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Brownian particles suspended in disordered crowded environments often exhibit non-Gaussian
normal diffusion (NGND), whereby their displacements grow with mean square proportional to
the observation time and non-Gaussian statistics. Their distributions appear to decay almost ex-
ponentially according to “universal” laws largely insensitive to the observation time. This effect
is generically attributed to slow environmental fluctuations, which perturb the local configuration
of the suspension medium. To investigate the microscopic mechanisms responsible for the NGND
phenomenon, we study Brownian diffusion in low dimensional systems, like the free diffusion of
ellipsoidal and active particles, the diffusion of colloidal particles in fluctuating corrugated channels
and Brownian motion in arrays of planar convective rolls. NGND appears to be a transient effect
related to the time modulation of the instantaneous particle’s diffusivity, which can occur even
under equilibrium conditions. Consequently, we propose to generalize the definition of NGND to
include transient displacement distributions which vary continuously with the observation time. To
this purpose, we provide a heuristic one-parameter function, which fits all time-dependent transient
displacement distributions corresponding to the same diffusion constant. Moreover, we reveal the
existence of low dimensional systems where the NGND distributions are not leptokurtic (fat ex-
ponential tails), as often reported in the literature, but platykurtic (thin sub-Gaussian tails), i.e.,
with negative excess kurtosis. The actual nature of the NGND transients is related to the specific
microscopic dynamics of the diffusing particle.

PACS numbers:

I. INTRODUCTION

Possibly misinterpreting the original works of Albert
Einstein and Marian Smoluchowski on Brownian motion,
one tends to associate the normal diffusion of an ideal
Brownian particle with the Gaussian distribution of its
spatial displacements. Recent observations [1–6] of Brow-
nian motion in fluctuating crowded environments led to
question the generality of this notion. Indeed, it implic-
itly assumes Fick’s diffusion [7], whereby the directed
displacements of an overdamped particle, say, in the x
direction, ∆x(t) = x(t) − x(0), would grow according
to the asymptotic Einstein law, 〈∆x2(t)〉 = 2Dt, and
with Gaussian statistics. The probability density func-
tion (pdf) of the rescaled observable, δt = ∆x/

√
t, would

thus be a stationary Gaussian function with half-variance
D.

However, there are no fundamental reasons why the
diffusion of a physical Brownian tracer should be of the
Fickian type. For instance, in real biophysical systems,
displacement pdf’s have been reported, which retain
prominent exponential tails over extended intervals of the
observation time, even after the tracer has attained the
asymptotic condition of normal diffusion. Such an effect,
often termed non-Gaussian normal diffusion (NGND),
disappears only for exceedingly long observation times
(possibly inaccessible to real experiments [1]), when the

displacement distributions eventually turn Gaussian, as
dictated by the central limit theorem, without changes
of the diffusion constant. Persistent diffusive transients
of this type have been detected in diverse experimen-
tal setups [1–3, 8–10]. Extensive numerical simulations
confirmed the occurrence of NGND in crowded environ-
ments featuring slowly diffusing or changing microscopic
constituents (filaments [1, 3], large hard spheres [4–6],
clusters [11, 12], and other heterogeneities [13, 14]).

The current interpretation of this phenomenon postu-
lates the existence of one or more fluctuating processes
affecting composition and geometry of the particle’s sus-
pension medium [1]. It seems reasonable that, for obser-
vation times comparable with the relevant environmental
relaxation time(s), the tracer displacements may obey a
non-Gaussian statistics. The rescaled pdf’s, p(δt), are ex-
pected to be Gaussian for both much shorter and much
larger observation times, but with different half-variance:
the free diffusion constant, D0, for t → 0 (no crowding
effect) and the asymptotic diffusion constant, D, intro-
duced above, for t → ∞ (central limit theorem). The
mechanism how the tracer’s normal diffusion sets in and
the constant D remains unaltered through the entire non-
Gaussian transient, varies, instead, from case to case. In
summary, key features of the NGND phenomenon appear
to be: (i) its transient nature, whereby the observables
taken into account are intrinsically non-stationary; (ii)
a time-modulated instantaneous diffusivity of the tracer.
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As discussed in the following, these conditions can occur
even in the absence of external (non-equilibrium) pertur-
bations of the Brownian dynamics.

A simple heuristic explanation [1] of the NGND phe-
nomenon models the effects of the slowly fluctuating envi-
ronment in terms of an ad hoc distribution of the tracer’s
diffusion constant. Imposing an exponential distribution
of the diffusion constant with average D, a straightfor-
ward superstatistical procedure yields the exponential
(Laplace) rescaled distribution, p(δt) = exp(−δt/α)/2α,
with α2 = D. A more suggestive NGND paradigm is pro-
vided by the notion of diffusing diffusivity [15], whereby
the asymptotic particle’s diffusion constant is replaced
by a time fluctuating auxiliary observable, D(t). Regard-
ing D(t) as a continuous stochastic process with average
D and time constant τ , the distribution p(δt) changes
from exponential for t � τ to Gaussian for t � τ ; in
both time regimes, the displacement diffusion is normal,
with 〈∆x2(t)〉 = 2Dt [15]. Refined variations of these
paradigms [16–22], predict different exponential decays
of the transient distributions. These phenomenological
approaches have two major limitations, namely: (i) They
fail to incorporate the free Gaussian diffusion detected in
most real and numerical experiments at very short obser-
vation times, t → 0, when crowding plays no role. This
is because these approaches purportedly ignore the mi-
croscopic details of the actual diffusion mechanisms; (ii)
They generally aim at “universal” non-Gaussian tran-
sient pdf’s, namely, at functions p(δt) insensitive to t over
extended domains, t < τ . [In the superstatistical mod-
els τ = ∞.] However, even if this strategy may appear
to agree with NGND observations for complex systems
[1–6], it is obvious that to reproduce the exponential-
Gaussian crossover, the transient rescaled distributions
must assume the form p(δt, t), i.e., they must depend ex-
plicitly on t.

This study focuses on the microscopic mechanisms re-
sponsible for NGND. To this purpose, motivated by a
preliminary study [23], we investigated, both numerically
and analytically, directed diffusion of different idealized
tracers in confined geometries. We selected low dimen-
sional systems mostly inspired to cell biology [24, 25]. For
appropriately short observation times, NGND emerges as
a transient effect of the time modulation of the tracers’
microscopic diffusivity. This effect can occur even in the
absence of environmental fluctuations. It suffices to re-
quire that the tracer’s dynamics be governed by two con-
curring diffusion mechanisms, at least one of them char-
acterized by a finite relaxation time, τ . During transients
times of the order of τ , the displacement distributions
can deviate from their asymptotic Gaussian profile also
after normal diffusion has set in. Moreover, such devia-
tions do not necessarily imply the emergence of “fatter”
exponential tails (leptokurtic transients), but under cer-
tain conditions, the distribution tails can get “thinner”
(platykurtic transients).

This observation suggests typical NGND features are
to be found in much wider a class of diffusion systems.

