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Abstract  

Dementia is one of the huge medical problems that have challenged the public health 

sector around the world. Moreover, it generally occurred in older adults (age > 60). 

Shockingly, there are no legitimate drugs to fix this sickness, and once in a while it will 

directly influence individual memory abilities and diminish the human capacity to perform 

day by day exercises. Many health experts and computing scientists were performing 

research works on this issue for the most recent twenty years. All things considered, 

there is an immediate requirement for finding the relative characteristics that can figure 

out the identification of dementia.  

The motive behind the works presented in this thesis is to propose the sophisticated 

supervised machine learning model in the prediction and classification of AD in elder 

people. For that, we conducted different experiments on open access brain image 

information including demographic MRI data of 373 scan sessions of 150 patients. In the 

first two works, we applied single ML models called support vectors and pruned decision 

trees for the prediction of dementia on the same dataset.  In the first experiment with 

SVM, we achieved 70% of the prediction accuracy of late-stage dementia. Classification 

of true dementia subjects (precision) is calculated as 75%. Similarly, in the second 

experiment with J48 pruned decision trees, the accuracy was improved to the value of 

88.73%. Classification of true dementia cases with this model was comprehensively done 

and achieved 92.4% of precision.  

To enhance this work, rather than single modelling we employed multi-modelling 

approaches. In the comparative analysis of the machine learning study, we applied the 

feature reduction technique called principal component analysis. This approach identifies 

the high correlated features in the dataset that are closely associated with dementia 

type. By doing the simultaneous application of three models such as KNN, LR, and SVM, 

it has been possible to identify an ideal model for the classification of dementia subjects. 

When compared with support vectors, KNN and LR models comprehensively classified 

AD subjects with 97.6% and 98.3% of accuracy respectively. These values are relatively 

higher than the previous experiments.     

However, because of the AD severity in older adults, it should be mandatory to not leave 

true AD positives. For the classification of true AD subjects among total subjects, we 

enhanced the model accuracy by introducing three independent experiments. In this 

work, we incorporated two new models called Naïve Bayes and Artificial Neural Networks 

along support vectors and KNN. In the first experiment, models were independently 

developed with manual feature selection. The experimental outcome suggested that KNN 
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is the optimal model solution because of 91.32% of classification accuracy. In the second 

experiment, the same models were tested with limited features (with high correlation). 

SVM was produced a high 96.12% of classification accuracy and NB produced a 98.21% 

classification rate of true AD subjects. Ultimately, in the third experiment, we mixed 

these four models and created a new model called hybrid type modelling. Hybrid model 

performance is validated AU-ROC curve value which is 0.991 (i.e., 99.1% of classification 

accuracy) has achieved. All these experimental results suggested that the ensemble 

modelling approach with wrapping is an optimal solution in the classification of AD 

subjects.                   
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Chapter 1 

1. Introduction 

Dementia is a disorder – generally of a progressive or chronic, in which there is 

weakening in intellectual capacity (for example the ability of thinking process) earlier 

than what may be normal from normal ageing [1]. It influences memory, thinking, 

perception, estimation, orientation, capacity of learning, language, and judgment. 

However, there is no effect on consciousness [2]. The exhaustion in cognitive function 

normally goes with and once in a while went before, by disintegrating in social behaviour, 

controlling of emotions, or inspiration. 

Dementia results from an assortment of infections and wounds that fundamentally or 

optionally influence the mind, for example, Alzheimer's Disease (AD) or stroke. Dementia 

is one of the significant reasons for incapacity and reliance among older adults around 

the world [3]. It may be uncontrollable, for the individuals who have it, yet also for their 

careers and families. There is frequently an absence of mindfulness and dementia 

understanding, which results in stigmatization and difficulties to care for and diagnose 

[2], [3]. The effect of dementia on society, carers, and family at large can be physical, 

mental, social, and financial.  

A few people with dementia can't control their feelings, and their characters may change 

[4]. Dementia ranges in seriousness from the mildest stage, when it is simply starting 

to influence an individual's work, to the most extreme stage and the individuals had 

completely depended on others for their daily activities [5]. Signs and indications of 

dementia result when healthy neurons (nerve cells) of the brain suddenly stop 

functioning, lose connections with other neurons, and demise. While everybody loses a 

few neurons as they age, individuals with dementia experience far more loss.  

While dementia is more normal as individuals become older (equal to half of all people 

age ≥85 may have some type of dementia), it is not a common phenomenon of ageing 

[6]. Numerous individuals live into their 90s and beyond with no indications of dementia 

[5], [7]. Similarly, a dementia-like frontotemporal disorder often happens in middle-

aged people than older people.  

The reasons for dementia can differ based on the types of brain alterations that can 

happen. AD is the most well-known reason for dementia in older adults. Other dementia 

types include Lewy body dementia, vascular dementia, and frontotemporal disorders. It 

is also common to have mixed dementia, which is a combination of at least two dementia 
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types [8]. For instance, some people can possess both Alzheimer's and vascular 

dementia. 

Dementia influences every individual in an alternate manner based on the disease 

influence and the individual's character before getting sick. The signs and symptoms 

connected to dementia can be perceived in three ways such as early-stage dementia, 

moderate dementia, and late-stage dementia [9]. In the early-stage dementia is 

frequently unnoticed because the onset is progressive and symptoms included 

forgetfulness, getting lost in familiar pleases, and forgetting about the time. In moderate 

dementia, the symptoms and signs become clearer and more preventive which includes 

getting forgottenness about people's names, being lost at home, asking help for personal 

care, behaviour changes including repeated questions [1], [9]. Late-stage dementia 

represents inactivity and total dependence on others and symptoms include being 

unconscious of the place and time, experiencing issues perceiving family members and 

companions, walking difficulties, and behaviour changes like aggression.  

1.1. Dementia types and social impact factors    

There is a wide range of types of dementia. Alzheimer's is the most well-known type and 

may add to 60–70% of global cases. Other significant dementia forms include vascular 

dementia, dementia with Lewy bodies (irregular totals of protein that create inside nerve 

cells), and disease groups that add to frontotemporal dementia (degeneration of the 

frontal flap of the mind). The limits between various types of dementia are ambiguous 

and often mixed forms also coexist.  

A survey suggests nearly 50 Million people had dementia and 60% of them are from 

developing countries. Every year, there is a chance of developing 10 Million cases every 

year [10]. The assessed proportion of the common public aged more than 60 years and 

with onset dementia is between 5-8%. The absolute number of individuals with dementia 

is extended to arrive at 82 million out of 2030 and 152 of every 2050 [11]. Quite a bit 

of this expansion is owing to the rising quantities of individuals with dementia living in 

low-and centre pay nations.  

The total number of people with dementia is projected to reach 82 million in 2030 and 

152 in 2050. Much of this increase is attributable to the rising numbers of people with 

dementia living in low- and middle-income countries. Dementia has important economic 

and social implications regarding direct social and medical care costs and the costs of 

casual care [12]. In 2015, the complete worldwide social expenses of dementia were 

assessed to be US$ 818 billion, equal to 1.1% of GDP worldwide [13].  The overall 
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expense as an extent of GDP differed from 0.2% in developing countries to 1.4% in 

developed countries. 

Dementia would be uncontrollable for the patient's families and their careers. Pressures 

in the forms of emotional, physical, and financial can trouble people's lives, and support 

is needed from the social, financial, and health systems. Individuals with dementia are 

much of the time denied the essential rights and opportunities accessible to other people 

[14]. In some countries, physical and compound restrictions are utilized widely in-home 

care for older adults and in better care settings, although when guidelines are set up to 

maintain the privileges of individuals to opportunity and decision [15]. A good and 

consistent legal support is needed on globally acknowledged human rights are needed 

to guarantee the highest quality care for individuals with dementia and their careers.  

1.2. Dementia types 

As mentioned, dementia is caused by harm to or loss of nerve cells and their brain 

connections. Depending upon the brain region that is affected because of damage, 

dementia can influence individuals diversely and present various symptoms. Dementias 

are frequently assembled by what they share practically speaking, for example, the 

protein or proteins saved in the cerebrum or the brain part which is highly influenced. 

Some diseases seem to be dementias, for example, those brought about by a response 

to drugs or nutrient inadequacies, and they may improve with treatment. 

1.2.1. Progressive dementias 

Some dementias can be progressive and are not adjustable includes   

Alzheimer's  

Alzheimer's disease is the most well-known reason for dementia. However, not all 

reasons for AD are known, doctors do realize that a little rate is identified with 

transformations of three genes that can be accepted from parents to children [16]. While 

a few distinct genes are most likely engaged with Alzheimer's disease, one significant 

quality that builds risk is apolipoprotein E4 (APOE).  

AD patients have plaques and tangles in their minds. Plaques are groups of a protein 

called beta-amyloid, and tangles are stringy knots comprised of tau protein [17]. It's an 

idea that these groups harm healthy neurons and the components associated with them. 

Other hereditary variables may make it almost certain that people can also develop AD.  
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Vascular dementia  

This second most regular kind of dementia is happened by damage to the vessels that 

source blood to your cerebrum [18]. Problems caused by blood cells can cause strokes 

or harm the brain in other possibilities, for example, by the damage of the white matter 

of the brain. The most well-known indications of vascular dementia incorporate 

challenges with critical thinking, focusing, slow thinking, and organization. These will in 

general be more recognizable than cognitive decline.   

Lewy body dementia  

Lewy bodies are unusual balloons like clusters of protein that have been found in the 

cerebrums of individuals with Lewy body dementia, Parkinson's disease, and Alzheimer's 

[19]. This is also a type of progressive dementia. The symptoms and signs include visual 

hallucinations and issues with concentration and focus. Different signs incorporate slow 

movement and uncoordinated, inflexibility (parkinsonism), and tumours. 

1.2.2.  Frontotemporal dementia 

This dementia is a collection of diseases that have been characterized by the breakdown 

of nerve cells and their associations in the frontal and fleeting projections of the 

cerebrum, the regions for the most part connected with behaviour, personality, and 

language [20].  

1.2.3. Mixed dementia  

Many studies on the brains of people over 80 years with dementia demonstrate that 

many had a combination of different reasons such as AD, Lewy body dementia, and 

vascular dementia [21]. Some studies are continuing to understand how mixed dementia 

can affect treatments and symptoms.   

1.3. Dementia diagnosis and treatment    

There is nobody test to decide whether somebody has dementia or not. Experts analyse 

Alzheimer's and different kinds of dementia dependent on a cautious clinical history, an 

actual assessment, tests in labs, and the progressive changes in thinking, daily capacity, 

and personal behaviour with others [22].  

Doctors can assess a dementia person with a high level of certainties. Although, it is 

hard to decide the exact dementia type as that the side effects and brain changes of 

various dementias can be overlap. Sometimes, experts can diagnose dementia but do 

not specify which type it is. In such cases, it is recommended to meet specialists like 

neurologists or gero-clinician. 
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There is no precise treatment or cure for dementia, also to estimate its severity [23]. 

Various new medicines are being explored in different phases of clinical trials. But much 

can be offered to help and improve the lives of dementia patients and their families and 

careers. It is recommended to follow some measures to prevent the risk by    

✓ Early finding to promote primary and ideal management  

✓ Optimization of cognition, activity, wellbeing, and physical health  

✓ Recognizing and treating going with physiological and behavioural symptoms    

✓ Distinguishing and treating testing conduct and mental side effects  

✓ Giving data and continuing support to carers. 

Screening people in danger for AD depending on electronic health records (EHR) in 

preclinical stages may prompt early recognition of AD and to better remedial techniques 

for deferring the beginning of AD [24]. Current biomarkers of AD require the specimen’s 

collection such as serum or liquid or image data. Thereafter, EHR data, for example, 

patient records in clinical settings, or regulatory health data, do not need extra time or 

effort for data collection. Additionally, with the advances in computer techniques, the 

measures of such information have gradually increased. Since it is universal, practical, 

and tremendous, the computational healthcare database might be an important asset 

for testing adaptable AD predictive models and similar to other diseases [24]. 

Nevertheless, regardless of its huge likely worth, the smaller scale of knowledge is known 

for the extent of understanding the use of healthcare data in the prediction of dementia.   

For the prediction of dementia risk, earlier models are commonly associated with 

predefined medical profile factors, for example, sociodemographic (age, gender, 

education), cognitive profiles, physical activity, and midlife medical risk factors like body 

mass index (BMI), systolic circulatory strain, and full-body cholesterol level. But an 

important question is whether those generalized predictive models in clinical settings 

can effectively evaluate the heterogeneous aetiologies of multifactorial AD with a small 

number of selected variables. In reality, a meta-examination study shows that 

multifaceted models are the optimal choice of AD risk prediction, though single-factor 

models are not performing well [25], acclaiming precise AD risk prediction requires an 

enormous element space. In this work, we test the degrees to which an information-

driven machine learning (ML) model is useful in large-scale health information that 

includes thousands of patient health records to make a precise prediction of AD risk.  In 

the next sections, a brief discussion on how machine learning models are evolved in the 

last decades and their applications in the healthcare domain especially in AD risk 

predictions.  
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1.4. Machine learning  

In this section, the authors like to discuss the basic concepts involved in machine 

learning (ML). ML is considered an integral part of Artificial Intelligence (AI) which 

presents a concept of software engineering which attempts to mimic computers like 

human behaviours [26]. One of the fundamental necessities for any intelligent method 

is learning. The greater part of the scientists today concurs that there is no knowledge 

without learning. Hence, AI techniques like ML and deep learning algorithms are 

important parts of machine intelligence.  

