router
and that is connected to the coordinator via a path of routers.

We may also want to know if there is a path to the router which is reliable in terms of
battery levels, for instance such that all routers have a battery level, b, above 50%:

φreliable router = ((b > 0.5) ∧ router)Rhopcoord
φreliable connect = deviceRhop[0,1]

(φreliable router) (7.2)

The properties focus on spatial connectivity at a fixed time. We can add also temporal
requirements, for instance asking that a broken connection is restored within h time units:

φconnect restore = G(¬φconnect → F[0,h]φconnect) (7.3)

Another class of properties of interest is the acyclicity of transmissions. To this end,
we need to force the connectivity graph to be directed, with edges pointing in the direction
of the coordinator (i.e. transmission reduces the distance from the coordinator). With
STREL, we can easily detect the absence of a cycle for a fixed location `. This is captured
by φ`acyclic = ¬φ`cycle, where

φ`cycle = @`Rhop[0,1]
(¬@` ∧�hop@`) (7.4)

In order to characterize the whole network as acyclic, we need to take the conjunction of
the previous formulae for all locations (or at least for routers, enforcing end devices to
be connected only with routers). This is necessary as STREL is interpreted locally, on
each location, and this forbids us to express properties of the whole network with location
unaware formulae. This is a price for efficient monitoring, as global properties of networks
require more expressive and computationally expensive logic. However, we can use the
parametrization of STREL and the property of a Voronoi diagram to specify the global
connection or the acyclicity of the graph. Indeed, the proximity graph connects always all
the locations of the system, then the property �∆φ, verified on the proximity graph, holds
iff φ holds in all the locations of the system.

Up to now, we have presented qualitative properties, depending on the type of node. If
we express properties of sensor measurements, we can also consider quantitative semantics,
returning a measure of the robustness of (dis)satisfaction. As an example, we can monitor
(7.5) if in each location a high value of pollution eventually implies, within T time units, an
high value of humidity, or (7.6) in which locations it is possible to find a ‘safe’ route, where
both the humidity and the pollution are below a certain threshold. We can also check (7.7)
if a location is at least at distance at most d from a location that is safe.

φPH = (p > 150)⇒ F[0,T ](h > 100) (7.5)

φSafe = G[0,T ]E∆
[d,∞]

(h < 90) ∧ (p < 150) (7.6)

φsome =�∆
[0,d]φSafe (7.7)
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8. Case study: epidemic spreading

In this section, we investigate a case study based on an epidemic spreading model in a
population of a disease-transmitting via direct contact, like flu or COVID19. The simplest
models of epidemic spreading are based on a mean-field assumption and treat the population
as a homogeneous entity, assuming equal probability that two individuals can enter into
contact [BCCF19]. A more accurate description, instead, models potential contacts in a
more explicit way, hence the population is represented as a network of interacting agents
[PSCVMV15], in which nodes are the agents and links are the potential contacts. Such
a network can be static (links are fixed) or dynamic (links change during the simulation)
and possibly adaptive [PSCVMV15]. These kinds of models are particularly useful when
dealing with scenarios in which the number of potentially infective contacts, and thus
of secondary infections, can vary a lot between individuals, the so-called super-spreading
scenario [LSSKG05], which seems to be the relevant one also to capture the spreading of
COVID19 disease [LWD+20].

In our case study, we consider a discrete-time model composed of two contact networks,
one static, describing contacts within work colleagues, family, closed relatives, and friends,
and another one dynamic, modeling less frequent interaction events, like going to the
restaurant, the cinema, or the disco. The static network is defined by a degree distribution,
assumed to be the same for each node, and modeled as a lognormal distribution with cutoff
(mean 10, 99 percentile 50, cut off at 200).6 To generate the network, we sample a degree for
each node and then sample the network relying on the expected degree graph method
of networkX Python library [HSS08]. This network is sampled once and not modified during
simulations. The dynamic event network, instead, is resampled at every simulation step
(essentially corresponding to a day). Here, we additionally choose a subset of nodes that will
be affected by the events. Each node has assigned a random probability of taking part in the
event (chosen uniformly among the following frequency: once every month, once every two
weeks, once every week, twice per week) and at each step, the node is included in the event
network with such a probability. Then, each active node receives a degree sampled from a
different degree distribution with a longer tail (lognormal with mean 10 and 99 percentile
100, cut off at 1000), to model super-spreading effects.7

In order to simulate our discrete-time model, with step corresponding to one day, we
further give each agent one of four different states (Susceptible, Exposed but not infective,
Infective, Recovered), and sample the duration in days of the transitions from E to I and
from I to R according to a gamma distribution taken from COVID19 literature [CTR+20].
Infection of a Susceptible node can happen if it is in contact with an Infective node, with
a probability p which is edge dependent and sampled for each edge according to a Beta
distribution with a mean 0.05 (which roughly gives an R0 close to 2, as observed in the
second phase of the COVID epidemics, in Lombardia, Italy). We assume independence
among different edges when modeling the spreading of infection.