Indeed, contrary to experimental and numerical observa-
tions on extended systems, the NGND transient displace-
ment distributions in low dimensional models, are found
to depend on the observation time. This led us to ad-
dress the question of phenomenological fitting functions
capable of reproducing the t-dependence of the rescaled
pdf’s, p(δt, t). We also noticed that the t dependence of
the transient rescaled pdf’s can be suppressed, though
not completely, by considering models where the onset of
normal diffusion is controlled by some intrinsic time con-
stant, which can be taken much shorter than the upper
bound, τ , of the non-Gaussian transient. This provides
us with a criterion to formulate low dimensional models
that better capture the known NGND phenomenology in
complex systems.

The present paper is organized as follows. In Sec. II we
elaborate on a toy discrete model of NGND proposed first
in Ref. [15] and then revisited in Ref. [23]. The purpose
of this section is to single out key NGND aspects, like
the time scales regulating the diffusion mechanisms and
the nature of the non-Gaussian transients, that is, lepto-
versus platykurtic. In Sec. III we consider the diffusion
of a two dimensional (2D) ellipsoidal Brownian particle
in a highly viscous, homogeneous and isotropic fluid in
thermal equilibrium. For observation times shorter than
its rotational relaxation time, the particle does undergo
normal diffusion. However, its instantaneous diffusiv-
ity in a given direction is modulated in time due to its
elongated shape. This results in exponentially decaying
transient distributions of the particle’s directional dis-
placements. In Sec. IV we analyze the diffusion of a 2D
self-propelling symmetric particle in a homogeneous and
isotropic active medium with finite orientational relax-
ation time. NGND is characterized here by thin tails of
the transient displacement distributions. In both cases,
however, transients are governed by one time scale, only,
their orientational diffusion time, τ : on increasing the
observation time, normal diffusion just anticipates the
onset of the Gaussian statistics of the particle’s displace-
ments. In Sec. V we introduce a phenomenological fit-
ting function, pβ(δt) for the rescaled displacement dis-
tributions, with only one adjustable parameter, β. This
function is designed ad hoc to ensure normal diffusion
with the observed diffusion constant, D, at any time,
while β encodes the t-dependence of the rescaled dis-
placement distributions. Relevant values of the fitting
parameter β are β = 2 for a Gaussian pdf, β = 1 for a
Laplace (exponential) pdf, β < 2 for a leptokurtic pdf,
and β > 2 for a platykurtic pdf. In Sec. VI we analyze
the NGND phenomenon in a narrow corrugated channel
[26, 27] with fluctuating pores [23]. NGND occurs for
time-correlated pore fluctuations, random and periodic,
alike, and, more importantly, for observation times com-
prised between two distinct, controllable time scales. The
correlation time of the pore fluctuations sets the transient
time scale, τ , whereas the average pore-crossing time gov-
erns the onset of normal diffusion. Upon choosing the
former much larger than the latter, the NGND transient



3

is made grow wider and the t-dependence of β weaker.
As a practical application of the tools introduced thus
far, in Sec. VII we investigate the diffusion of a passive
Brownian tracer in a periodic array of planar counter-
rotating convection rolls. The peculiarity of this model
is that, by tuning its dynamical parameters, transients
can change from lepto- to platykurtic. Two are the sys-
tems’s characteristic time scales: the mean time for the
particle to first exit a convection roll and its average revo-
lution period inside the roll. At low (high) temperatures,
the former (latter) time scale is larger and thus plays the
role of transient time, τ ; accordingly, the NGND tran-
sients are leptokurtic (platykurtic). Finally, in Sec. VIII
we summarize the main conclusions of our approach to
NGND.

II. A DISCRETE NGND MODEL

Though sounding exotic to some readers, the phe-
nomenon of NGND turns out to be way more general
than the more familiar Fickian diffusion. To make this
point, we elaborate now on a coarse grained model, first
proposed in Ref. [15], which serves well the purpose of
illustrating NGND in continuous systems of any dimen-
sionality.

Let us coarse grain the trajectory of a tagged particle
in the x direction as the sum of small random steps, ∆xi,
taken at fixed discrete times, ti = i∆t, where i = 1, . . . N
and ∆t = 1, for simplicity. Accordingly, the position of

the particle at time N is xN =
∑N
i=1 ∆xi. A stochas-

tic average over the particle’s steps ∆xi yields the mean
square displacement at time N ,

〈x2N 〉 =

N∑
i=1

〈∆x2i 〉+ 2
∑
i6=j

′〈∆xi∆xj〉, (1)

where
∑′
i6=j stays for

∑N−1
i=1

∑N
j=i+1. Sufficient con-

ditions to establish normal diffusion are that: (1) the
step directions are uncorrelated, 〈∆xi∆xj〉 = 0, that is,
for any given ∆xi, displacements ∆xj and −∆xj , are
equiprobable; (2) the variance, 〈∆x2i 〉, of the step prob-
abilities, p(∆xi), are of the same order of magnitude,
though not necessarily identical. These requirements are
less stringent than the assumptions implicit in the stan-
dard random walker model for Brownian motion [7].

Indeed, for the sake of generality, one should not rule
out finite correlations of the step lengths [15]. For in-
stance, we can assume that during each unit time step the
particle’s diffusion is normal with time-dependent con-
stant, Di, i.e.,

p(∆xi) = (4πDi)
−1/2 exp(−∆x2i /4Di). (2)

This assumption guarantees that the directions of the
particle’s steps are uncorrelated, while their length cor-
relation is controlled by the auto-correlation of the time

sequence of the constants Di, which, in turn, is specific
to the system at hand. It follows immediately that

〈x2N 〉 = 2〈D〉N, (3)

and

〈x4N 〉 − 3〈x2N 〉2 = 12µD〈D〉2N + 24
∑
i6=j

′
Cij , (4)

with µD = (〈D2〉 − 〈D〉2)/〈D〉2 and Cij = 〈DiDj〉 −
〈Di〉〈Dj〉. For any given stationary model, there exists
an appropriate distribution of the constants Di, p(Di),
so that 〈Di〉 ≡ 〈D〉.

Suppose now that two particle steps, ∆xi and ∆xj are
statistically uncorrelated only for large time differences,
i.e., 〈DiDj〉 = 〈Di〉〈Dj〉 for |i − j| > τ . We then distin-
guish two limiting cases,

(i) N � τ , where

µx =
〈x4N 〉 − 3〈x2N 〉2

〈x2N 〉2
=

3µD
N
→ 0. (5)

A vanishing excess kurtosis, µx, hints at a Gaussian xN
distribution. This is the asymptotic limit of the displace-
ment distributions predicted by the central limit theo-
rem.

(ii) N < τ , where

µx =
〈x4N 〉 − 3〈x2N 〉2

〈x2N 〉2
= 3µ̄D. (6)

with µ̄D = (2/N2〈D2〉)
∑
i 6=j
′Cij . Eqs. (3) and (6) em-

body the definition of NGND. The finite excess kurtosis,
µx depends on the actual auto-correlation of the con-
stants Di. For instance, on assuming 〈DiDj〉 = 〈D2〉
for all i and j with |i − j| < τ , we obtain µ̄D = µD.
In particular, for the exponential distribution p(Di) =
exp(−Di/〈D〉)/〈D〉 assumed in the diffusing diffusivity
model of Ref. [15], µD = 1. Not surprisingly, the result-
ing value of the excess kurtosis, µx = 3, corresponds to
a Laplace distribution of the total displacement xN [15].