Machine learning has been classified into many types like supervised, unsupervised, 

reinforcement [27]. Because the focus is on the “learning” field, there are many types 

that we can encounter as an expert. Some forms of learning describe full-fledged 

educational fields with a variety of algorithms such as "supervised learning." Some 

suggest powerful methods which can use for our projects, such as "transfer learning".  

In supervised machine learning, a class of drawbacks involves employing a model to find 

out an association between input variables and also the target variable [28]. Models are 

matched on training information comprised of input and outputs and adapted to build 

predictions on taking a look at sets wherever solely with the provided inputs and the 

model outputs are compared to the withdrawn target variables and that are used to 

evaluate the model performance. 

There are two main sorts of supervised learning problems: one is involved with a 

classification problem that can help to predict a category label and another one is a 

regression problem that helps to predict a numerical value [29]. In simple terms, we can 

write to them as  

Classification: involved in class label prediction.  

Regression: involved in the prediction of the numerical label.  

Both regression and classification issues could have one or a lot of input parameters and 

these variables are also any data types like categorical or numerical [28], [29]. 

Algorithms are cited as “supervised” as a result of they learn by creating predictions 

given samples of input data, and also the models are supervised and corrected via a 

formula to higher predict the expected target outputs within the training dataset. Some 

supervised algorithms (such as logistic regression) have been specifically designed to do 

regression (such as linear regression) or classification and a few may be used for each 

sort of problem with simple changes (such as artificial neural networks).  

https://machinelearningmastery.com/implement-logistic-regression-stochastic-gradient-descent-scratch-python/
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Whereas unsupervised machine learning defines a class of problems that involve using 

a model to define or exclude relationships from data [30]. In a comparison of supervised 

learning, unsupervised machine learning only applies to out-of-product input or changing 

targets. Also, unsupervised learning no teacher adjusts the model, as is the case with 

supervised learning [31]. In this, there is no teacher or educator involved, and the 

algorithm must learn to process data without this guide. There are many unsupervised 

learning modes, although there are two main problems that a specialist often 

encounters: they involve the acquisition of data groups (clustering) and the density 

estimates that include summarizing the data transmission. Simply they can address as 

Clustering: A problem involving access to data groups.  

Density Estimation: Problem that includes summarizing data transmission.  

An example of a grouping algorithm is k-Means where k refers to the number of data 

retrieval groups [32]. An example of an estimated algorithm calculation is the Kernel 

Density Estimation which involves using small groups of a closely related data sample to 

estimate the distribution of new scores in a problem area. Both clustering and densities 

estimation can be done to study patterns in the data. Additional unsupervised modelling 

methods can be used, such as visualization that includes graphing or data processing in 

a variety of ways and prediction that include reducing data size.  

➢ Visibility: Unsupervised learning problem involving creating data sites (scatter plot 

matrix).  

➢ Prediction: Uncontrolled learning problem that involves creating a representation of 

low data (principal component analysis).  

Besides, reinforcement learning defines the type of issues in which the agent is working 

on the situation and must learn to use the report [33]. Environmental use means that 

there is no standard training data, instead of the goal or set of goals to be achieved by 

the agency, the actions that can be taken, and the report on performance-oriented goals. 

It is in line with supervised learning because the model has a specific response that the 

user can learn from, although the report can be delayed and mathematically noisy, 

posing a challenge to the agent or model for combining cause and effect [34]. An 

example of a reinforcement problem is playing a game where the agent aims to get high 

scores and can make a move in the game and get a report in terms of penalties or 

compensation. 
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Finally, the lines between supervised and supervised learning are disturbed, and there 

are many hierarchical patterns from each study section. In this work, we will look more 

closely at some of the mixed learning (hybrid modelling) concepts: self-supervised, 

semi-supervised, and multidisciplinary learning. 

Deep learning is a subcategory in machine learning algorithms that are learned by 

artificial neural networks (ANN). These algorithms are applied in self-driving vehicles and 

automatic voice assistants like SIRI or ALEXA [35]. Deep learning plays a vital role in 

voice control in consumer goods such as mobiles, TVs, tablets, and Wi-Fi connected 

speakers. These algorithms conduct feature selection algorithms to detect image or voice 

characteristics [35], [36]. The association between AI technologies including machine 

learning and deep learning is presented in Figure 1.1. In clinical practice, deep learning 

algorithms have the capability of producing high disease prediction accuracy which 

outperformed human intelligence. ANN models contain many layers and are trained by 

large samples of labelled data.       

 

 

 

 

 

 

 

 

 

 

 

 

            Figure 1.1. Relationship between AI, ML, and deep learning. 
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1.4.1. ML framework and performance calculations 

The simple machine-learning framework in medical diagnosis is explained in Figure 1.2.  

The framework included seven individual steps to evaluate the final disease diagnosis 

and each step was further explained in detail.  

Data collection: The model accuracy was decided by the quantity and quality of input 

medical data. The outcome of the data collection step represents the data used for 

training purposes. The medical datasets that available from the UCI repository, Kaggle, 

etc. were collected.  

Data preparation: Because of the advancements in the IT industry, high volumes of 

information are collected from different industries. An IT and database research has 

offered arise of a way to deal with store and control this important data for decision 

making in future purposes. Data preprocessing or preparation were identified patterns 

and key information from these large datasets. This step involves the collection of 

medical data sets to conduct model training and testing. Data cleansing was involved in 

duplicate removal, normalization, and error correction.  

 

Model selection: Machine learning involves several models that are available to do both 

regression and classification tasks. In this step, we select a singular model among the 

group of ML models for dataset training. Especially in medical diagnosis, selecting the 

correct model is important because every model was designed to perform different tasks.  

 

Model training: In this step, the chosen model is properly trained to make disease 

predictions with the highest accuracy. For example, in cancer diagnosis, linear regression 

algorithms are used to retrieve patient type with malignancy or not.  

  

Model evolution: It is necessary to evaluate the machine-learning algorithm before 

adoption into the medical domain. After feature reduction or data preprocessing, and 

model development, we need to evaluate whether a particular model is accurately 

identified a disease. Different performance metrics are available to assess different 

machine learning algorithms. The accuracy, area under the curve (AUC) are used for 

disease classification purposes, and parameters precision, sensitivity, and F1 scores are 

used for sorting purposes. Figure 1.3 presents the confusion matrix example to define 

the model performance.                  
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Figure 1.2. Machine learning framework in medical diagnosis. 
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Figure 1.3. Confusion matrix 

 

From the above confusion matrix, we define the following performance metrics. 

 

Accuracy (A): Portion of actual prediction subjects among total subjects;  

A (%) = 
True Positives+True Negatives

TP+TN+FP+FN
*100 

Sensitivity (s): True positive subject percentage  

s (%) = 
TP

TP+ FN
∗ 100 

Precision (p): Percentage of true positives from total positives 

p (%) = 
TP

TP+FP
∗ 100 

F-Score: Weighted harmonic mean for precision and sensitivity 

F-score = 2* 
sp

s+p
 

The area under the curve (AUC): AUC is the visualization tool of multiclass classifier 

performance and is one of the major evolution parameters to check any classification 

model performance.  
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Hyperparameter tuning  

 

Hyperparameter tuning helps to improve model performance. The hyperparameters 

include distribution and initialization values, training steps, learning rates, etc.  

 

Model validations 

Model validation can be done in two ways either spilt or cross-validation (CV). In spilt or 

hold-out validation is the point at which we split up the given dataset into a 'train' and 

'test' set [37]. The preparation set is the thing that the model is prepared on, and the 

test set is utilized to perceive how well that model performs on unseen information. A 

typical split when utilizing the hold-out technique is utilizing 80% of the information for 

preparing and the excess 20% of the information for testing. 

CV is another model training technique that can evaluate prediction accuracy. The 

greatest test in ML is approving the model with trained data. To guarantee the 

incorporated ML model is producing the noise-free model examples [38], computer 

researchers utilize CV strategies. When compared to hold-out methods, the CV 

techniques offer the most straightforwardness in assessing models with low bias and 

accordingly is one of the most mainstream strategies in ML algorithms. The works 

presented in this report used plenty of ML modelling approaches including single model 

or multi modelling techniques. The k-fold CV strategy was utilized to perform model 

validation. The AD patient datasets were separated into 'k' folds to conduct training with 

test information, and the leftover 'k-1' folds were joined to frame trained information. 

Original data were arbitrarily isolated into 'k' folds (k1, k2 ..., ki), and the model testing 

was performed by 'k' times. For instance, in the main emphasis, on the off chance that 

subset (k1) used as test data, at that point the leftover subsets (k2, ......, ki) were joined 

to direct model preparation, and this cycle was repeated for the rest of the 'k' values. 

Some studies detailed that to overcome issues related to imbalanced data sets, the ideal 

incentive for 'k' could be 5 or 10. With the most noteworthy (k) values, the distinction 

in trained and sample datasets would in general secure low values.  

Model predictions  

By using test data, the model conducts the classification of medical label data, ultimately 

validates, and better approximates to verify how the model was performed on real-time 

medical diagnosis data. In the next sections, the authors present the importance of ML, 

and deep learning techniques in the context of medical diagnosis.    
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1.4.2. ML algorithms in clinical practice 

Health issues caused especially by chronic diseases are the main reason for worldwide 

medical costs. Individuals that suffered from these diseases required permeant 

treatments. To do this, ML models were frequently applied in the prediction, 

classification, and diagnosis of different chronic diseases. In this section, the authors 

discussed some contribution studies involving ML model applications in the primary 

diagnosis of some chronic diseases.  

The Healthcare industry collects large sources of medical information but is not mined 

to identify the hidden pattern details to make effective decision-making. Disclosure of 

hidden patterns and connections regularly goes unexploited. Comprehensive data mining 

methods can help to overcome this limitation. Data mining targets a set of given 

information to identify important and possibly useful patterns. Some example techniques 

like Bayesian models, artificial neural networks, decision trees, genetic algorithms, and 

associate rule mining are largely utilized to discover patterns or knowledge, which is 

previously not known.  

Initially, deep learning can use unlabeled data during preprocessing; thereafter it is well 

suited for imbalanced datasets and achieves a knowledge base [39]. At present these 

are largely involved in all other problems that are not able to address by traditional AI 

techniques. ANN is the latest deep learning algorithm that is discovered the functionality 

of different industries. Deep neural networks (DNN) are characterized contributions to 

profits through a complex composition of layers that presents building blocks including 

nonlinear functions and transformations. Medical experts feel that deep learning could 

be a promising solution in disease identification and symptom detection [40]. There is 

an expectation which these deep learning and DNN can alter the chance of getting 

medical errors like often getting symptomatic errors.  

The deep learning techniques can assist the radiologists who specialized in diagnosing 

the diseases by MRI, computed tomography (CT) scans, and X-rays [41]. There is also 

the assumption that deep learning can replace human intelligence within the next five 

years. Because diagnostic imaging holds in medical diagnosis is usually fit to deep 

learning models. There are plenty of scenarios that drive the integration of deep learning 

with several diagnostic practices including radiology like shortage of healthcare workers, 

hike in medical costs, and large incoming imaging data etc.  

 

At present, these algorithms enhance the workflow of the diagnostic process but do not 

mean to replace human intelligence. 
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1.5. Problem statement  

The problem statement defined in this work can summarize research motivations in total. 

This problem statement can be more or like a mission statement or goal, driving all the 

following efforts rather than typical research issues. The main problem statement of this 

research is presented as follows 

➢ Research statement 

In which way we can achieve better AD risk prediction accuracy and identification of 

dementia stages with comprehensive machine learning algorithms.  

     

To support the above statement, we perform three types of machine learning algorithms 

such as traditional models (supervised), deep learning models, and ensemble learning 

models on dementia data subjects.  

From the above statement, we have drawn the following research questions (RQ) 

➢ RQ1 

How machine learning algorithms can help to identify the risk factors of dementia? 

Is it possible to assess the prediction accuracy in detecting dementia among old 

adults?  

➢ RQ2 

How far these proposed ML models can validate in real-time dementia studies? Are 

there any particular tests to calculate the model performance?  

➢ RQ3 

How can other ML models like ensemble learning enhance the model prediction 

accuracy? What type of dementia datasets are imported to execute the machine 

learning experiments?  

➢ RQ4 

How can we justify the performance of these models in subjects with mild AD or 

younger subjects, also to calculate the prediction accuracy using other biological tests 

like blood markers or cerebrospinal fluid (CSF)?  

1.6. Research objectives and contributors  

In this work, we addressed the important applications of machine learning in medicine 

especially in dementia prediction and classification of different AD subjects. For 
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supervised machine learning models, we perform the AD predictions with numerical data. 

For MR brain image data, we applied deep learning type convolutional neural network 

models (CNN) for dementia type classification. In the end, we also test and compare 

these models by combining more than two or more models (hybrid or ensemble 

modelling) to propose the comprehensive machine learning model for identification and 

classification of dementia and performance calculation has done in terms of ROC values. 

The main objectives of this work have been divided into three major types.  

Research objective -1 

❖ To manage the traditional machine learning models in dementia prediction 

❖ To do the model training with given featured dementia datasets 

❖ To compare the performance of different ML models with dementia subjects  

❖ To find the optimized supervised machine learning model  

Research objective - 2 

❖ To apply the deep learning models on MR image brain datasets  

❖ To calculate model performance and compare it with other supervised learning 

models 

Research objective - 3 

❖ To develop models with manual selection of MRI features 

❖ To do modelling done with automatic feature selection, and  

❖ To develop a single model with ensemble learning or hybrid modelling.  