At each time step, the spatial model of the epidemic network is designed by the pair
⟨L,W⟩, where the set of locations L corresponds to the set of agents and the proximity
function W is such that (`i,w, `j) ∈ W if and only there is a probability greater than

6Contact distributions are constructed to resemble contact data collected by a regional government in
Italy, which is not publicly available.

7Note that, as we rely on distributions with cut-off, there is no practical difference in using a lognormal or
a heavier tail distribution like a power law.
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zero that `i and `j are in contact. The value of the weight w corresponds to the sampled
probability described above, both for the static and the dynamic one. More specifically,
w = − ln(p`i,`j(t)), where p`i,`j(t) is the infection probability at time t. Hence, the higher is
w, the lower is the probability that agent `i is infected by agent `j . We consider two types
of distances here, the hop distance, counting the number of hops, and the weight distance,
summing the value of edges w.

The spatio-temporal trace of our epidemic network is x ∶ L → T → Z with only one
signal x⃗(`) = ν associating with each agent ` and at each time t, the state x(`, t) ∈ S =
{Susceptible,Exposed, Infected,Recovered} = {S,E, I,R}. To give an idea of the
behavior of this model we plot in Figure 5 the number of nodes in each state at each time
for a random simulation.

time
Figure 5: The number of nodes in each state at each time for a random simulation.

The first property that we consider is:

φdangerous days = G(SusceptibleRhop
[0,1]

(F[0,2](Infected)) => F[0,7]Infected) (8.1)

φdangerous days is satisfied in a location when it is always true (at each time step) that
if a susceptible individual is directly connected with an individual that will be eventually
infected in the next 2 days then it will eventually be infected within the next 7 days. If we
consider only the static network, this property is satisfied on 447±12.5 nodes of the network,
considering 500 experiments, instead, considering only the dynamic network the property
is satisfied by 350 ± 70.5 nodes. As expected the daily contacts are more dangerous than
casual contact, and the dynamic network has more variability than the static one.

The second property that we consider is:

φsafe = G(�weight
[0,r]

(¬Infected) => G[0,T ](¬Infected)) (8.2)

φsafe holds in a location if it is always true that, when all the connected locations at a
weight distance less than r (i.e. with infection probability ≤ 10−r) are not infected, implies
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that this location will remain not infected for the next T days. With this property, we
can study the relationship between the probability of being infected from connected nodes
and being actually an infected individual after a number of days. If a location satisfies the
property, it means that being in a radius r of not infected individuals prevents infection.
If a location does not satisfy the property it means that there is some infected node at a
distance of more than r, connected with it that causes its infection within the next T days.
Setting T = 7 days, we study the variation of r versus the number of nodes that satisfy
the property (in a network with 500 nodes). Figure 6 shows the results. We report also a
second scale with the corresponding probability value. We can see that with r = 3 which
corresponds to a connection probability equal to 0.05 (the mean of our Beta distribution),
only half of the nodes satisfy the property, and to have almost all nodes that satisfy the
property we need to consider a very large radius. This means that having in the network
edges with very large values of r will not prevent the spread of the disease.

Figure 6: Number of nodes that satisfy property φsafe versus parameter r.

9. Conclusions

We presented STREL, a formal specification language to express and to monitor spatio-
temporal requirements over a dynamic network of spatially-distributed CPS. Our monitoring
framework considers the CPS topological configuration as a weighted graph with the nodes
modeling the CPS entities while the edges representing their arrangement according to
predefined spatial relations (e.g. proximity relation, connectivity, Euclidean distance, etc.).
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Both nodes and edges contain attributes that model physical and logical quantities that can
change over time. STREL combines the Signal Temporal Logic [MN04] with two spatial
operators reach and escape that are interpreted over the weighted graph. Other spatial
modalities such as everywhere, somewhere and surround can also be derived from them. We
demonstrated how STREL can be interpreted according to different semantics (Boolean, real-
valued), defining a unified framework capturing all of them, based on constraint semirings.
We provided a generic offline monitoring algorithm based on such semiring formulation,
providing also correctness proofs and discussing in detail its algorithmic complexity. We
showed several examples of requirements that we can monitor in our framework, considering
two different case studies.

As future works, first, we aim to design a distributed and online monitoring procedure
where the spatio-temporal signal is not known at the beginning, and it is discovered while data
are collected from the system; some preliminary results on this line can be found [VBLN21].
Second, we aim to extend our framework with new features such as the possibility to
synthesize automatically spatio-temporal controllers from the STREL specification or to
provide automatically an explanation of the failure, enabling us to detect the responsible
components when a STREL requirement is violated.
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