Of course a more realistic choice of the correlator Cij
can yield different values of µx. In most applications
Cij is definite positive and decays to zero with time, i.e.,
with |i − j|; hence 0 < µx < 3, Accordingly, the cor-
responding xN distributions are leptokurtic, with tails
decaying slower than those of a Gaussian distribution,
but typically faster than exponentially. On the other
hand, we cannot exclude the possibility that Cij decays
to zero oscillating. This implies that, in principle, µD
can assume negative values, so that the corresponding
transient distribution of xN may be platykurtic. In Refs.
[28–30] the present approach has been extended also to
microscopically non-Gaussian diffusive processes [where
the ∆x distribution of Eq.(2) does not apply].

We conclude this section with a final remark about
the time scales involved in this discrete model. One time
scale has been introduced explicitly, namely the charac-
teristic decay time, τ , of the correlator Cij or, equiva-
lently, the correlation time of the step lengths, ∆xi. A
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second one is implicit in our choice for the step distribu-
tion, p(∆xi). In Eq. (2) the coarse grained diffusion was
assumed to be normal over the time step ∆t = 1. This
implies that in the corresponding continuum system nor-
mal diffusion is expected to have occurred at some in-
trinsic time scale much shorter than τ . Of course the
discrete model of this section cannot reproduce the dif-
fusion properties at times shorter than the discretization
time scale, ∆t.

III. DIFFUSION OF AN ELLIPSOIDAL
PARTICLE

We consider first the simple case of a 2D ellipsoidal par-
ticle of semiaxes a and b, with a > b, diffusing in a highly
viscous, homogeneous and isotropic medium, subject to
equilibrium thermal fluctuations. This is a well-known
problem in biological physics [31]. The particle’s elon-
gation causes a dissipative coupling between the center
of mass translational degrees of freedom, x and y in the
laboratory frame, and the rotational degree of freedom,
θ. As sketched in Fig. 1(b), the angle θ defines the ori-
entation of the particle’s long axis with respect to the
horizontal x axis. The physical consequences of such a
mechanism were first recognized by F. Perrin [32]. An
ellipsoidal particle tends to diffuse independently in di-
rections parallel and perpendicular to its long axis, that
is along its principal axes. The relevant diffusion con-
stants in the body frame are denoted here by Da and Db,
with Da ≥ Db. In 2D, rotational diffusion is governed by
an additional diffusion constant, Dθ, which will be han-
dled here as unrelated to the translational constants, Da

and Db, to avoid unnecessary complications involving hy-
drodynamic effects and fabrication issues [31, 32]. Over
the angular relaxation time τ = 1/Dθ, random diffu-
sion erases any directional memory of the particle’s mo-
tion. Related to this mechanism is the crossover between
anisotropic diffusion with constants Da and Db at short
observation times, t � τ , and isotropic diffusion with
constant D = (Da + Db)/2 at long observation times,
t > τ [33].

The anisotropic-isotropic crossover can be numerically
investigated by integrating the Langevin equations [34]
describing the roto-translational motion of a free ellip-
soidal Brownian particle,

ẋ = ξx(t), ẏ = ξy(t), (7)

θ̇ = ξθ(t), (8)

where the translational noises, ξi(t) with i = x, y, and
the rotational noise, ξθ(t), model three independent sta-
tionary Gaussian fluctuation sources with zero means
and autocorrelation functions 〈ξi(t)ξj(0)〉 = 2Dijδ(t) and
〈ξθ(t)ξθ(0)〉 = 2Dθδ(t). The matrix Dij encodes the dis-
sipative roto-translational coupling, namely [33]

Dij = (1/2)[(Da +Db)δij + (Da −Db)Mij(θ)], (9)
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 FIG. 1: Overdamped 2D ellipsoidal particle of semi-axes
a = 0.5 and b = 0.05 diffusing in a homogeneous medium
with Langevin Eqs. (7)-(9): (a), (c) displacement pdf’s for
different initial orientations [uniform θ(0) distribution in (a),
and θ(0) = 0 in (c)] and increasing observation times, t, see
legends; (b) 〈∆x2〉 vs. t for the initial conditions (i.c.) of (a)
(empty symbols) and (c) (filled symbols). Simulation param-
eters are: Da = 1, Db = (b/a)Da and Dr = 0.01. Asymptotic
diffusion in (b) follows the normal diffusion law, 2Dt with
D = (Da + Db)/2 (dashed line), independent of the i.c. At
very short times, the diffusion constant depends on θ(0) (see
sketch). The pdf’s have been fitted by means of Eq. (17) for
D fitting the large-t simulation data of (b) and β as reported
in the legends.

with M =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
.

Despite their apparent simplicity, the analytical solu-
tion of the Langevin Eqs. (7)-(9) is rather cumbersome
[35, 36]. The diffusion properties of a typical ellipsoidal
particle are summarized in Fig. 1. The mean square dis-
placement, 〈∆x2(t)〉, plotted in panel (b) as a function of
the observation time t, was first computed under assum-
ing a uniform distribution of θ(0). This initial condition
(i.c.) was justified with the practical difficulty of measur-
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ing the particle instantaneous orientation and with the
isotropy of the suspension medium. The resulting asymp-
totic diffusion constant, numerically determined as

D = lim
t→∞
〈∆x2(t)〉/2t,

agrees with the expected value, D = (Da + Db)/2, ob-
tained by averaging Dij(θ) in Eq. (9) with respect to the
isotropic equilibrium distribution of θ. This result is in-
deed an effect of our choice for the i.c. of θ. A stochastic
average over a uniform θ(0) distribution is equivalent to
imposing isotropic particle’s diffusion, that is establishing
Einstein law at any time. In contrast, by setting θ(0) = 0,
the numerical data for 〈∆x2〉 versus t, also shown in Fig.
1(b), bridge two linear laws with different diffusion con-
stant: D = Da for t � τ and D = (Da + Db)/2 for
t� τ .

More revealing are the distributions of the unidi-
rectional displacements, ∆x, for increasing observation
times, t, plotted in panels (a) and (c), respectively for
a uniform initial angular distribution and θ(0) = 0. As
first theoretically predicted by Prager [37] and numer-
ically confirmed by the authors of Ref. [36], for both
i.c. the rescaled displacement pdf’s do approach the
Gaussian profile of Fickian diffusion with half-variance
D = (Da + Db)/2, but only for t � τ , that is well af-
ter the anisotropic-isotropic crossover took place. Most
remarkably, for θ(0) = 0, in panel (c), the displace-
ment distributions approach a Gaussian profile both for
t � τ and t � τ , each with the corresponding half-
variance D shown in panel (b), respectively, Da and
(Da + Db)/2. The short-t “reentrant” Gaussian distri-
bution does not appear in panel (a), due to the ran-
domized i.c.. The explanation of this behavior is sim-
ple. In panel (c), the particle’s long axis was initially
oriented parallel to the x axis, θ(0) = 0. Therefore, it
started diffusing in the x direction like a one dimensional
Brownian particle, with diffusion constant Da. Subse-
quently, angular fluctuations mixed diffusion along the
two symmetry axes with time constant τ . This argu-
ment can be extended to any choice of θ(0): based on
Eq. (9), the short-t diffusion constant is expected to be
D = (1/2)[(Da+Db)+(Da−Db) cos θ(0)], see inset of Fig.
1(b). Of course, the i.c. only influence the anisotropic
diffusion regime at short t.