RQ1: Traditional machine learning algorithms in dementia prediction  

Several models were proposed in the literature for the identification and prediction of 

dementia in older adults. By exploiting typical ML techniques, it's impossible to analyse 

this important volume of data due to time consumption and efforts. Therefore, new 

modelling techniques are developing with numerous rules and programs to avoid these 

issues. Besides that, the choice of the correct algorithm is not a straightforward task 

because it depends on multiple factors equivalent to data volume, information type, and 

outcomes concerning business requirements. 

The first contribution of the work is to implement novel modelling techniques using 

supervised learning algorithms such as support vectors, logistic regression, naïve Bayes, 

etc. These models are considered to solve the data problems associated with dementia 

classification and predictive analysis. The outcome models provide a convincing and 
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adaptable structure for MRI and proposed a classification problem method that has the 

capability as a system for dementia (AD) classification.  

    

RQ2: Validity of models verified by performance metrics   

As mentioned earlier, it's imperative to utilize new information while assessing the 

presented model to forestall the probability of overfitting the training set. Nonetheless, 

here and there it's valuable to assess the developed model since we are building it to 

locate the best boundaries of a model - however, we can't utilize the test set for this 

assessment, or, more than likely we'll wind up choosing the boundaries that perform 

best on the test information yet perhaps not the boundaries that sum up best. To assess 

the model while as yet building and tuning the model, we make a third subset of the 

data called a validation set. A common train/test/validation split is utilizing 60%, 20%, 

and 20% of the data for training, testing, and validation respectively. It is also 

mandatory to mention data shuffling before making these data splits and by that each 

split can have an accurate notation of the dataset.   

RQ3: Ensemble models in dementia detection 

Ensemble models or mixed ML models are combining outcomes from numerous models 

to improve the total model performance. The main cause for occurring errors in any 

model because of bias, noise and variance.  These ensemble models can reduce such 

types of issues. These are specially designed to amplify the accuracy and stability of ML 

algorithms. Ensemble modelling can be done in different ways either boosting, bagging 

or wrapping. The main objective is not only to classify AD diagnosis but also verify the 

adopting models comprehensively classifying the demented subjects.  As mentioned, 

sensitivity or true positive rate can address how many MR images are accurately 

associated with the corresponding AD types. It is also important to understand that 

greater sensitivity of a model did not guarantee better accuracy because usually there 

is a trade-off between independent performance metrics. To do that selection of 

ensemble learning type approach is also important.  

1.7. Organization of thesis  

The overall organization of the thesis is presented in this section.  

Chapter 2 presents a brief outline of the literature review on machine learning for 

different medical problems like cancers, diabetes, hepatic fibrosis, heart attacks etc. It 

presents the concepts with the ML modelling advantages in the prediction and 
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classification of diseases. At the end of the chapter, all related literature was framed in 

Tabular form for better understating of readers.  

Chapter 3 demonstrates the AD prediction with single model machine learning 

techniques. In this work, we attempted to adopt support vector machines (SVM) in the 

expectation of dementia, and performance validation was done by statistical analysis. 

Data were explored from the Open Access Series of Imaging Studies (OASIS-2) called 

longitudinal collection of 150 subjects of 373 MRI information. we consider the attributes 

like MR delay; CDR, ASF, AGE, and GENDER included with MMSE that corresponds to 

subject ID. We categorically accept that it is a novel method of inspecting the significance 

of every parameter during forecasting dementia in elder patients. Regardless of it, this 

work intends to anticipate dementia in senior people by SVM calculations to achieve 

promising results. 

Chapter 4 also presented the AD prediction with a single supervised ML model called 

decision trees. Pruned type decision trees (J48) were utilized to do prediction analysis 

on AD subjects. Validation of the adopted model was done by cross-validation 

techniques. Model performance was evaluated by parameters like precision, accuracy, 

and receiver operating characteristic (ROC) curve.  Predictions by generated decision 

tree have been correctly mapped and examined with confidence attributes of dementia 

status. At last, the high confidence correlated value of attributes can predict dementia 

in of particular adult, and the referenced model clarifies and forecast the patient's 

condition by using explicit advantages to help patients by helping them ahead of time. 

Chapter 5 advances this study by doing comparative supervised ML techniques by 

adopting three conventional models named SVM, K-nearest neighbours, and logistic 

regression. In this work, we introduced a feature reduction technique called principal 

component analysis to identify the high correlated features to the targeted dementia 

group attribute. Outcomes approved that the three models are precisely group dementia 

patients with better accuracy from 96.7-98.3%. We also validate the adopted models 

with recall, precision and AUC. The AUC of LR and KNN presented an optimal prediction 

model, with the end goal that these two prescient models were done better classification 

of the dementia patients.  

Chapter 6 presents comprehensive machine learning model development with inclusion 

of four supervised models namely Naive Bayes (NB), artificial neural networks (ANN), K-

nearest neighbour (KNN), and support vector machines (SVM) were presented. The 

receiver operating characteristic (ROC) curve metric were used to validate the model 

performance. Each model evaluation was done in three independent experiments. In the 
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first experiment, a manual feature selection was used for model training. In the second 

experiment, automatic feature selection was conducted by wrapping methods, and the 

last experiment consisted of a new approach with mixed modelling called ensemble 

learning. In this chapter, the significance of joint ML modelling for AD-onset prediction 

in elderly people has been demonstrated. Besides, hybrid modelling enabled 98% 

accuracy in predicting AD in older adults. The outcomes suggest that joint modelling, 

with limited features, is the best practice to assess AD-onset by subject prediction.  

Chapter 7 explains the importance of deep learning techniques in the analysis of brain 

image studies. We considered the Open Access Series of Imaging Studies-3 (OASIS-3) 

dataset with 2,168 Magnetic Resonance Imaging (MRI) images of patients with very mild 

to different stages of cognitive decline. We applied deep learning-based convolution 

neural networks (CNN) which are well-known approaches for diagnosis-based studies.  

This work presented a deep CNN with 10-fold cross-validation and achieved more than 

80% accuracy. While applying computing methods for diagnosis, a small portion of 

datasets are presented. Therefore, our model maintained a random image selection of 

train, test, and validation datasets. The proposed model produced promising results in 

AD image classification. The most notable outcome for this study is the progressions 

among predictiveness of AD diseases.    

Chapter 8 finishes with the conclusion of this thesis work and defines the directions for 

future work and the possible expansion to the contributions discussed in the thesis work. 
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Chapter 2  

Machine learning in medicine  

In this chapter, the background information on the main concepts and ML models 

involved in the prediction, and classification of chronic diseases. The recent ML evolutions 

in different medical regions and their advantages, followed by the machine learning 

framework representation presented in detail. Computer vision technologies that are 

trending in the medical domain and their different approaches are discussed. Deep 

learning which is an integral part of the model development is presented with different 

algorithms in practice. Some supervised ML models and deep learning practices like ANN 

and CNN were explained which is employed as a prediction of diseases like cancers, 

diabetes, hepatic fibrosis, etc.  

 

2.1. Introduction  

From the earliest starting point, machine learning models are designed to evaluate 

clinical information. Today these techniques are becoming fundamental tools to do 

insight analysis of medical data [42]. Particularly, since the last decade, the 

computerized transformation gave relatively less expensive and available to accumulate 

medical information. Nowadays, hospitals are largely equipped to collect and monitor 

data from Information Technology (IT) systems. Moreover, this information is largely 

gathered from big data frameworks. Given this, machine learning algorithms are better 

suited to the examination of medical data, and specifically, there is a great deal of work 

that has been done in clinical analysis especially for diagnostic issues [43].  

Medical diagnostics are a classification of medical tests, which intends to identify 

infectious diseases, conditions, and ailments. These clinical diagnostics fall under the 

class of in-vitro medical diagnostics (IVD) that can be purchased by end-users or utilized 

in research Centre settings. Biological samples are disengaged from the human body, 

for example, blood or tissue to give results. Because of the multiple opportunities for 

utilization of ML in medical diagnosis, clinical imaging work processes are well on the 

way to being affected in the near term. ML-driven methods that autonomously process 

2D or 3D image scans to recognize clinical signs (like lesions or tumours) or decide 

possible diagnosis determinations have been distributed and some are advancing 

through administrative steps thrives the market.  
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Among ML, deep learning techniques are largely utilized on layered portrayals of different 

features, such called neural networks. To understand the deep learning techniques 

powerful image data is required to perform recognition tasks [44]. For instance, if a 

person entered a dark room and searched for the light switch. From previous experience, 

the person can figure out how to connect light switches with unsurprising areas inside 

the design of a room. Numerous computer vision-based picture handling calculations, 

including deep learning, imitate this behaviour to assess factors, which related to the 

recognition task that needs to be done. Due to the consideration of the multiple 

complexities of factors, deep learning has its capacity for image interpretation, especially 

in clinical practice.  

The historical progress associated with ML applications in clinical analyze are shows that 

easy form and straightforward to manage algorithms, frameworks, and approaches have 

developed to empower progressed and modern data analysis. Both deep learning and 

machine learning are largely integrated with data mining techniques [45]. Data mining 

has significance concerning finding the designs, anticipating, and disclosure of 

information in various spaces. Data mining algorithms and techniques like clustering, 

classification makes a difference in finding the patterns to choose what has to come to 

business structures to develop. It is a wide application area nearly in each industry where 

the information is produced because data mining is considered as one of the most 

significant frontiers in database and data frameworks, and one of the most encouraging 

interdisciplinary improvements in IT management.  

A higher collection of medical documents is a valuable resource to retrieve new and 

valuable knowledge that can be found through data mining. Deep learning and data 

mining techniques are user-based approaches to identify hidden and novel data patterns.  

These are highly applicable in identifying key patterns among big datasets. At present, 

these are highly applied in healthcare systems especially medical diagnoses to predict 

or classify diseases. Simultaneously, machine learning (ML) can detect and diagnose 

serious diseases like cancer, dementia, diabetes, etc.  Especially deep learning is one 

application that highly applicable to the healthcare context is digital diagnosis. Besides, 

it can detect patterns of individual diseases within patient electronic health records (EHR) 

and produces feedback on anomalies to the doctor. This chapter presented a brief 

discussion including ML and deep learning approaches in a clinical context, differentiated 

between structured and unstructured patient data patterns, and provide references to 

applications of the mentioned methods in medicine. Besides, it also highlights 

performance measures and evaluations used in the diagnosis prediction and classification 

process.    
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2.2. ML algorithms in cancer predictions 

Due to the capability of detecting hard to discern patterns from complex and noisy 

datasets, ML algorithms were often used to detect cancer maladies. Several studies were 

attempted machine learning techniques for prognostication and risk prediction of 

different cancers. Alabi R  et.al [46] present the uncertainties of relapses in the initial 

stage of oral tongue squamous cell carcinoma (OTSCC) in decision making of oral lounge 

cancers. The authors were collected 311 patients’ data from five different university 

hospitals and compared the performance of four-ML algorithms namely Naive Bayes 

(NB), Boosted Decision Tree (BDT), Support Vector Machine (SVM), and Decision Forest 

(DF). Preliminary outcomes highlighted that BDT has generated the highest accuracy of 

81% and 0.78 value of F-score and SVM generated the lowest accuracy of 68% and 0.63 

value of F-score respectively.     

Manabu T  et.al [47] conducted machine learning algorithms by digital slide images to 

do the early prediction of colorectal cancer (CRC) metastasis on 397 subjects. A few 

morphologic boundaries were separated from entire slide pictures of cytokeratin 

immunohistochemistry images. A random forecast (RF) model was employed by doing 

data split as a trained dataset of (n = 277) images to predict lymph node metastatic also 

test dataset of (n = 120) images. The performance outcomes were further compared to 

machine learning models and conventional approaches of datasets. Ultimately, lymph 

node metastatic prediction by ML algorithms was outperformed by other conventional 

models.  

Bikesh Kumar S [48] determines breast cancer biomarkers to conduct predictions by 

anthropometric and clinical features including ML algorithms. Feature correlation and 

selection methods were employed to evaluate the correlation between different features. 

Moreover, famous classifiers, for example, SVM, NB, quadratic discriminant, linear 

discriminant, K nearest neighbours (KNN), RF, and logistic regression (LR) are introduced 

for breast cancer predictions. Results highlighted that among glucose, age, and resisting 

are seen as generally important and viable biomarkers for malignant growth prediction. 

Further, the KNN classifier accomplishes the highest 92.1% of classification accuracy.  

Raghava B et.al [49] did the predictive analysis on total pathological response following 

Neoadjuvant Chemotherapy to detect breast cancers using ensemble machine learning. 

Term ensemble learning defines the process of combining multi models. The results are 

further validated by K-fold cross-validation and generated 99.08% of accuracy. In 

similar, Leili T et.al [50] did a performance comparison of six ML algorithms to classify 

survivors of breast cancers and metastasis. Among 550 patients, 85% of them, not 

experience metastasis, and 83.4% were alive. In a prediction analysis of survival, the 
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SVM produced the highest 93% accuracy. For the prediction of metastasis, the logistic 

regression generated the highest 86% of total accuracy.  

2.3. Diabetes prediction  

Diabetes is a typical continuous medical problem happening when the pancreas has not 

delivered sufficient insulin. Raised glucose levels are the common consequences of 

serious diabetes. Thereafter, diabetes will make serious harm to the nerves and veins. 

Propelled diabetes is problematic by coronary ailment, visual impedance, and kidney 

disappointment.  

As per the World Health Organization (WHO) reports, about 425 million individuals are 

globally suffered because of diabetes. Some studies are reported that family history, 

unhealthy diets, hypertension, lack of physical activity, and obesity are risk factors for 

getting Type 2 diabetes. Women are having a high tendency to get at risk for type 2 

diabetes because of a high number of pregnancies, low insulin consumption, and high 

cholesterol levels [51]. Early recognition of the sickness can offer patients the chance to 

make the fundamental way of life changes and along these lines can improve their future 

[52]. To do that computer scientists are recommending cost-effective ML and data 

mining techniques for the diagnosis of diabetes.  

Few investigations lead to expectation examination utilizing ML algorithms to analyze 

diabetes. Nahla B et.al [53] involved SVM algorithms to detect diabetes mellitus and 

achieved 94% accuracy. Moreover, Quan Z  et.al [54] employed J48 decision trees, 

random forests, and neural networks. Scholars mentioned RF is an ideal algorithm to 

produce better accuracy (of 80.4%) in the classification of diabetic patients.  

Deepti S  et.al [55] proposed a predictive model to estimate the probability of diabetes. 

Scholars employed NB, J48 decision trees, and SVM algorithms and concluded that NB 

generated the highest 76.3% of accuracy than others. On the other hand, Battineni G  

et.al [56] predicted causes for diabetes in Pima Indian female patients by a comparative 

machine learning study. Plasma glucose concentration was the major cause of diabetes 

happening in these female groups, which is followed by other risk factors like multiple 

pregnancies, high insulin release, etc. The study by Chaki J  et.al [57] had provided a 

systematic investigation of AI and ML approaches for self-management of diabetes 

mellitus and identification.  

2.4. Hepatic fibrosis 

Hepatic fibrosis addresses the injury fixing reaction to the liver from a wide assortment 

of etiologies. Cirrhosis is the high exceptional phase of fibrosis, implying more than 
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fibrosis alone, yet rather a contortion of the liver parenchyma related with septate and 

knob arrangement, adjusted bloodstream, and the likely advancement of liver 

disappointment. Real-time tissue elastography (RTE) is one of the contemporary 

techniques and promising imaging methods since it is both non-obtrusive and gives 

precise assessments of hepatic fibrosis. It is reported that pattern recognition 

approaches and machine learning models were largely studied in the early diagnosis of 

hepatitis diseases especially for clinical figures and biochemical indices.  

Yang C  et.al [58], utilized four conventional ML models namely NB, KNN, SVM, and 

random forests to develop the clinical decision system to measure hepatitis B. Eleven 

RTE image characteristics are retrieved from 513 patients with liver biopsies. The test 

results indicated that the employed ML models successfully outperformed the LFI (liver 

fibrosis index) technique and the Random Forest (RF) model produced the most 

noteworthy normal precision among the four ML algorithms. This outcome recommends 

that modern ML techniques can be incredible assets for assessing the phase of hepatic 

fibrosis and produce a guarantee for future medical practices. 

Jiang Z et.al [59], was developed a simple model to differentiate patients of clinically 

significant fibrosis (METAVIR F2-F4) and patients of no or mild fibrosis (METAVIR F0-F1). 

This study involved 204 community healthcare patients and 34 serum attributes 

including gender, age, and infection duration that are involved to differentiate fibrosis 

by the SVM algorithm. Before SVM implementation, feature selection was conducted by 

a sequential forward floating selection (SFFS) process. Results mentioned that the 

adopted SVM model to identify patients of clinically substantial fibrosis with 96% 

accuracy.  

Hashem A  et.al [60], a study has presented single and multistage classification models 

to predict the degree of liver fibrosis patients with infection caused by chronic hepatitis 

C. The studies that are previously reported diagnostic techniques are not successful to 

predict early-stage fibrosis irrespective of producing higher accuracies. Given this, 

scholars of this study developed both single-stage and multistage ML model classifiers 

to predict the degree of liver fibrosis by employing decision trees, neural networks, 

nearest neighborhood clusters, and logistic regression models. Preliminary results 

mentioned that the classification accuracy in means of AUC of multi-model ranging from 

0.874 to 0.974 represents improved classifier accuracy than other studies. 

Chen H  et.al [61], presented a sophisticated hybrid model by integrating SVM with local 

Fisher discriminant analysis (LFDA) for diagnosis of hepatitis. The improved LFDA-SVM 

algorithm was further compared with the other three conventional methods such as SVM 

with Fisher discriminant analysis (FDA-SVM), SVM associated principal component 
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analysis (PCA-SVM), and conventional SVM models. The LFDA-SVM model was 

outperformed by other models and produced 96.77% of accuracy. It is one of the 

promising and advanced establishing tools in the diagnosis of hepatitis with great 

performance.    

Stoean R  et.al [62] produced a model by support vector machines to determine liver 

fibrosis in chronic hepatitis C. The model was developed by the comprehension of 

learning components in SVM and the evolutionary algorithms to do engine optimization. 

By involving evolutionary techniques, it successfully claims better performance than 

conventional SVM methods, also confirms the significance of new methodology near to 

reliable support within the medical diagnosis.  

Polat K  et.al [63] did predictive analysis by PCA and artificial immune recognize systems. 

By reducing the feature set to five from 19 with the help of PCA techniques the developed 

system resulted in 94.12% accuracy. Scholars also mention that this approach can 

benefit other medical diagnoses and reduce the doctor's mental stress. To sum up the 

results of the mentioned studies, machine learning models are the best techniques for 

staging hepatic fibrosis than other statistical calculations.  

2.5. Heart attacks  

Heart attacks are on the head of the deadly ailments list. They are viewed as a major 

cause of global deaths. As indicated by the WHO statistics, in 2020, about 17 million 

deaths were caused because of heart diseases [64]. In America, heart diseases such as 

sudden strokes, hypertension, and coronary heart diseases are the main causes of death. 

Only because of coronary heart disease one in seven people lost their lives that resulting 

in about 366,800 deaths per year in the USA. Approximately, 3% of American adults 

(7.9 million) are facing the problem of cardiovascular failures. Moreover, a single person 

dies every 37 seconds from heart attacks [65]. Given this, there is a persevering 

requirement for an exceptionally precise framework that works as an assessment tool to 

detect hidden patterns of clinical data of heart diseases and reduce the risk of coronary 

failures. The ML classification algorithms are recently largely incorporated to diagnose 

heart diseases.  

Desai S  et.al [66] was applied logistic regression and back proportion neural networks 

(BPNN) to predict heart diseases for the Cleveland dataset. The models that were 

developed were further validated by 10-fold cross-validation. The models are greatly 

assisting doctors in taking effective decisions in the diagnosis of heart failure. Besides, 

Ahmad H  et.al [67] proposed a tool to find a better ML algorithm that achieves high 

accuracy for the prediction of heart diseases. The four classification algorithms such as 
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decision tree, SVM, RF, and logistic regression were employed and experiments were 

conducted by total features and selective features. Study outcomes mentioned that the 

RF classifier algorithm was outperformed by others and produced 94.9% of accuracy.  

Enriko I et.al [68] develop the heart disease forecasting model by using the K-nearest 

neighbours (KNN) model with simple patient health features. Authors recommend The 

KNN with a weighing parameter approach to improve the accuracy in disease diagnosis 

than others. On the other hand, some authors are proposing hybrid or combined ML 

algorithms to do a better diagnosis of heart diseases. The hybrid modelling involved two 

phases. At first, feature selection is conducted and later selected features portion is 

involved in the development of classification models [69]. Similarly, Maji S et.al [70] 

were employed these models by integrating decision trees with artificial neural networks 

(ANN) to produce better performance in heart disease diagnosis.  

Also, Nguyen T et.al [71] was applied these algorithms by combining fuzzy models with 

genetic algorithms for the Cleveland heart disease dataset. The outcomes demonstrated 

that the genetic algorithms integrated with the fuzzy model are generated better results 

than other single models like SVM, neural networks, etc. Besides, Manogran et.al [72] 

also present a system that contains neuro fuzzy and multiple kernel approach inference 

to do a diagnosis of heart disease. In further, the system was tested by the dataset of 

metabolic reactions and achieved 98% of sensitivity.  

Nazari et.al [73] developed a model by integrating fuzzy inference and the fuzzy analytic 

hierarchy process (FAHP). Scholars presented a data set of a Tehran city hospital for 

system training and testing. The fuzzy inference has been used to evaluate the possibility 

to expose heart problems for individuals and the FAHP for feature weight calculations 

that contributed to the development of heart attacks.  

2.6. Asthma or chronic obstructive pulmonary diseases 

Chronic obstructive pulmonary disease (COPD) is a type of lung disease caused by 

expanding shortness of breath. These diseases are highly involved with morbidity and 

mortality and are the third driving reason for death overall in the USA, and China [74]. 

The early diagnosis of COPD patients with future high costs could reduce the medical 

expenses by exacerbation events, and reduce disease evolution. Some studies addressed 

the ML algorithm to diagnose future high-cost COPD individuals.  

For example, Shaochong L et.al [75] incorporated smooth Bayesian network (SBN) 

algorithms to predict the COPD patients involved with future high costs. The developed 

SBN model aims not only to obtain high prediction accuracy also sophisticated 



35 
 
 

generalizability than other benchmark ML algorithms. In similar, Peter J et.al [76] 

presents ML characterization of COPD subtypes by insight analysis from gene study. The 

longitudinal characterization of COPD gene subjects has provided the relationship 

between lung image characteristics, COPD progression, and molecular markers.  

Moreover, Tadahiro G et.al [77] compared the performance measures of different ML 

algorithms to predict hospitalization and critical care among emergency patients with 

COPD exacerbation. Outcomes ML algorithms enhanced the prediction ability of patients 

diagnosed with Asthma or COPD exacerbation. Alternatively, Maarten L et.al [78] present 

a tool to identify functional respiratory imaging features related to COPD and disease 

forecasting by ML algorithms in early understanding and quantification of disease 

progression. The FRI features such as total specific image-based airway resistance and 

volume integrated with SVM algorithms generated 80.65% accuracy and 82.35% of 

sensitivity.  

Sandeep B et.al [79] proposed an ML-based framework to evaluate COPD severity. High 

correlated features were selected by linear forward feature selection and KNN was used 

as a classification algorithm. Results mentioned that the biomechanical feature set 

outperforms with 0.81 of AUC than density (AUC =0.71) and texture (AUC =0.73) based 

feature sets. This study provides evidence of the effectiveness of biomechanical features 

in the severity and presence of COPD. Likewise, Jianfei Z et.al [80] also applied a feature 

weighted survival ML model for the prediction of COPD failures.  

2.7. Kidney injuries 

Intense kidney injury is a typical clinical disorder emphatically connected with an 

abundance of dismalness and mortality. Patients who develop it are at constant risk for 

delayed and increasingly costly hospitalization, chronic kidney ailment and dialysis, vital 

adverse cardiovascular situations, and death. Currently, diagnosing kidney failures is 

made as per the rise of serum creatinine (sCr) focus or decrease in urinary yield, both 

are of aberrant markers of renal capacity and maybe longer days behind the beginning 

of injury and practical decline. These limitations add to underdiagnosis and identify 

patients with high risks for kidney injury, especially in an emergency condition.   Besides, 

integrating early identification and risk of kidney injury stratification by really engaged 

support for clinical decisions.   

Evaluating the glomerular filtration rate (GFR) is a key parameter to identify initial 

resistance of kidney functionality, assessing dynamic kidney disintegration and 

intricacies, altering the measurements of medications, and controlling the risks for 

chronic kidney diseases. To improve the precision of GFR, ensemble learning methods 
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were applied [81]. Ensemble learning is a type of ML algorithm that results by combining 

individual mathematical models to generate better outcomes. Liu X et.al [81] employed 

ensemble learning models and conduct experiments on 1419 individuals. The 

independent evaluation of GFR was conducted from sex, age, and serum creatinine with 

help of SVM, ANN, regression modelling, and ensemble learning. Results mention that 

the precision of ensemble learning dominates the normal regression models.  

ML algorithms were also employed to forecast severe kidney injuries after aortic arch 

surgeries. For example, Guiyu L et.al [82] compared different ML algorithms with 

conventional logistic regression to predict acute kidney injury (AKI) after arch 

operations. Results mentioned that the Gradient boosting algorithm was comparatively 

produced a better performance than SVM, logistic regression, and random forest 

algorithms.  Therefore, in this section, we discussed how ML algorithms were applied in 

the studies of kidney injuries which particularly focused on understanding the association 

between phenotype and genotype.  

2.8. ML and deep learning in the AD prediction  

Machine learning is an ideal decision of investigation for examining a huge scope of 

administrative medical data containing a large number of descriptors from countless 

people. Studies show fruitful uses of AI and ML models to the enormous scope of 

regulatory information in disease forecasting other than AD (cancers, diabetes, 

metabolic disorder, hepatic fibrosis, heart attacks, etc). Given the ongoing fast 

development among ML modelling, the use of AI technologies in medical forecasting 

modelling is probably going to deeply affect medicine [83], [84].  

Despite this, Based on the global Alzheimer's disease (AD) report [85], an individual 

exposed to dementia will be born every three seconds around the globe. At present, 

nearly 55 million global population is suffering from this disease. These numbers could 

be tripled by 2050 and reach 152 million population will be suffered from dementia. AD 

largely occurs in older people and has a great impact on their daily lives.  By early 

identification of this issue will save medical costs and provide a healthy individual 

lifestyle. Luckily, because increasing numbers in ML algorithms are well positioned to 

control this disease at an early phase. 

For instance, by collecting speech data from older dementia patients it is possible to 

identify AD by incorporating ML methods. For this logistic regression with cross-

validation, algorithms are the optimal solution to predict early dementia [86]. A 

comprehensive ML algorithm was developed in [87] by combining four ML algorithms 

(SVM, NB, KNN, and ANN) to achieve higher accuracy for the early diagnosis of AD. The 
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outcomes of the developed algorithm produced 99.1% accuracy during the identification 

of true AD subjects. In similar, Battineni G  et.al [88], [89] successfully presented a 

study on the prediction of dementia and performance validation by exploring the use of 

SVM and decision tree algorithms.  