There is only one characteristic time scale in this
model, namely, the angular relaxation time, τ = 1/Dθ.
However, normal diffusion turns out to set in for shorter
observation times, t ∼ τ , than the displacement Gaus-
sian statistics. To explain this behavior, we notice that
during the transient time, τ , a maximum mean square
displacement, 2Daτ , occurs parallel to the major axis;
observing the same displacement in the perpendicular di-
rection would take a larger time, τ∗ = τ(Da/Db). The
onset of the Gaussian ∆x statistics is thus delayed to
larger observation times with t > τ∗.

In conclusion, this simple model of equilibrium Brow-
nian motion exhibits NGND. On decreasing the obser-
vation time, t, the rescaled displacement distribution in

a fixed laboratory direction, changes from Gaussian for
t� τ , to a leptokurtic distribution with fat exponential
tails for t ∼ τ , independently of the i.c.. This behavior
is consistent with the phenomenological picture of Sec.
II. This is apparent in the case of uniform initial ori-
entation. Normal diffusion is ensured by the fact that,
after the particle has taken a step ∆xi at the discrete
time ti = i∆x, it will next take a step ±∆xj at time tj ,
with equal probability. On the contrary, the step lengths
∆xi and ∆xj are correlated for |tj − ti| < τ . Indeed,
the effective half-width of the diffusing particle parallel
to the x axis, varies randomly between b at θ = 0, π and
a at θ = ±π/2. Accordingly, the particle’s instantaneous
diffusion constant fluctuates between Da and Db; its fluc-
tuations are exponentially time correlated with time con-
stant τ . As discussed in Sec. II, this leads to a rescaled
pdf, p(δt, t), with positive excess kurtosis.

IV. DIFFUSION OF A JANUS PARTICLE

We consider next the case of a pointlike particle un-
dergoing persistent Brownian motion, namely, a 2D ar-
tificial microswimmer. Typical artificial microswimmers
are Brownian particles capable of self-propulsion in an
active medium [38, 39]. Like in the foregoing section, the
suspension medium can be taken homogeneous, isotropic
and highly viscous. Such particles are designed to har-
vest environmental energy by converting it into kinetic
energy. The simplest class of artificial swimmers inves-
tigated in the literature are the so-called Janus parti-
cles (JP), mostly spherical colloidal particles with two
differently coated hemispheres, or “faces” [40, 41]. Re-
cently, artificial micro- and nanoswimmers of this class
have been the focus of pharmaceutical (e.g., smart drug
delivery [42]) and medical research (e.g., robotic micro-
surgery [43]). Relevant to the present work is the observa-
tion that their function is governed, in time and space, by
their diffusive properties through complex environments,
which are often spatially patterned [44] or confined [45].

The overdamped dynamics of a pointlike active JP can
be formulated by means of two translational and one ro-
tational Langevin equation

ẋ = v0 cos θ + ξx(t), ẏ = v0 sin θ + ξy(t), (10)

θ̇ = ξθ(t), (11)

where x and y are the coordinates of the particle’s cen-
ter of mass, and the self-propulsion velocity has constant
modulus, v0, and orientation θ, taken with respect to the
x axis, see sketch in Fig. 2(b). The translational noises
in the x and y directions, ξx(t) and ξy(t)), and the ro-
tational noise, ξθ(t), are stationary, independent, delta-
correlated Gaussian noises, 〈ξi(t)ξj(0)〉 = 2δijDiδ(t) with
i, j = x, y, θ. The noise strengths Dx = Dy = D0

(isotropic translational fluctuations) and Dθ are assumed
here to be unrelated for generality (e.g., to account for
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FIG. 2: Symmetric Janus particle diffusing in a homogeneous
medium with D0 = 1, v0 = 1, Dθ = 0.01, and uniform dis-
tributions of the particle’s initial position and orientation,
Eqs. (10)-(11): (a) displacement pdf’s at different observa-
tion times, t; (b) diffusion law, 〈∆x2〉 vs. t. The numerical
data agree well with the analytical law of Eq. (12) (solid
curve); the normal diffusion limits at large and short t, Eqs.
(13) and (14), are drawn for a comparison (dashed lines); the
pdf’s in (a) have been fitted by means of Eq. (17) with D
fitting the large-t data in (b) and an appropriate choice of β
(see legend). The pdf’s with β = 2 at the shortest and largest
t, panel (a), are Gaussian curves with half-variance D0 and
D0 +Ds, respectively.

different self-propulsion mechanisms [45]). The recip-
rocal of Dθ is the correlation (or angular persistence)
time, τ , of the self-propulsion velocity. For simplicity, we
ignore chiral effects due to unavoidable fabrication de-
fects [43, 46, 47]. It is worthy comparing the Langevin
Eqs. (7)-(8) and (10)-(11): for the ellipsoidal particle
anisotropy is geometric, i.e., due to its elongated shape,
whereas, for a pointlike JP anisotropy is dynamical, i.e.,
associated with the instantaneous orientation of its self-
propulsion velocity.

A detailed analytical treatment of the Langevin Eqs.
(10)-(11) is to be found in Ref. [48]. The unidirectional
diffusion of a free JP in 2D reads [49–51],

〈∆x2(t)〉 = 2(D0 +Ds)t+Dsτ(e−|t|/τ − 1), (12)

which approaches the Einstein law,

〈∆x2(t)〉 = 2(D0 +Ds)t, (13)

only for t � τ . Here, the unidirectional diffusion con-
stant, D, consists of two distinct contributions, a trans-
lational, D0, and a self-propulsion term, Ds = v20/2Dθ.

Instead, for short observation times Eq. (12) tends to

〈∆x2(t)〉 = 2D0t, (14)

that is, to the normal diffusion law of a passive particle
with v0 = 0. The analytical law of Eq. (12) and its nor-
mal limits for large and small observation times compare
well with our simulation results in Fig. 2(b).

The displacement distribution, p(δt, t), exhibits a
Gaussian profile both for t→ 0 and t→∞, but with dif-
ferent half-variances, respectively D0 and D = D0 +Ds,
see Fig. 2(a). The crossover between these two Gaus-
sian limits is characterized by platykurtic transient pdf’s
with fast decaying tails. Experimental evidence of this
phenomenon has been reported in Ref. [52]. In the limit
t → 0, the displacement distributions become sensitive
to the particle’s initial orientation. For a uniform dis-
tribution of θ(0), shown in Fig. 2(a), the rescaled pdf’s
approach a Gaussian function with half-variance D0, as
to be expected for an isotropic persistent Brownian mo-
tion in the ballistic regime, t � τ . However, for a fixed
value of θ(0), say, θ(0) = 0, the pdf is still a Gaussian
with the same half-variance, D0, but its center moves to
higher ∆x values, with 〈∆x(t)〉 = v0t [53] (not shown).
For intermediate observation times, t ' τ , the displace-
ment pdf’s develop two symmetric maxima a distance of
the order of the persistence length, ∆x ∼ v0τ , from their
centers [52].