All the above-mentioned studies involved model development by medical data retrieved 

from IT systems and can predict only a single outcome. In contrast, Charles K  et.al [90] 

adopted an unsupervised ML approach namely a Conditional Restricted Boltzmann 

Machine (CRBM) to evaluate AD development. The authors presented 18-month 

projections on 44 clinical characteristics after 1909 AD patients. The presented 

unsupervised model was accurately predicted the alternations of the AD cognitive scale 

and identified subcomponents with better sensitivity. Javier D  et.al [91] presented a 

sophisticated approach to predicting late-onset AD and experimental models perform 

about 72% of classification accuracy.  

Besides, Ramon C  et.al [92] were analyzed the possibility of assessing an anatomical 

index which is known as AD risk factors. The neuroimaging databases were collected, 

further applied high dimensional ML algorithms and results identified cognitive status, 

age, and cognitive function are the main factors to support the risk of getting AD.   In 

this manner, there are plenty of other studies like [93], [94] were explained the 

importance of ML models to produce promising results to estimate the genetic risk of 

AD. However, a survey on ML algorithms for longitudinal analysis of brain image data of 

AD was well presented in [95]. 

As per conducted research, there are several potential indicators for dementia prediction, 

which can commonly be arranged dependent on the accompanying types of models 

namely health-based models, neuropsychological models, wellbeing-based models, 

genetic risk scores, and multifactorial models [96]. The appropriateness of these models 

spreads in numerous ways [97], [98]. The coupling of multiple neural networks with 

magnetic resonance imaging (MRI) has been utilized to isolate healthy cerebrums from 

progressive Mild Cognitive Impairment (p-MCI), because of the primary decay of the 

cerebrum due to Alzheimer's disease [99]. Routine fundamental consideration patient 

records in the UK have been and are right now used to build up a risk score for the 

reasons of assessing how in danger an individual might be of creating dementia, by 

utilizing ordinary measurable techniques and current AI calculations [100].  

Some researchers employed random forest (RF) algorithms for the identification of 

patients with p-MCI and sustainable age-related MCI through the regional examination 

of the protein amyloid-β and positron emission tomography (PET) [101]. In an ongoing 

EMIF-AD study, an ML model on extreme gradient boosting (XG-Boost), deep learning, 
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and RF algorithm, has been implemented for Alzheimer's based dementia determination 

utilizing metabolites in the blood which were demonstrated by the investigation to be as 

precise indicators as the generally acknowledged yet intrusive to quantify cerebrospinal 

fluid (CSF) biomarkers [97].  

Besides, machine learning recognizes compound patterns in high dimensional 

information, which are then used to make clinical forecasts in new datasets. In dementia, 

the focal point of ML models has been cognitive centric and neuroimaging [102]. 

Generated imaging biomarkers of AD incorporate hippocampal and entorhinal cortex 

volume decrease, and, basal forebrain cores misfortune. Furthermore, examples of 

decay in regions including the paralimbic zones, parietal affiliation zones, lateral 

temporal, temporoparietal, and frontal cortices have been recognized as imaging 

markers of AD-related neurodegeneration that can be seen in people earlier to the 

beginning of clinical signs [103]. In more precisely, utilized ML to distinguish 

morphological anomalies in the hippocampus, entorhinal cortex, basal ganglia, 

praecuneus, and the cerebellum as significant in pre-clinical periods of AD. Progressively, 

non-psychological signs and side effects are viewed as likely early markers of 

neurodegenerative sickness [104].  

On other hand, the published studies that define AD risk prediction through machine 

learning models have shown limited prediction accuracy in terms of area under curves 

ranging from 0.68 to 0.78 [105]–[107]. These studies were used medical data for model 

evaluation which limits generalizability in other scenarios. Besides, previous studies did 

not address a primary assumption of supervised machine learning approaches -are the 

data labels, right? For AD, we realize that the principles used to do disease labels are 

mistake inclined due to under coding, supplier variety, and different components. This 

brings up various issues in machine learning usage.  

This turns up new thoughts of machine learning to improve accuracy even doing non-

ideal symptomatic practices if it utilizes the raw labels. Because of this, we extended our 

previous research works for large-scale datasets as well as more powerful machine 

learning prediction models.  

2.9. Others 

This section presents the discussion on machine learning intervention for other chronic 

diseases. The study conducted by Finkelstein J et.al [108] defines the ML algorithms to 

personalize an early diagnosis of asthma exacerbations. Patient telemonitoring brings 

about an accumulation of huge measures of data about patient illness direction. The 

authors of this study present comprehensive approaches in the utilization of 
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telemonitoring information for building machine learning algorithms that can forecast 

asthma exacerbations before they happen. Experiments were conducted by using 

adaptive Bayesian networks, Bayesian classifier, and SVM algorithms, and performance 

in terms of accuracy was achieved 77%, 100%, and 80% respectively. It proves that ML 

models have the capacity to developing personalized clinical decision support systems.  

At the same time, depression is among the main sources of mental illness in developed 

countries. To adequately target intercessions for patients in danger for a more awful 

long-haul clinical result, there is a need to distinguish indicators of chronicity and 

remission at early stages. Because of this, Dinga R et.al [109] presented predictive 

values on a wide range of clinical, biological, and psychological factors in predicting 

depression causes. They adopted a penalized logistic regression algorithm and archives 

66% of prediction accuracy while the diagnosis of course depression. 

Besides, muscle pain-related diseases called Fibromyalgia (FM) are viewed as a constant, 

musculoskeletal agony state of clinical unpredictability that presumably emerges from 

dysfunction for central pain preparing pathways. It is based caused by sleep 

disturbances, depression or anxiety, and fatigue. But FM diagnosing remains challenging 

for medical experts because neither lab tests nor imaging techniques are not available 

which can medically confirm or identify the FM diagnosis. To do this, Fred D et.al [110] 

analyses to characterize and differentiate the FM patient's classes from chronic pain 

patients. In oppose to other established studies that were associated with classification, 

rather this study included clustering techniques to categorize the pain and symptom 

severity.  

Lastly, Periodontitis is an oral disease type driven by deregulated aggravation initiated 

by polymicrobial networks that structure on subgingival tooth sites. The periodontal 

pocket and gingival sulcus form unique natural specialities for microbial colonization and 

the subgingival microbiota drives the provocative procedure that prompts periodontal 

tissue destruction. These infection-related diseases were differentiated between chronic 

and aggressive periodontitis of microbial profiles conducted by support vectors was well 

explained in [111]. The authors highlight the use of SVM algorithms in the prediction 

and diagnosis of periodontitis. To sum up, it is important to present the precise ML 

algorithms or methods is the most important part to make precise decisions in medical 

diagnosis [112].  
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Chapter 3 

Performance calculation of dementia prediction 

by support vector machines (SVM) 

ML is considered as one of the contemporary methodologies in foreseeing, distinguishing, 

and making choices without having a human association. It is rapidly advancing in the 

clinical business going from finding to the perception of diseases and the investigation 

of illness transmission. ML models were created to recognize the issues in MRI settings. 

In this chapter, we presented the utilization of support vector machine (SVM) in the 

expectation of dementia, and performance validation was done by statistical analysis. 

Data were explored from the Open Access Series of Imaging Studies (OASIS-2) called 

longitudinal collection of 150 subjects of 373 MRI information. 

3.1. Introduction  

These days, ML models are logically used in neuroimaging examines like forecasting of 

AD from an auxiliary MRI. Additionally, numerous investigations attempted distinctive 

ML procedures in foreseeing AD and its causes [113], [114]. In the investigation of AD 

forecast and recovery, a multistage classifier using ML, including the Naive Bayes 

classifier, SVM, and K-closest neighbour (KNN) was utilized to assemble Alzheimer's 

sickness more adequately and successfully [115]. Likewise, an investigation from Ref. 

[116], inferring that the usage of locally linear embedding (LLE) sort of unsupervised 

learning was used to arrange AD dependent on central MRI information. Furthermore, 

some primary investigations with ML procedures presumed that these strategies are 

legitimate and achieve with high accuracy (up to 98%) in diagnosing clinical occasions 

with an examination of patient clinical records [117]. 

Regardless of it, AD is one of common in dementia and related generally with elder 

people [22]. In this chapter, we disclose how to anticipate dementia and compute 

execution by utilizing support vectors. Commonly, SVM's are considered supervised type 

ML models, which addresses the information issues identified with regression and 

classification problems [118]. An SVMs give a convincing and versatile structure for MRI, 

and that the proposed classifier insight strategy has potential as a framework for the 

appraisal of characterization solutions [119]. Also, this is used to sort dementia subjects 

and is like the exploration that utilization a uniform calculation to separate three Primary 

progressive aphasia (PPA) subtypes in anticipating PPA [120]. Recognizing early 
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morphological changes in the brain and making introductory findings is efficient for 

dementia.  

High-intensity MRI information can be used to support forecast and finding dementia 

disease [120]. To do this, we propose to locate an ideal arrangement by exploring 

different radial basis function (RBF) kernels in the SVM. The proposed technique for 

estimation is inspired by another methodology of utilizing an ensemble SVM for dementia 

grouping [121], utilizing MRI information and mini-mental state examination (MMSE). 

In opposite, we consider the attributes like MR delay; CDR, ASF, AGE, and GENDER 

included with MMSE that corresponds to subject ID. We categorically accept that it is a 

novel method of inspecting the significance of every parameter during forecasting 

dementia in elder patients. Regardless of it, this work intends to anticipate dementia in 

senior people by SVM calculations to achieve promising results.  

3.2. ML model and formulas   

Support vector machines  

SVM is a discriminative classifier formally characterized by an isolated hyperplane. The 

output of this algorithm is an optimal hyperplane that classifies new examples and cases, 

which supports hyperplane called support vectors [122]. In two-dimensional (2D) space, 

this hyperplane is a line isolating into two sections wherein each class lay on either side. 

Moreover, these algorithms are considered as part of supervised machine learning which 

is helpful in classification and regression analysis. For instance, data classification has 

been done based on the multiple lines that have ready to propose an optimal solution. 

However, choosing optimized hyperplane is a hard job since it should not be noise 

sensitive and generalize them correctly. Therefore SVM algorithm depends on the 

forecasting of optimized hyperplane (Figure 3.1) that gives the most considerable 

minimum distance to the trained data set and also helps to achieve a good margin value 

(i.e. Here margin is a separate line to the nearest class points)  [123].  
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Figure 3.1. data classification using multiple lines (left) and data classification: optimal 

hyperplane (right) 

Tuning parameters  

To understand the working of SVM, it is essential to know about some key metrics named 

as the kernel, regularization, and gamma.  

Kernel 

In machine learning, "kernel" is a technique used to solve the non-linear problem with 

the use of the linear classifier. It is involved in changing linearly non-separable data into 

linearly separable data [124]. The idea behind the Kernel is linearly non-separated data 

in <n>dimensional space may linearly spread in high dimensional space.  

In a mathematical notion, a kernel is defined as K (a, b) = <f (a), f (b)>, Where K is a 

kernel function, and a, b are n-dimensional inputs, and ‘f’ is mapping from n-dimensional 

to m-dimensional space (i.e., generally m should be greater than n).   

Regularization          

The regularization parameter (represented by ‘C’ in the python library) explains the SVM 

optimization, how much we want to escape the misclassifying of every trained data set. 

For higher values of ‘C,’ the hyperplane will classify all the training data correctly; 

similarly, for low ‘C,’ optimizer looks for greater margin separating hyperplane though it 

will misclassify the more data points [125]. In precise,  
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1. If C is high, optimization tends to better value and cover all the characteristics, 

and  

2. If C is low, the optimizer tends large margin, and it would not include more points.     

 

Gamma 

Gamma describes the impact a particular training data has reached [122], [124], [125]. 

By having high gamma values points close to a possible separation line are found in the 

calculation and for low gamma values (Figure 3.2), points far away from feasible 

separation line will also taking into consideration in the calculation of separation line 

[126].  

  

Figure 3.2. High Gamma Close points will be considered (left) and Low Gamma Far 

away points are found (right) 

3.3. OASIS-2 Dataset 

 

Subjects 

The dataset consists of a longitudinal collection of 373 MR image sessions performed 

over 150 subjects. All subjects are right-handed includes both men and women (age 

range- 60 to 96 years) [127]. 72 subjects are characterized as non-demented (ND) 

throughout the study, 64 subjects are characterized as demented (D) including 51 are 

with mild to moderate AD. The remaining 14 subjects are categorized as non-demented 

at the first scan and were subsequently transferred to demented on later visits called 

converted (C) type.  



44 
 
 

Each subject had undergone a full screening of complete clinical assessment conducted 

at Washington University Alzheimer’s disease research Centre (ADRC). Subjects with age 

typical brain alterations like leukoaraiosis, mild atrophy, and primary dementia cause of 

AD are included. Collection of MR images conducted within one year before or succeeding 

clinical assessment (Range- 0 to 352 days, Mean-111 days). Twelve AD confirmed 

subjects were scanned after a longer delay (Range- 374 to 924 days, Mean-653 days) 

but were included because of having CDR scores higher than zero in some old clinical 

assessments.  Subsequently, two ND subjects were scanned somehow longer than one 

year before clinical assessment (Range- 392 to 431 days) also included because their 

successive clinical assessments continue to have no symptoms of dementia. In this 

manner, each subject had gone through two or more individual scanning occasions with 

a mean delay of 719 days (Range: 183-1707 days) between visits. The summary of the 

demographic status of subjects is presented in Table 3.1. Diagnostic subject 

characteristics of different age groups on the first clinical visit are explained in Table 3.2.     

Table 3.1. Summary of demographic status of subjects 

Subject count  78 D 72 ND 

Male 

Female 

Age range (in years) 

Median 

Mean±SD 

40 D 

38 D 

60-96 

77.0 

77.01±7.3 

22 ND 

50 ND 

 

 

 

Table 3.2. Age and diagnostic subject characteristics on the first clinical visit [127] 

Subjects  Non Demented  Demented  

Age  N n Mean Male  Female Convert n Mean Male Female CDR 0.5/1 

60s 34 23 65.71 6 17 3 11 65.67 8 3 8/3 

70s 71 35 74.91 11 24 4 36 73.97 20 16 29/7 

80s 41 26 84.30 9 17 7 15 82.33 7 8 13/2 

90s 4 2 92.50 0 2 0 2 93.00 1 1 1/1 

Total 150 86 75.82 26 59 14 64 74.95 36 29 52/13 
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MRI acquisition methods 

For individual subjects, three or four separated T1-weighted MRI scans were acquired 

with a 1.5T Siemens Vision MRI scanner. A high-resolution Magnetization Prepared Rapid 

Acquired Gradient Echo (MP-RAGE) was managed to handle the classification of given 

subject scans. For each subject, separate scan files were converted from Siemens 

proprietary IMA to 16-bit NiFTI1 format by traditional conversion program. The MR 

images were corrected for inter-scan head rotation and wrapped spatially into atlas 

space. However, the transformation outcome places the brains in a correlated coordinate 

system and bounding box as the actual atlas. Therefore, the outcome is unique, high 

contrast, averaged MP-RAGE image in atlas space was been achieved. The 

comprehensive description of image acquisition and post-processing steps is well 

described in [127].  

The estimated total intracranial volume (e-TIV) was manually estimated intracranial 

volume of an atlas.  Normalized Whole-brain Volume (n-WBV) was computed with the 

FAST program in the FSL software suite. Image segmentation was done to classify brain 

tissue as spinal fluid, white, or grey matter. This segmentation process iteratively 

assigned voxels to tissue classes based on high probability estimates of the hidden 

Markov random field model. Ultimately, n-WBV is measured as a proportion of 

accumulated voxels across the brain mask classified as tissue. The normalized volume 

is expressed in the percentage of total grey and white matter voxels across e-TIV [128]. 

The calculation of atrophy rates was estimated as the slope of the line connects to n-

WBV. The details of MRI acquisition are mentioned in Table 3.3. 

 

Table 3.3. MRI acquisition details [127] 

MR characteristics Values 

Sequence 

TR (repetition time) 

MP-Rage 

9.7 msec 

TE (echo time) 4.0 msec 

Flip angle 10° 

TI 20 msec 

TD 200 msec 

Orientation Sagittal 

Thickness 1.25 mm 

Gap 0 mm 

Slice number 128 

Resolution 256 × 256 (1 × 1 mm) 

 

 



46 
 
 

Feature description 

The dataset includes 373 MRI information and 15 features (attributes). The detailed 

description of the features is listed in Table 3.4. In the dataset, the subject ‘Group’ 

attribute that specifies subject dementia status is considered as a target variable of 

binary classifier. In this study, we used distinct scoring rules such as CDR, mini-mental 

state examination (MMSE), SES to determine brain state (Table 3.5).  All subjects 

underwent similar analysis procedures and tests including MMSE.       

 

Table 3.4. Dataset feature description 

Features Description 

Subject ID 

MRI ID 

Visit  

Gender  

Hand 

EDUC 

SES 

MMSE 

CDR 

e-TIV 

n-WBV 

ASF 

Age 

Group 

MR delay 

Subject identification number    

Image identification number of an individual subject 

Number of subject visits 

Male/Female 

Right/Left-handed 

Subject education level (in years) 

Socio-economic status 

Mini-mental state examination score 

Clinical dementia ratio score 

Estimated total intracranial volume result 

normalized whole brain volume result 

Atlas scaling factor 

Subject age while scanning 

Demented/Non-demented/Converted 

Magnetic Resonance (MR) delay is the delay time that is 

before the image procurement is performed in real. 

 

Table 3.5. Scoring rules 

Features Range Condition 

CDR 0-3 None-0, Very mild-0.5, Mild-1, Moderate-

2, Extreme -3  

MMSE 1-30 Extreme impairment (<10) 

Moderate dementia (10-19) 

Early-stage Alzheimer’s aliment (19-24) 

Normal (>25)   

Visit 0 or 1 Low status - 0  

High status - 1  

 

 

 



47 
 
 

3.4. Methods 

In the current study, we consider a longitudinal collection of MR image data from the 

OASIS training data set [127] containing demented and non-demented cases with ages 

from 60 to 96. Sample size (N=150) subjects are attended scanning sessions for two or 

more visits, and sessions were separated for at least one year with a total of 373 MR 

sessions. Figure 3.3. presents MRI image classification based on clinical dementia ratio 

(CDR) score that ranges from 0-2 and a total of 353 sessions were distributed based on 

three classifiers demented (146), non-demented (190), and converted (37) are 

assessed.   

 

Figure 3.3. Categorization of dementia sessions based clinical dementia ratio (CDR). 

We have applied the SVM algorithm to the given dataset using the rapid miner tool, and 

grouping has been done based on present dementia status. The attributes included in 

the OASIS longitudinal training data set were Subject ID, MR Image ID, Group, Visit 

number, MR delay, SEX, age, Mini-Mental State Examination (MMSE) [129], and clinical 

dementia ratio (CDR) [130]. The proposed method layout is shown in Figure 3.4.  
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Figure 3.4.  Methodology Layout.  

Data collection 

The trained data set was collected from the Open Access Series of Imaging Studies 

(OASIS) including longitudinal MRI data of 150 subjects.  

Data preprocessing 

The real-world data is available more likely incomplete with missing of some entries. So, 

data preprocessing is a data mining technique to address these issues. Missing entries 

were filled-up by averaging particular attribute values. 

Attribute selection  

It is mandatory to choose a particular characteristic to predict the outcome by mapping 

corresponding input values. In this study status of the dementia category selected as 

the target variable 

Input matching  

To avoid vagueness, it is essential to select valuable input attributes to match similar 

outcomes. Consequently, we choose particular attributes (CDR, MMSE, and MR Delay) 

that are closely related to deciding the dementia outcome.  

Classifier 

Three classifiers are named demented, non-demented, and converted. In this particular 

training data set, some subjects considered as demented at the initial visit later 

transformed into the non-demented case, and vice versa were called as a converted 

type.  

Eventually, the classification accuracy is achieved and analyzed. Accuracy is defined as 

the percentage of correctly predicted outcomes divided by the total number of samples.  

Accuracy =
True predicted an outcomes

Total number of samples
× 100 

Data 
Collection

Preprocess
ing of data 

Selecting 
attribute 
which ML 
algorithm 

need 
predict 

(i.e. group)

Selecting 
inputs to 
predict 

outcomes

Classifier Results
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3.5. Results 

When the mapping has done by input features (independent features) with a target 

variable, the machine will run the SVM calculation consequently.  

Kernel  

The outcome kernel model with 150 support vectors has been generated, and three 

different categories of training data set are observed.  As discussed earlier, kernel 

equations are written as 

𝐊(𝐍𝐃, 𝐃, 𝐂) =< 𝐟(𝟕𝟗), 𝐟(𝟓𝟎), 𝐟(𝟐𝟏) >  

Where K is kernel function with three-dimensional input values such as non-demented 

(ND), Demented (D), and converted (C) with corresponding mapping values 79, 50, and 

21(Table 1) respectively. And bias value is equal to -0.267.   

*Bias (offset) generally used for compensating feature vectors that are not centred 

around the zero (Refer Table 3.6) 

Table 3.6. Kernel Model with SVM algorithm 

Total number of Support Vectors: 155; Bias (offset): -0.267  

Number of support vectors for class Non-demented (ND) 
 

79 
 

number of support vectors for class Demented (D) 
 

50 
 

number of support vectors for class Converted 
 

21 

 

Gamma vs C 

Gamma and regularization (C) values are considered as essential elements to decide 

optimal hyperplane, and radial basis function or RBF kernel is a different kernel approach 

function in SVM algorithms. Figure 3.5 represents the spatial distribution of Gamma 

(RBF) and C values, and Table 3.7 is presenting the total possible SVM optimal 

parameters along with the performance value. As discussed earlier, low gamma values 

cover far points(1 × 10ˆ − 4), and if C is large, (C = 100) optimization should be better 

and cover all the aspects. Therefore, SVM anticipated Optimal Parameters(Gamma, C) =

(1.0E − 4, 100)  is producing high-performance values and is reflected by the brown circle.                
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Figure 3.5. Spatial distribution of Gamma (RBF) Vs C values 

 

Table 3.7. Performance parameters  

 

Gamma (RBF) C Performance 

1.0E-4 10.0 0.6294642857142857 

1.0E-4 100.0 0.6875 

1.0E-4 1000.0 0.6875 

0.0010000000000000002 10.0 0.6696428571428571 

0.0010000000000000002 100.0 0.65625 

0.0010000000000000002 1000.0 0.6875 

0.010000000000000004 10.0 0.6428571428571429 

0.010000000000000004 100.0 0.6517857142857143 

0.010000000000000004 1000.0 0.6294642857142857 

0.09999999999999998 10.0 0.5714285714285714 

0.09999999999999998 100.0 0.5714285714285714 

0.09999999999999998 1000.0 0.5714285714285714 

1.0000000000000007 10.0 0.53125 

1.0000000000000007 100.0 0.53125 

1.0000000000000007 1000.0 0.53125 

10.0 10.0 0.5089285714285714 

10.0 100.0 0.5089285714285714 

10.0 1000.0 0.5089285714285714 
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An outcome performance of the SVM is calculated as  

Accuracy =
True Predicted Subjects

Total Subjects
∗ 100 =

105

150
∗ 100 = 70% 

which is almost equal to the SVM generated values. However, the optimal performance 

of the system is achieved as 68.75% by utilizing Gamma (RBF) and C values (Refer to 

Table 2).  Precision (i.e., percentage of positive prediction) values for each category are 

calculated by   

Precision =
Positively predicted subjects

Total subjects of a particular category
× 100 

For example, precision for Non-Demented subjects is achieved as 64.18% and 

eventually, demented precision is calculated 75%; surprisingly there are no true 

predicted values for converted category subjects (Table 3.8.). SVM algorithm predicted 

two subjects as a converted category, but actually, it belongs to the non-demented type.  

In conclusion, no ML algorithm produces 100% accurate results since each one has its 

pros and cons. 

Table 3.8. SVM performance matrix 

Type True Non-

demented 

True 

Demented 

True 

Converted 

Precision 

Prediction of Non-demented 43 14 10 64.18% 

Prediction of demented 8 27 1 75.00% 

Prediction of converted 2 0 0 0.00% 

 

Subject group classifications are in line with the study designed for investigating 

diagnostic agreements [131]. However, it is not feasible to predict dementia disease 

with a single attribute or parameter. Thus, we examine other key parameters such as 

MMSE, AGE, n WBV, and MR delay that matched with the targeted group column. At the 

same time, we tried to exclude other demographic values like Gender, SES, EDU, and 

ASF since these parameters are not good enough in dementia prediction, also by 

considering many attributes performance may get low  [132]. Besides, outcomes 

mentioned that 100 subjects (refer to Figure 3.6.) are predicted non-demented (actually 

these distributed as 63ND, 24D, and 13C types), and 47 subjects predicted as demented 

(but these distributed as 11ND, 34D, and 2C types). Finally, 3 non-demented subjects 

were forecasted as converted types. 
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Figure 3.6. Subject Classification between Predictions subject groups Vs Actual Subject 

Groups. 

3.6. Chapter summary  

Dementia is one of the huge medical problems that has tested medical specialists around 

the world. Moreover, it generally occurred in more adults with age more than 60. 

Tragically, there are no appropriate medications to fix this sickness, and in some cases, 

it will straightforwardly influence an individual's memory aptitudes and lessen the human 

capacity to perform everyday exercises. Numerous medical services experts and 

computing researchers were performing research exercises on this issue throughout the 

previous twenty years. In any case, there is an extraordinary requirement for the 

distinguishing proof of significant qualities that can gauge the identification of dementia. 

In this chapter, single ML modelling was presented with help of SVM for grouping and 

prediction of AD.   

The results summarized in this chapter were fully published in Battineni G, Chintalapudi 

N, Amenta F. Machine learning in medicine: Performance calculation of dementia 

prediction by support vector machines (SVM). Informatics Med Unlocked. 

2019;16:100200. doi:10.1016/J.IMU.2019.100200.   
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Chapter 4 

Late-Life AD detection using pruned 

decision trees 

As presented in Chapter 3, we did a similar type of work using single machine learning 

modelling with decision trees. Pruned type decision trees (J48) were utilized to do 

prediction analysis on AD subjects. Validation of the adopted model was done by cross-

validation techniques. Model performance was evaluated by parameters like precision, 

accuracy, and receiver operating characteristic (ROC) curve.  

4.1. Introduction  

There are some settled plans and propositions for clinical practice on some outside 

assessments and hard-coded into their product. But these projects are limited to 

information accuracy because they are created from various individuals and conditions. 

Besides, dementia is one of the worldwide clinical issues that were highly popular. The 

majority of the examinations are identified with dementia causes clarifying the 

prevention of risk, early medication, and quick disease diagnosis in more established 

grown-ups. Hence, it is obligatory to direct some high-level examinations managing 

these sicknesses.  