The different nature of the diffusion transients of
ellipsoidal and active JP’s can be easily explained
in terms of the coarse grained model of Sec. II.
The orientation of a JP is time correlated; from
Eqs. (10)-(11), 〈cos θ(t) cos θ(0)〉 = 〈sin θ(t) sin θ(0)〉 =
(1/2) exp(−|t|/τ). This implies that both the orienta-
tion and the length of the discrete steps in the x di-
rection, ∆xi are time correlated; given any pair of steps,
∆xi and ∆xj , both their time correlations vanish asymp-
totically only for |tj − ti| � τ . However, on comparing
panels (a) and (b) of Fig. 2 we notice the existence of a
rather wide range of observation times, where 〈∆x2(t)〉
has approached a linear function of t, Eq. (13), while the
rescaled ∆x distributions are still apparently platykurtic.

The platykurtic nature of this transient is consistent
with the coarse grained model of Sec. II, because the
angular correlation of the self-propulsion velocity vector
amounts to an oscillatory behavior of Di − 〈Di〉, a nec-
essary condition to observe a negative excess kurtosis,
µx < 0. It remains to explain why, like in Sec. III, the on-
set of normal diffusion anticipates the onset of the Gaus-
sian ∆x statistics. We know [52] that the self-propulsion
mechanism of Eqs. (10)-(11) is responsible for the non-
Gaussian profile of p(δt), an effect mitigated by the trans-
lational noise as long as 2D0t > l2θ , where lθ = v0τ is the
JP persistence length. Therefore, the Gaussian statis-
tics of the unidirectional JP displacements is expected to
emerge only for t > τ∗, with τ∗ = τ(Ds/D0). Note that
in the simulations of Fig. 2 we set τ∗ > τ .

The results presented in this section lead us to conclude
that we are in the presence of another manifestation of
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the NGND phenomenon.

V. TRANSIENT DISPLACEMENT
DISTRIBUTIONS

As mentioned in Sec. I, the notion of NGND is com-
monly associated with the existence of a wide interval of
observation times, where diffusion follows a normal law
with fixed constant, D, and the rescaled displacement
distribution, p(δt), decays (almost) exponentially inde-
pendently of t. The exponential to Gaussian crossover
is hardly accessible to direct observation [1]. In the low
dimensional systems investigated here, instead, such a
transition takes place over a relatively narrower t inter-
val, which led us to look for a phenomenological func-
tion p(δt, t) fitting our simulation data from transient up
asymptotic t values.

Contrary to the diffusing diffusivity models, where the
limiting Laplace and Gaussian distributions are functions
of the sole diffusion constant, D, a more realistic fitting
procedure needs at least one additional parameter, β, to
capture the t-dependence of the transient pdf’s. Inspired
by the numerical findings of Secs. III and IV, we started
from the compressed exponential function

p(δt) = p0e
−(δt/δ0)β , (15)

where β ≥ 1. The scaling factor, δ0, and the normaliza-
tion constant, p0, have been computed by imposing the
conditions∫ ∞

0

p(δt)dδt = 1,

∫ ∞
0

δ2t p(δt)dδt = 2D, (16)

to obtain the one-parameter ad hoc fitting function,

pβ(δt) =
β

Γ( 1
β )

3
2

[
Γ( 3

β )

2D

] 1
2

exp

−( δ2t
2D

Γ( 3
β )

Γ( 1
β )

) β
2

 .
(17)

This function has been derived phenomenologically start-
ing from the standard stretched exponential distribution,

pβ(δt) = A exp(−Bδβt ). The constants A and B have
then be determined by normalizing pβ(δt) to one and en-
suring that its second moment yields 〈δ2t 〉 = 2D for any
value of the free parameter β. In view of its derivation,
the heuristic distribution (17) may apply also to the tran-
sients of microscopically non-Gaussian diffusion models
[28–30]. The fitting parameter β is allowed to vary with
t; it assumes values in the range 1 ≤ β ≤ 2 for leptokur-
tic distributions (positive excess kurtosis) and β ≥ 2 for
platykurtic distributions (negative excess kurtosis).

The fits of the pdf’s drawn in panels (a),(c) of Figs.
1 and (a) of Fig. 2 have been generated from Eq. (17)
by setting D equal to the diffusion constants that best
fitted the large-t diffusion data in the respective panels
(b) and, then, computing β to get the best fit of the
rescaled displacement distributions at different t. The

same fitting procedure has been applied in Figs. 3 and 4
of the forthcoming sections.

Our phenomenological formula (17) fits rather closely
the numerical pdf’s reported in Secs. III and IV, at least
for sufficiently large observation times. As a matter of
fact, the heuristic argument leading to the fitting func-
tion pβ(δt) assumes normal diffusion at any t. This is
consistent with the diffusive dynamics of the ellipsoidal
Brownian particle with isotropic i.c., displayed in Figs.
1(a)-(b). However, this cannot be the case, for instance,
of the active JP of Fig. 2, whose diffusion law for t < τ
clearly deviates from the asymptotic law of Eq. (13). A
comparison with the simulation output confirms that the
proposed fitting procedure works well for both systems
in the transient regime, t > τ .

VI. DIFFUSION IN A TIME MODULATED
CHANNEL

In most numerical and experimental investigations [1–
6] the transient distributions of δt are presented as sort
of universal functions, p(δt), which decay with (almost)
exponential law independently of t. Sometimes the tran-
sient interval is so wide that the exponential-Gaussian
crossover is not accessible to direct observation. The
question then rises as to what extent the low dimensional
systems addressed in this work may share that property.
In the notation of Sec. V, this corresponds to determin-
ing conditions for the fitting parameter β to be constant
with β 6= 2 (non-Gaussian transient) over a wide range
of t. Note that in the models of Secs. III and IV the
onset of the normal diffusion and the Gaussian statistics
regimes, which delimit the NGND transient, are governed
by the sole angular relaxation time τ (τ∗ being propor-
tional to τ). In the standard formalism of the central
limit theorem this would correspond to saying that the
higher cumulants of the displacement distribution vanish
slower with the observation time than the second mo-
ment approaches its linear growth [54]. In this regard,
more interesting are systems where the NGND transients
are delimited by two distinct time constants.

A study case is represented by the diffusion of a stan-
dard Brownian particle in a confined geometry [26], the
simplest example being a chainlike structure of cavities
connected by narrow pores [23]. In 2D, the dynamics of
an overdamped symmetric Brownian particle in a channel
is modeled by two simple Langevin equations

ẋ = ξx(t), ẏ = ξy(t), (18)

where x and y are the coordinates of the particle’s center
of mass and the translational fluctuations ξx(t) and ξy(t)
are zero-mean, white Gaussian noises with autocorrela-
tion functions 〈ξi(t)ξj(0)〉 = 2δi,jD0δ(t) and i, j = x, y.
The strength of ξi(t) coincides with the free-particle dif-
fusion constant, D0, which is typically proportional to
the temperature of the suspension fluid. However, con-
trary to Secs. III and IV, the particle is now confined to
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FIG. 3: Diffusion of a pointlike overdamped particle in a ran-
domly fluctuating channel, Eq. (19) with ε(t) representing
the Ornstein-Uhlenbeck process of Eq. (20). Simulation pa-
rameters are: yL = 1, xL = π, D0 = 1, Dε = 3, τ = 50, and
random x(0), y(0) and ε(0). In the main panel, rescaled dis-
placement pdf’s are shown for increasing observation times,
t, in the normal diffusion regime, see data for 〈∆x2〉 vs. t in
the inset. The fitting β values have been obtained from Eq.
(17) with D = 0.335. At short t, the statistics of our data is
not good enough to resolve the t dependence of β.

diffuse inside a narrow corrugated channel with axis ori-
ented along x and symmetric walls, y = ±w(x, t). Follow-
ing Refs. [26], we assumed for simplicity the sinusoidally
modulated channel half-width

w(x, t) = (yL/2)[ε2 + (1− ε2) sin2(πx/xL)]. (19)

Here yL and xL are respectively the maximum width and
the length of the unit channel cell, sketched in Fig. 3,
and ε2yL is the fluctuating width of the pores located at
xmod(xL) = 0. In the case of a pointlike particle, hydro-
dynamic effects [27] can be ignored. Moreover, let the
width of the channel pores be time modulated without
affecting the particle’s free diffusion constant, D0, for in-
stance, by applying a tunable external gating potential.
Therefore, when integrating the Langevin Eq. (18), we
neglected the particle radius with respect to xL and yL
(pointlike particle approximation) and imposed reflecting
boundary conditions at the walls [45].

In Ref. [23] we considered the case when ε(t) is an
Ornstein-Uhlenbeck process

ε̇ = −ε/τ +
√
Dε/τ2 ξε(t), (20)

where ξε(t) is another Gaussian zero-mean valued noise,
independent of ξx(t) and ξy(t) and delta-correlated,
〈ξε(t)ξε(0)〉 = 2δ(t). The channel pores open and close
randomly in time with average width 〈ε2〉yL, where 〈ε2〉
coincides with the variance of ε(t), Dε/τ = (π/2)〈|ε|〉2.

This channel model manifests prominent NGND, as il-
lustrated in Fig. 3. The displacement distributions are
Gaussian for both very short (not shown, see Ref. [23])

and asymptotically long observation times. Indeed, the
particle diffuses freely with constant D0 inside each chan-
nel’s cell for t < τL, with τL = x2L/8D0, before escaping
into an adjacent cell after a mean exit time τ0 = τL/〈|ε|〉
[23]. For t � τ0, the x directed diffusion process can
thus be described as a random walker with spatial step
xL and time constant τ0; memory of the i.c. adopted in
our simulations is completely erased. The ensuing mean
square displacement then follows the Einstein law with
approximated diffusion constant D = x2L/2τ0 [55]. The
displacement distribution assumes its asymptotic Gaus-
sian profile only for observation times much larger than
the correlation time of the pore fluctuations, t � τ . In
the simulations of Fig. 3, we set τ � τ0, which thus
defines a NGND transient interval, (τ0, τ), where diffu-
sion is normal, but the displacement distributions are
non-Gaussian. By taking such interval wide enough, the
transient pdf’s, p(δt, t), grow insensitive to t, and so do
the fitted β values. This way, we mimic the situation re-
ported in the literature [1–6] for more complex systems.

This prescription for NGND control is independent of
the detailed statistics of the pore fluctuations. For in-
stance, one can consider the case of a periodically time
modulated pore width with

ε(t) = δε cos(t/τ). (21)

The simulation data plotted in Fig. 4(a) confirm the ex-
istence of the NGND transient interval (τ0, τ), where τ is
now the period of the sinusoidal function ε(t) of Eq. (21)
and 〈ε2〉 = δ2ε/2 = (π2/8)〈|ε|〉2. For a quantitative com-
parison, in Figs. 3 and 4(a) 〈ε2〉 have been assigned the
same value, so that for the simulation parameters of Fig.
4 both time scales, τ0 and τ , are larger by approximately
the same factor two.

The NGND phenomenon in Fig. 4(a) is apparent. The
rescaled pdf’s shown there are clearly non-Gaussian. Fat
oscillating tails arise for t > τ , as an effect of the spatial
periodicity of the channel. Indeed, the oscillation period
of the plotted distributions is of the order xL/

√
t. This

effect, detectable also in Figs. 3 and 4(b), plays here a
marginal role. Indeed, on disregarding such oscillations,
the tails of the non-Gaussian distributions can still be
fitted by the function of Eq. (17) for an appropriate
choice of the free parameter β.

However, in Fig. 4(a) and in contrast with Fig. 3, the
deterministic nature of the pore time modulation allowed
us to resolve a weak t-dependence of β, without increas-
ing the statistical accuracy of our simulation runs. It is
important to remark that such a residual t-dependence
of the transient rescaled pdf’s can be further suppressed
by widening the transient interval (τ0, τ). An example is
shown in panel (b) of Fig. 4, where the simulation pa-
rameters are the same as in panel (a), except for the
modulation period, τ , which is five times larger. We
remark that, for the simple model at hand, this result
is analytically predictable upon reformulating the par-
ticle’s dynamics in the dimensionless units, x → x/xL,
y → y/xL and t→ t/τ .
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FIG. 4: Diffusion of a pointlike overdamped particle in a cor-
rugated channel, Eq. (19), with ε(t) representing the period-
ically time modulation of Eq. (21). Simulation parameters
are: yL = 1, xL = π, D0 = 1, δ2ε = 0.03, and (a) τ = 100,
(b) τ = 500. The initial conditions were set by imposing uni-
form distributions of the particle’s initial position and ε(t)
initial phase. In the main panels, rescaled displacement pdf’s
are plotted for increasing t, in the normal diffusion regime.
The values of β in the legend have been obtained by fitting
Eq. (17) with D computed numerically from the asymptotes,
〈∆x2〉 = 2Dt, drawn in the insets.

VII. DIFFUSION IN CONVECTION ROLLS

We finally address the reasons why transients under
NGND conditions can be either lepto- or platykurtic. In
Secs. III and IV we looked at two simple models, which
exhibit distributions of the one or the other type, respec-
tively, with 1 ≤ β ≤ 2 and β ≥ 2. We consider now a
slightly more complicated 2D system, which can undergo
both transients, depending on the choice of its dynamical
parameters. The numerical analysis of its diffusion prop-
erties will help us shed light on the different microscopic
mechanisms responsible for these two type of transients,
thus justifying the generalization of the NGND notion
proposed in this work.

To this purpose we investigated the diffusion of a point-
like overdamped particle of coordinates x and y, sus-
pended in a stationary planar laminar flow with periodic
center-symmetric stream function [56–62].