As a rule, subjects with Mild Cognitive Impairment (MCI) are significant gatherings for 

the AD cure as they are at the prodromal stages and a higher danger of disease. AD and 

various types of dementia were turning into a worldwide test and keeping an eye on the 

death of one in three senior people groups in the USA. While the explanations behind 

these infections have not yet been comprehended, they can successfully influence talk, 

memory, and other basic mental capacities. 

The present chapter concentrates on AD detection among older adults through managing 

MRI demographic information and AD forecasting evaluated with given features. Pruned 

decision trees (J48) model was employed to conduct this analysis. 
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4.2. Decision Tress  

Decision trees are the traditional ML modelling approaches and produce results with 

higher accuracy when contrasted with others. It is an algorithmic modelling approach 

that information parting was finished by unmistakable conditions [9]. Numerous 

investigations were viewed as choice trees as an extraordinary way to deal with directing 

a prescient examination. In AD expectation, we start from the tree root highlight and 

look at this include with other tree hub highlights. Because of the connection, we seek 

after the branch identifying with that worth and leap to the following hub [10]. It is 

imperative to keep distinctive AD gatherings and another tree inside hubs until we 

accomplish a leaf hub with a predicated class. To understand the decision tree algorithm 

is better, the impurity concept has to dig into more in detail (refer to Figure 4.1.).  

 

Figure 4.1. Colour ball concept to understand the purity  

In the first bowl, the probability of getting a red ball is 100% as the bowl fills with pure 

red colour ones. Similarly, the central bowl needed more information than the left, and 

more data is required to understand the purity level and the right bowl needs maximum 

information since both colours are distributed equally. Therefore, we can conclude that 

the left bowl is pure, the middle is less impure and the right is completely impure. To 

measure the impurity of any sample, two parameters called entropy and Gini index will 

calculate it.  

Entropy is the amount of data that needs to describe some sample. In a homogenous 

sample, entropy is ‘0’ and for a heterogeneous sample, entropy is ‘1’.  Mathematically, 

entropy is written as  

Entropy = - ∑ 𝑝𝑖 ∗ log (𝑝𝑖)𝑛
𝑖=1   
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Gini index (GI) or Gini impurity is a measure of sample inequality ranging from 0 to 1.  

If GI=0, the sample is perfectly homogeneous and for GI=1, the sample having 

maximum inequality in the sample. It is the sum square of individual class probabilities 

of each class. It can be illustrated as  

Gini index= 1- ∑𝑛
𝑖=1  Pi

2 

4.3. Results 

The same dataset presented in Chapter 3 was applied with single ML modelling by 

decision trees. Given the AD grouping, all the independent features were supplied as 

input to the J48 decision trees model. K-fold validation (CV) methods were utilized for 

model validation. The CV is a resampling procedure with a unique feature 'k', that is 

utilized in model assessment on a restricted data set. Given the 'k' value dementia 

dataset has spilt into test and train groups. The CV was conducted with k = 5 to 

overcome the fitting problems, which presents for five data folds (or subgroups) for 

testing, and k-5 folds for preparing purposes had utilized. For producing the pruned 

decision tree, we included limited key features like CDR, MMSE, n-WBV, gender, and MR 

delay since these are mostly correlated with the AD groupings.  

The performance of the model was assessed by accuracy, precision, and area under the 

receiver operating characteristic curve (AU-ROC). Dataset pre-processing was done by 

a selection of highly correlated features coupled with AD subjects. Training of model was 

held between the outcome AD group and the remaining features can help in the model 

operation of AD prediction. Figure 4.2. presents the experimental results of the decision 

tree outcome.  

From Figure 4.2, it is clear that 331 images were accurately classified out of 373 with 

88.7% of accuracy. A weighted average on a prediction of true AD cases (i.e., precision) 

of 86.7% was recorded. The precision true AD subjects are assessed as 91.3%.  

True AD prediction = 
True AD subjects 

Total of all true positives
  = 

188

188+18
*100 = 91.3% 

The J48 pruned decision tree with CDR as a central node can be observed in Figure 4.3.  

If the branch CDR ≤ 0, classification of MRI session was done as ADnon with 92% of 

accuracy. The second branch CDR > 0, parting into two parts of MR delay is the central 

node. It developed an accuracy of AD subjects is 98.2%, alongside another branch with 

an MMSE central node. This tree follows the base node with an AD group classification.     
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Predictions by generated decision tree have correctly mapped and examined with 

confidence attributes of dementia status. At last, the high confidence correlated value of 

attributes can predict dementia in of particular adult, and the referenced model clarifies 

and forecast the patient's condition by using explicit advantages to help patients by 

helping them ahead of time. 

 

Figure 4.2. Performance of J48 model 

Initially, the subjects with AD were mapped with the independent features which are 

highly correlated with dependent AD group category. The CDR rating assessed late-life 

AD forecasting. Irrespective of age, if CDR ≤ 0, at that point subjects were delegated as 

ADnon, and CDR > 0 high percent of subjects were named as AD, and rest were as ADcon. 

The resulted decision tree was created with various sub-branches and left a choice 

toward the end, considered as a leaf of the comparing branch. Eventually, results 

proposing that pruned decision tree models are perhaps the best methodologies with a 

precision of 88.7%.  

As mentioned, the ROC curve metric was assessed as principal examination in the clinical 

analysis [133], and basically, it's a plot with the true positive rate on the y-axis and false 

positive rate on the x-axis. Figure 4.4 presents experimental results of ROC curve. 

According to ref [134], in the classification of disease diagnosis, ROC close to one that 

implies it has successfully classified disease type with GI equal to zero. On the off chance 

that it close to zero said to have a most noticeably worst measure of distinctness. In this 

analysis, we got the ROC of AD grouping is 0.962, which implies that a complete 

characterization of AD patients was finished. 
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Figure 4.3. Pruned decision tree (J48) 

 

 

 

 

 

 

 

 

Figure 4.4. ROC curve of AD subjects.  
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4.4. Chapter summary 

In the diagnosis of AD in older adults by MCI studies, MRI demographic data alongside 

different attributes profoundly significant in AD prediction. In this chapter, we presented 

the building of an ML model with limited features (pruning) strategy to improve 

classification accuracy. Particular clinical diagnostics have created with the association 

of ML usage. However, few studies only associated with the classification of AD subjects.  

Diagnosis of AD is not an easy task and it requires sophisticated data analysis since it 

may require test data, physical examination, psychological testing, research office 

studies, and MR images. As of this, we consider explicit features, for example, CDR, MR 

deferral, MMSE, and n-WBV.  

Single modelling associated with support vectors presented only the prediction accuracy 

of 68.75% (Refer chapter 3) which is a relatively low accuracy value in brain-related 

studies. To overcome this problem, we adopted J48 decision tree modelling with pruning 

technique and achieved 96.2% of classification accuracy. Chapter 3 & 4 associated with 

single modelling methods, and we extend our research in the next chapters by adopting 

multi modelling approaches.  

 

The results summarized in this chapter were fully published in Gopi B, Nalini C, Francesco 

A. Late-Life Alzheimer’s Disease (AD) Detection Using Pruned Decision Trees. Int J Brain 

Disord Treat. 2020;6(1). doi:10.23937/2469-5866/1410033 
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Chapter 5 

Comparative machine learning approach in dementia 

patient classification using principal component 

analysis (PCA) 

In this chapter, we present another study designed to create multi-modelling ML method 

with a dimensional reduction of AD dataset known principal component analysis (PCA). 

For that, we built up a feature extraction strategy with the association of three 

supervised ML models, such as SVM, K-closest neighbour (KNN), and logistic regression 

(LR).  The working background of SVM models is already presented in section 3.2.  

5.1. K-nearest neighbors  

KNN algorithm is one of the more basic techniques utilized in machine learning. It is a 

strategy favoured by numerous individuals in the business due to its convenience and 

low count time. KNN is a model that groups any information depending on the samples 

with similar characteristics. It utilizes test data to make an "informed speculation" on 

what an unclassified point should be classified. KNN is frequently utilized in simple 

proposal frameworks, picture acknowledgement innovation, and dynamic models. 

KNN works on account of the profoundly established numerical hypotheses its uses. 

While actualizing KNN, the initial step is to change information focuses into featured 

vectors, or their numerical value. The calculation at that point works by finding the 

distance between the numerical estimations of these features. The most well-known 

approach to discover this distance is the Euclidean distance, as demonstrated as follows. 

  

 

KNN runs on this equation to process the distance between every data point and the test 

data. It then finds the likelihood of these points similar to test data and orders is 

dependent on which focuses share the high probabilities. The visualization of the above 

formula is presented in Figure 5.1.   
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Figure 5.1. Visualisation of Euclidian distance formula 

 

5.2. Logistic regression (LR)    

Logistic regression (LR) is another classification algorithm used to distribute perceptions 

into the discrete arrangement of classes. It is characterized into the twofold, multi, and 

ordinary level types. LR doesn't demonstrate a connection between non-continuous 

variables but permits the forecasting of the discrete attributes [135]. It is extremely 

simple to execute and very effective during model training.  

Mathematically, LR is written as multiple linear regression with the equation by 

Logit (P)  =  (
m(x =  1)

1 − (p =  1)
 )  =   β + β1. x1 + β2. x2 − −βi. xm for i =  1 … . N 

In the given dataset, subjects classified as either demented or non-demented that 

presents a simple logistic binary function. As discussed, two target demented groups 

(with dementia- ‘1’ or without dementia- ‘0’) have been validated.  

 

Hypothesis W = AX+B 
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H (x) = sig (W) 

 

If ‘W’ touches positive infinity, then the positive prediction could happen, and if ‘W’ 

reaches to negative infinity, then the negative prediction could happen as mentioned in 

Figure 5.2.    

 

 

 

Figure 5.2. Simple binary logistic regression representation (where sig (t) 

sigmoid activation function). 

In the present study, a dataset of 150 patients’ information (trained data) contains the 

relationship between “14 different features (independent value)” and “one group 

attribute (dependent value)”. As of this, in this chapter, we aimed to design a model that 

can predict a patient group based on other features. A regression line was obtained (with 

minimum error) by using trained data. Thus, if trained data exposed to the feature 

extraction technique, the model should predict the patient group with less or no error. 

5.3. Principal component analysis (PCA)  

This section provides the motivation behind selection of principal component analysis 

(PCA) for performing the feature extraction technique, also answer how it functions bit 

by bit, so everybody can get it and utilize it, without fundamentally having a solid 

mathematical background.  

PCA is a broadly covered technique on the web, and there are some extraordinary articles 

about it, yet just not many of them go directly to the point and clarify how it functions 

without jumping a lot into the details and the 'why' of things.   
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PCA step by step explanation   

❖ Standardization 

The point of this standardization is to normalize the scope of the constant introductory 

factors with the goal that every single one of them contributes similarly to the 

investigation. In particular, the motivation behind why it is basic to perform 

standardization preceding PCA is that the last is quite sensitive to the differences in the 

underlying factors. That is if there are huge contrasts between the scopes of starting 

factors, those factors with bigger reaches will rule over those with little ranges (For 

instance, a variable that ranges from 0 and 100 will rule over a variable that ranges 

somewhere in the range of 0 and 1), that can lead to one-sided results. Along these 

lines, changing the information to similar scales can prevent this issue.  

Mathematically, this should be possible by deducting the mean and dividing by the 

standard deviation (SD) for each estimation of every factor.  

Z =   
𝑣𝑎𝑙𝑢𝑒−𝑚𝑒𝑎𝑛

𝑆𝐷
 

Once the standardization has been done, all variables can be transformed into the same 

scale.  

❖ Covariance matrix computation 

The covariance matrix is a p × p symmetric matrix (where p is the number of 

measurements) that has as sections the covariances related with all potential sets of the 

underlying factors. For instance, for a 3-dimensional dataset with 3 factors x, y, and z, 

the covariance matrix is a 3×3 matrix of this from  

     [   

𝐶𝑜𝑛(𝑥, 𝑥) 𝐶𝑜𝑛(𝑥, 𝑦) 𝐶𝑜𝑛(𝑥, 𝑧)
𝐶𝑜𝑛(𝑦, 𝑥) 𝐶𝑜𝑛(𝑦, 𝑦) 𝐶𝑜𝑛(𝑦, 𝑧)
𝐶𝑜𝑛(𝑧, 𝑥) 𝐶𝑜𝑛(𝑧, 𝑦) 𝐶𝑜𝑛(𝑧, 𝑧)

  ] 

❖ How PCA can construct the principal components 

For instance, if we consider 3-dimensional data set, there are 3 groups, therefore there 

are 3 eigenvectors with 3 corresponding eigenvalues. Without further, it is eigenvectors 

and eigenvalues behind, because the eigenvectors of the Covariance matrix are actual 

directions there is the most difference (most data) and that we call Principal 

Components. Also, eigenvalues are essentially the coefficients connected to 

eigenvectors, which give the measure of change conveyed in every Principal Component. 
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❖ Feature vector 

The feature vector is a matrix that has as columns present components of the 

eigenvectors that we choose to keep. This makes it the initial move towards 

dimensionality reduction since, in such a case that we decide to keep just p eigenvectors 

out of n, the set of final data will have just p measurements. 

❖ Allocate the data along with the principal components  

From the previous steps, aside from normalization, we don't roll out any improvements 

on the information, and simply select the principal components and develop the feature 

vector, yet the input data collection remains consistently as far as the actual axis (i.e., 

regarding the initial variables). The point aims to utilize the feature vector shaped 

utilizing the eigenvectors of the covariance matrix, to reform the information from the 

original axes to the ones presented by principal components (i.e., that’s why it names 

as Principal Components Analysis). This should be possible by increasing the transpose 

of the actual data by the translate of the feature vector. 