ψ(x, y) = (U0L/2π) sin(2πx/L) sin(2πy/L), (22)

π

−π π

(b)

FIG. 5: Diffusion in the periodic convective flow pattern of
Eq. (22): (a) Flow cell unit consisting of four counter-rotating
subcells; (b) The asymptotic diffusion constant, D vs. D0:
the numerical data (dots) are compared with the analytical
prediction discussed in the text, see Eq. (24). The stream
function parameters are U0 = 1 and L = 2π, and the diffusion
scale is DL = U0L/2π.

where U0 is the maximum advection speed and L the
wavelength of the flow unit cell. The ensuing parti-
cle’s dynamics can be formulated in terms of two driven
Langevin equations,

ẋ = ux + ξx(t), ẏ = uy + ξy(t), (23)

with the vector (ux, uy) = (∂y,−∂x)ψ representing the lo-
cal advection velocity. As illustrated in Fig. 5(a), this de-
fines four counter-rotating flow subcells, also termed con-
vection rolls. The translational noises, ξi(t) with i = x, y
are stationary, independent Gaussian noises with auto-
correlation functions 〈ξi(t)ξj(0)〉 = 2D0δijδ(t). They can
be regarded as modeling homogeneous, isotropic thermal
fluctuations. In our simulations, the flow parameters,
U0 and L were kept fixed, as they define the natural
length and time units, L and Ω−1L = L/2πU0, respec-
tively. Therefore, the only tunable parameter left is the
noise strength, D0. Having in mind a stationary system,
we assumed uniform distributions of the initial particle’s
coordinates, x(0) and y(0). Indeed, due to the incom-
pressibility of (ux, uy), in the presence of translational
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FIG. 6: Diffusion mechanisms in the periodic flow pattern of
Eq. (22): mean first-exit time, TD, vs. thermal noise, D0.
Convection flow parameters are U0 = 1 and L = 2π. The
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and T0/4, with T0 given in Eq. (25); the horizontal dashed
line represents the advection period, TL. Three D0 intervals.
shaded in different colors, are separated by D∗, obtained by
imposing TD = TL, and DL, defined in Fig. 5. In each
interval, the range of β is reported for reader’s convenience;
no NGND was detected for D0 > DL.

noise, a particle’s trajectory eventually fills up the flow
unit cell uniformly. To this regard, we remind that, in
the absence of noise, the advection period tends to di-
verge as the closed trajectory of a dragged particle runs
close the subcell boundaries [63]; hence, for D0 = 0 the
particle gets trapped in a convection roll [58, 59, 62].
Particle transport in such a flow pattern has been stud-
ied under diverse conditions and a rich phenomenology
has emerged [56–62]. We focus here on the Brownian
diffusion of a passive particle under the simultaneous ac-
tion of translational fluctuations and advective drag. A
first important feature of this system is illustrated in Fig.
5(b), where we plotted the dependence of the asymptotic
diffusion constant, D, on the noise intensity (and parti-
cle’s no-flow diffusion constant), D0. The mean square
displacement is an asymptotically linear function of time
for any choice of D0. However, on increasing D0, the
diffusion constant, D, changes from

D = κ
√
DLD0, (24)

for D0 < DL (advective diffusion), to D = D0, for
D0 > DL (thermal diffusion), an abrupt crossover occur-
ring at D0 ' DL, with DL = U0L/2π [64]. The constant
κ depends on the geometry of the flow cells [58, 59]; for
a 2D array of square counter-rotating convection rolls,
κ ' 1.06 [58]. This property can be explained with the
fact that for D < DL the spatial diffusion occurs along
the separatrices delimiting the four subcells of the stream
function, ψ(x, y), of Fig. 5(a). Stated otherwise, the dif-
fusion process is regulated by the advection velocity field
[65]. Vice versa, for D0 > DL the effects of advection on
the particle’s diffusion become negligible. Not surpris-
ingly, we detected NGND only for D0 < DL.

The diffusion process is governed by two competing
mechanisms: (i) Particle’s circulation inside the counter-
rotating subcells of ψ(x, y). The corresponding vorticity,
∇ × u = −∇2ψ, has a maximum, ΩL = 2πU0/L, at
the center of the subcells. This defines the time scale,
TL = 2π/ΩL, for the advection period, that is an esti-
mate of the average time taken by advection to drag the
particle around a convection roll; (ii) Diffusion across the
convection rolls. The mean first-exit time, TD, of a Brow-
nian particle out of a unit convection cell of ψ(x, y), can
be easily computed for D0 � DL simply by ignoring ad-
vection [7],

T0 =
1

D0

(
L

2π

)2(
4

π

)4 (odd)∑
m,n

1

m2

1

n2
1

m2 + n2
, (25)

where the summation is restricted to the odd values of
m and n. In the opposite limit, D0 � DL, TD is just
one fourth of T0, because, as anticipated above, at very
low noise levels, the exit process consists of a slow activa-
tion mechanism, which takes the particle from the center
of a subcell to its boundaries, followed by a relatively
faster flow-driven propagation along the grid formed by
the subcell separatrices.

Thanks to thermal fluctuations, the Brownian particle
jumps from roll to roll, thus diffusing in the x, y plane.
Its coarse-grained motion can be modeled as a discrete
random walker with time constant TD [7]. Therefore, for
large observation times, t > TD, the particle executes

0 1 2

10-3

100

0 2 4

10-4

10-1

102 104

101

103

101 102100

102

(b)

(a)  xL = yL= 2U0

 (640, 1.175)
 (1280, 1.3)
 (2560, 1.5)
 (40960, 2)

p(
 t, t

)

t

(t, ) = 

(a)

D0 = 0.001

t


x2

 (b) xL = yL= 2U0 

 (10, 2.5)
 (20, 2.3)
 (40, 2.15)
 (160, 2)

p(
 t, t

)

t

(t , ) = 


x2

t
D0 = 0.3

Temp Fig 3

 xL = yL= 2U0 =

Temp Fig 3
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normal diffusion.
For the simulation parameters adopted in Fig. 6, the

crossover between low- and high-noise estimates of T , re-
spectively TD = T0 and TD = T0/4, occurs in the region
of advective diffusion, D0 < DL. More remarkably, it ap-
pears to correspond to the condition, TD = TL, namely,
when the two competing time scales of the particle’s dy-
namics inside a convection roll coincide. Such a condition
defines a unique D0 value, D∗, which splits the advective
diffusion domain into two distinct subdomains, respec-
tively, D0 < D∗ and D∗ < D0 < DL.

Numerical simulation clearly shows evidence of NGND
for t > TD, in close analogy with the models of Secs. III
and IV, except for an important peculiarity: The tran-
sient displacement distributions displayed in Fig. 7, turn
out to be leptokurtic, with 1 ≤ β ≤ 2, for D0 < D∗, and
platykurtic, with β ≥ 2, for D∗ < D0 < DL. This can be
explained with the fact that here the displacement length
correlation, see Sec. II, is dominated by thermal noise in
the lower D0 interval, where TD > TL, and by advection
in the larger D0 interval, where TL > TD. Accordingly,
in the formulation of Secs. III and IV, the role of tran-
sient time, τ , is played respectively by TD for D0 < D∗
and by TL for D0 > D∗.

For D∗ � D0 < DL, the onset of normal diffusion
and the exponential-Gaussian transitions are thus reg-
ulated by two distinct time scales, respectively, T0 and
TL. Indeed, the slowest time modulation of the parti-
cle’s dynamics is due to the advective drag inside the
convection rolls. By generalizing our discussion for the
NGND of a free JP, Sec. IV, we conclude that such a
rotational dynamics must be responsible for the negative
excess kurtosis of the unidirectional particle’s displace-
ments reported in Fig. 7(b). The range of the β values,
fitted according to the procedure of Sec. V, is shown in
Fig. 6 for each D0 interval.

In conclusion, the NGND transients of this model can
change from leptokurtic to platykurtic simply by raising
the strength of the internal noise. Most remarkably, this
and related diffusive systems are easily accessible to di-
rect experimental demonstration [57, 60].

VIII. CONCLUSIONS

In this work we have investigated NGND transients [1–
6] in low dimensional stochastic processes. These become
apparent when the Einstein law, which characterizes nor-
mal diffusion, sets in for observation times, t, shorter
than the asymptotic Gaussian displacement statistics,
predicted by the central limit theorem. A wide class
of low dimensional systems manifest NGND under the
condition that their local dynamics is subjected to time
correlated modulations.

Time modulation can affect the effective particle ge-
ometry (e.g., its cross-section in the diffusion direction,
Sec. III), its dynamics (e.g., its isotropic self-propulsion
mechanism, Sec. IV), or its confinement geometry (e.g.,

the cross-section of the directed channel containing the
particle, Sec. VI). In all cases discussed here the sys-
tem’s modulation is time correlated with time constant,
τ , larger than any other microscopic dynamical time
scale. We then noticed that NGND becomes more promi-
nent when the onset times of normal diffusion and the
Gaussian displacement statistics are well separated, with
the former much lower than the latter. This situation is
well illustrated by the fluctuating narrow channel of Sec.
VI, where normal diffusion occurs for t larger than the
mean pore crossing time and the Gaussian statistics sets
in for t larger that the tunable correlation time of the
pore modulation.

In low dimensional systems, NGND features exhibit a
smooth dependence on the observation time. The tran-
sient rescaled displacement distributions are not “uni-
versal” over large t intervals, in sharp contrast with the
extended disordered systems first studied in the litera-
ture [1–6]. To quantify the t-dependence of the transient
pdf’s we introduced an ad hoc fitting function, pβ(δt),
which, by construction, reproduces the normal diffusion
law, with diffusion constant obtained by direct observa-
tion, and fits the numerical curves p(δt, t) by tuning only
one free parameter, β. Actually, in Sec. VI we noticed
that by increasing the gap between the two distinct time
scales defining the transient interval, the t-dependence
of β is suppressed, with β tending to one (Laplace dis-
tribution). This situation closer resembles the current
description of the NGND phenomenon in complex sys-
tems.

However, NGND in low dimensional systems has the
advantage of being easily controllable by tuning the time
modulation of the microscopic dynamics. For instance,
the two simplest models discussed here, the free ellip-
soidal and Janus particles, exhibit remarkably different
transient distributions, respectively with fat, 1 ≤ β ≤ 2,
and thin tails, β ≥ 2. Platykurtic transient distribu-
tions are peculiar to systems with rotational modulation
of the diffusion process, because, as discussed in Sec. II,
this can cause negative time correlations of the unidirec-
tional displacement lengths; hence the negative values of
the excess kurtosis.

This conclusion is corroborated by Brownian diffusion
in the periodic array of 2D convection rolls discussed in
Sec. VII. In contrast with the elementary models of Secs.
III and IV, there the physical mechanism determining
the transient time varies depending on the strength of
the thermal fluctuations. At low temperatures, the tran-
sient dynamics of the particle is governed by isotropic
random jumps from convection roll to convection roll,
largely insensitive to the details of its trajectory inside
the individual rolls. On the contrary, at higher temper-
atures, but still in the advective diffusion regime, roll
jumping grows faster compared with the circulation in-
side the rolls; transients are then dominated by a rota-
tional dynamics, which causes a negative excess kurtosis
of the particle’s displacements.

We conclude now mentioning a number of open issues
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we intend to address in the next future.
(i) We showed that low-dimensional systems exhibit

NGND transients for observation times not too much
larger than their largest intrinsic relaxation time. It re-
mains to be seen how one can make such transient time
intervals wider, for instance, by means of a hierarchy of
additional stochastic degrees of freedom.

(ii) We wonder to what extent our discussion of discrete
NGND in Sec. II is related to the formalism of the large
deviations theory [66]. This might provide an alternate
phenomenological description of the NGND transients,
also applicable to higher dimensional systems.

(iii) NGND transients in laminar flows are of great rele-
vance in microfluidics. This results reviewed in Sec.7 will
be published in a more detailed report to appear soon
[67]. We showed that leptokurtic (platykutic) transients
are an effect of the mostly thermal (advective) tracer’s
diffusion. The question then rises as how this explana-

tion translates in the cases of turbulent flows, a recurrent
problem in biological systems.

(iv) Finally, it is conceivable that persistent NGND
transients impact how active micro-swimmers interact
with each other or with confining walls or other obstacles,
to form all kinds of clustered structures. The implications
of such a mechanism in the technology of active matter
need further investigation.
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[36] S. Leitmann, F. Höfling, and T. Franosch, Dynamically
crowded solutions of infinitely thin Brownian needles,
Phys Rev E 96, 012118 (2017).

[37] S. Prager, Interaction of rotational and translational dif-
fusion, J. Chem. Phys. 23, 2404 (1955).

[38] S. Jiang and S. Granick (Eds.), Janus particle synthesis,
self-assembly and applications (RSC Publishing, Cam-
bridge, 2012).

[39] A. Walther and A. H. E. Müller, Janus particles: Synthe-
sis, self-assembly, physical properties, and applications,
Chem. Rev. 113, 5194 (2013).

[40] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B.
Liverpool, J. Prost, M. Rao, and R. A. Simha, Hydrody-
namics of soft active matter, Rev. Mod. Phys. 85, 1143
(2013).

[41] J. Elgeti, R. G. Winkler, and G. Gompper, Physics of
microswimmers, single particle motion and collective be-
havior: a review, Rep. Progr. Phys. 78, 056601 (2015).

[42] see e.g. Smart Drug Delivery System, edited by A. D.
Sezer (IntechOpen, 2016). DOI: 10.5772/60475

[43] J. Wang, Nanomachines: Fundamentals and Applications
(Wiley-VCH, Weinheim, 2013).

[44] G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer, and
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circle swimmer, Phys. Rev. E 78, 020101(RC) (2008).

[47] D. Debnath, P. K. Ghosh, Y. Li, F. Marchesoni, and B.
Li, Diffusion of eccentric microswimmers, Soft Matt. 12,

2017 (2016).
[48] C. Kurzthaler, S. Leitmann, and T. Franosch, Intermedi-

ate scattering function of an anisotropic active Brownian
particle, Sci. Rep. 6, 36702 (2016).

[49] J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough,
R. Vafabakhsh, and R. Golestanian, Self-motile colloidal
particles: From directed propulsion to random walk Phys.
Rev. Lett. 99, 048102 (2007).

[50] B. ten Hagen, S. van Teeffelen, H. Löwen, Non-Gaussian
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