            Final dataset = Feature Vector T * Standardized Original Dataset T   

5.4. Model outcome 

A comparison of the three ML model’s performance has been done. At first, OASIS 

longitudinal dataset presented to the R platform that presented in Figure 5.3 and model 

testing directed with two datasets: actual OASIS-2 dataset and a dataset after PCA. Pre-

processing associated with the forecasting of missing values by the attribution of K-NN. 

Feature extraction was performed with the assistance of the PCA procedure. High 

correlated features were chosen for better results. Every ML classifier was independently 

by CV methods (with k=10). 

 

 

 

 

 

 

Figure 5.3. Experimental setup 
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5.5. Results  

To forecast explicit patient-related with AD or not, a predictive model has to be 

accurately characterized by the examples. SVM, LR, and KNN models were utilized to 

create predictive models (Table 5.a.). The three ML model performance models were 

analysed with parameters such as recall, precision, and area under the curve (AUC) 

[136]. Among the given models, LR has produced 98.3% of accuracy that is followed by 

KNN and SVM with 97.6%, and 96.7% of accuracy respectively. Three models were 

producing comparative accuracy rates. In often, model accuracy isn't simply enough to 

pass judgment on the model performance. Thus, the examination of other performance 

parameters like recall, precision, and AUC is obligatory to characterize model validation.  

We discovered a similar accuracy of two models (LR and KNN) about 98± 0.04%. When 

compared and the other two models, SVM was producing a low positive prediction rate 

of 97.1%. Simultaneously, sensitivity (recall) can characterize true positives from actual 

total positives. Both recall and precision depend on the comprehension of the significance 

of positive results. From Table 5.1, the sensitivity for LR model forecasting registered as 

97.4%. On the other hand, KNN produced 98.3% of high sensitivity, and SVM with the 

low sensitivity of 96.6% can found.  

 

Table 5.1. Performance metrics of different predictive models 

Model Accuracy Precision Recall AUC 

SVM 0.967 0.971 0.966 0.983 

LR 0.983 0.986 0.974 0.997 

KNN 0.976 0.982 0.983 0.996 

 

However, in ML, AUC can help to avoid classification issues. It is one of the key 

presentation instruments for model execution checks. The AUC was ranging in between 

0 to 1 that presented in Figure 5.4. By definition, if AUC ≈ 1, at that point the model 

was effectively recognizing the target group (dementia). The AUC values of LR, KNN, 

and SVM were 99.7%, 99.6%, and 98.3% respectively. 
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Figure 5.4 Graphical representation of AUC values  

5.6. Chapter summary 

This chapter described the comparative machine learning approach with three ML models 

such as SVM, LR, and KNN that were characterized by dementia group patients. Feature 

extraction was performed by PCA techniques that performed through R statistics. 

Different performance parameters were described in the model performance. Outcomes 

approved that the three models are precisely grouping dementia patients with better 

accuracy from 96.7-98.3%. We also validate the adopted models with recall, precision 

and AUC. The AUC of LR and KNN presented optimal prediction model, with the end goal 

that these two prescient models were done better classification of the dementia patients.  

 

The results summarized in this chapter were fully published in Battineni G, Chintalapudi 

N, Amenta F. Comparative machine learning approach in dementia patient classification 

using principal component analysis. In: ICAART 2020 - Proceedings of the 12th 

International Conference on Agents and Artificial Intelligence. ; 2020. 

doi:10.5220/0009096907800784 
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Chapter 6 

A novel Machine-Learning Model Applied to 

Magnetic Resonance Images (MRI) in AD Prediction 

 

In this chapter, Four ML models, such as Naive Bayes (NB), artificial neural networks 

(ANN), K-nearest neighbour (KNN), and support vector machines (SVM) were presented. 

The receiver operating characteristic (ROC) curve metric were used to validate the model 

performance. Each model evaluation was done in three independent experiments. In the 

first experiment, a manual feature selection was used for model training. In the second 

experiment, automatic feature selection was conducted by wrapping methods, and the 

last experiment consisted of a new approach with mixed modelling called ensemble 

learning. 

 

6.1. Introduction  

Neuroimaging and fundamental MRI provide basic information to AD dementia 

forecasting and grouping [137], [138]. ML models, combined with MRI data, can give 

high analytic precision on age-related cognitive decline (ARCD) in dementia subjects 

[139]. It has been predicted that supervised ML models can produce the knowledge 

important features that can be correlated with AD sample data [140]. Similarly, it is 

reported that LR models coupled with CV techniques can improve the prediction accuracy 

of AD by speech amalgamation [86].  Besides, SVM models, alongside feature reduction 

techniques can also classify the dementia subjects with 70% accuracy (Refer chapter 3).   

In this work, we adopted four models called KNN, Naïve Bayes, ANN, and SVM to detect 

AD based on MRI images. Three individual experiments were designed to test the model, 

and model performance was separately evaluated with given MRI characteristic 

information. The experiments that were done included 

1. Models with manual selection of MRI features,  

2. Models with automatic feature selection, and 

3. A single model with ensemble learning or hybrid modelling.  
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6.2. Material and methods 

Selection of features  

In this step, the machine performed an autonomous selection of input features that 

correlates to the subject group [141]. Selection techniques are largely used and 

standardized to reduce unnecessary features and to enhance model accuracy [142]. 

Moreover, this approach measures the relationship between independent variables and 

the target outcome. Feature selection can be conducted by three approaches, namely, 

filtering, regularization, and wrapping [142], [143]. In this study, the wrapping 

technique was used because it amplifies model performance with limited features. 

 

Feature importance 

This method results in a “feature score” assigned to independent characteristics and a 

defined score to each characteristic that is highly correlated with the subject “group”. 

The correlation between each characteristic-associated group variable is shown in Figure 

6.1. The CDR rating was excluded during model development because it did not have 

the highest relevance, but it helps in subject groupings. 

 

 

Figure 6.1. Individual feature scores.  
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Feature Selection with wrapping  

In the wrapping method, feature search represents a big challenge in calculating model 

accuracy [144]. Feature selection can be made as either step backwards or forward, and 

exhaustive. Feature search helps the identification of primary features in the 

enhancement of model performance. The MRI characteristics with a correlation of at 

least 0.5 can automatically help to develop a model. Figure 6.2 shows the scatter plot of 

feature results following the wrapping method. 

 

 

Figure 6.2. Scatter plot of selective features. Blue dots (ND), red dots (D), 

light blue dots (C). 
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Model classifiers  

Naïve Bayes (NB) 

A Naive Bayes (NB) classifier is a probabilistic ML model that is utilized for the 

classification task [145]. The basic idea of the NB classifier depends on the Bayes 

hypothesis. The Bayes theorem is defined as  

  

P(A/B) =
P (B/A) P(A)

P(B)
 

With the above theorem, we can discover the likelihood of ‘A’ occurrence, given that ‘B’ 

has happened. Here, ‘A’ is the hypothesis and ‘B’ is the evidence. The theory made here 

is that the features or predictors can be independent. That is the presence of one specific 

component doesn't influence the other. Therefore, it is named it as naïve Bayes 

classification. 

NB is a probabilistic model that forecasts output based on Bayes’ equation. Due to its 

simplicity during target prediction, it has become popular in classification and multiclass 

predictions [146] like AD classification.   

 

Artificial neural networks (ANN) 

In machine learning, artificial neural network (ANN) is one of the important tools. They 

are biologically inspired systems which are aimed to imitate the approach that humans 

learn through the brain and thus the name “neural network”. Artificial neural networks 

(ANN), also called connectionism, start to be a standard method to model a phenomenon 

from examples with good performance [147]. ANN operates through layers which is part 

of input and output, additionally a hidden layer which includes units that renovate the 

received input into an analysed prediction through some training which can be obtained 

by the output layer. Mostly ANN’s are an exceptional tool for discovering patterns which 

are too dense or abundant for a human scientist to obtain and provide training for the 

machine to recognize.  

The ability of ANN in engineering fields has been proven that it is powerful in simulating 

and predict most cases in various physical phenomena behaviour. ANN was initially 

adapted from the capability of the biological human brain in which it used a list of 

neurons, also called nodes, interconnected each other to simulate the biological nerve 

systems [148]. ANNs are mainly used for pattern recognition, classification, and 
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prediction and can approximate almost any functional relation. The interrelationship 

between the input variables and the output parameters is not approximated using a 

traceable functional coherence. ANNs are more robust and less sensitive to outliers and 

chaotic components compared to other methods [149]. 

Artificial neural networks are also referred to as “perceptron” have become an integral 

part of artificial intelligence in recent decades. This is predicted to have happened due 

to the establishment of a technique called “backpropagation”, which enables the neural 

network to alter their hidden layers of neurons in circumstances where the result would 

not match with the actual predicted output, like for example, the network, which was 

trained to identify say dementia subjects, instead predicts it to be a non-demented case.  

An additional vital advancement is the arrival of deep learning neural networks, which 

facilitates multilayer network feature extraction through different layers to recognize the 

exact object through training [150].  

Model validation and framework     

 

As mentioned, model validation can be done by either holdout (spilt) or cross-validation 

(CV) techniques. During this study, we adopted the CV technique because of its 

popularity in target prediction, with low bias. Simultaneously, it also applies a resampling 

method with limited features during model validation [151]. The model framework used 

during simulation is represented in Figure 6.3.  
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Figure 7.3. Model framework for evaluating predictive classifications.  

 

Experiments design  

 

A large number of MRIs for a low number of subjects could generate bias in dementia 

detection. Therefore, we considered final MRI scans that define the status of each 

subject. Three experiments were conducted, including manual and automatic feature 

selection techniques. 
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In the first experiment, model training was done using the original dataset with manual 

feature selection. In ANN, the number of layers (N) is used as a search parameter during 

model evaluation. In KNN, k is tuned to one (i.e., 1NN). In SVM, the linear kernel coupled 

to regularization parameter “C” and a standard deviation of radial basis function “r” are 

implemented in model tuning. Finally, model validation was done with a 10-fold CV to 

avoid data fitting issues [152]. The model performance was, therefore, assessed by the 

above parameters.  

In the second experiment, limited features that occurred as the result of wrapping were 

considered for conducting model training. For NB and KNN, an exhaustive search was 

used to calculate model accuracy with potential feature alliance to select the best of 

them [153].  In SVM, genetic algorithms (GAs) were used for the feature search. GAs is 

frequently applied in bioinformatics to generated models with high accuracy [154]. For 

ANN, the feature search was excluded, and the search consisted of the identification of 

the hidden neuron layers. Model tuning was adjusted by maintaining batch size as 100 

in NB, (C, gamma) as (1.0, 1.0 × 10−12) in SVM, and k = 1 in KNN. MRI characteristics 

that were highly correlated (≥0.5) with subject groups were selected.  

In the third experiment, the four models were combined to develop an ensemble or 

hybrid model. By doing this, there is the advantage of getting a high prediction accuracy 

of the adopted dataset. Moreover, combining several models can enable noise reduction 

(bagging), low bias (boosting), and better predictions (voting). We used a voting 

technique in this experiment because of the capability to create standalone models from 

trained data [155].    

6.3. Results 

Experiment 1: Handling of the feature set before autonomous feature 

selection  

Table 6.1 summarizes the performance outcomes of the four models in manual feature 

selection. The CDR rating was excluded as it represents a dementia factor that can affect 

model accuracy. From the performance comparison matrix, it can be seen that the 1NN 

model offers better performance compared to the other tested models in terms of 

accuracy, sensitivity, and specificity. As already mentioned, the ROC curve plays a 

relevant role in diagnostic assessments to differentiate the true state subjects and to 

find optimal cutoff values. Moreover, a higher ROC offers better dementia prediction in 

given subjects [40]. Given this, the ANN model correctly discriminates against the true 

demented subjects, with a ROC of 0.812. The ROC of NB, 1NN, and SVM models 

produced ROCs of 0.753, 0.787, and 0.796, respectively.  
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Table 6.1. Performance comparison matrix (4 * 4) of four classifiers. 

Model 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
ROC 

NB 88.76 82.43 85.72 0.753 

ANN 83.56 89.92 88.84 0.812 

1NN 91.32 89.92 89.56 0.787 

SVM 89.67 89.24 89.45 0.796 

 

Experiment 2: Automatic Feature Selection with Wrapping 

Table 6.2. shows the model performance outcomes obtained with automatic feature 

selection. With this approach, progress in terms of accuracy and ROC compared to 

manual feature selection was noticeable. SVM resulted in high accuracy (96.12%), and 

1NN, NB, and ANN produced an accuracy of 95.92%, 93.44%, and 83.56%, respectively. 

About ROC, NB was a better diagnosis predictor, with 0.942, followed by 1NN, SVM, and 

ANN, with 0.916, 0.834, and 0.817, respectively.  

The results of the present experiment, in which performance results were better than 

those obtained in the previous one, stimulated the identification of other approaches for 

maximizing prediction accuracy. We, therefore, extended our work to explore the 

outcomes of joint modelling with limited features.  

Table 6.2. Model performance evaluation after feature selection (with selective 

features). 

Model 
Accuracy 

(%) 
Sensitivity (%) Specificity (%) ROC 

NB 93.44 98.21 97.32 0.942 

ANN 83.56 89.92 88.84 0.817 

1NN 95.92 94.92 97.36 0.916 

SVM 96.12 94.94 98.23 0.834 

Experiment 3: AD Predictions with Hybrid Modeling 

To check if a model correctly predicted the target variable (occurrence of dementia), 

a confusion matrix was used. In this analysis, vertical labelling presents actual subjects, 

and horizontal labelling presents predicted subjects. As shown in Figure 6.4., 76 subjects 
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were correctly predicted as AD among 78 subjects, and 71 subjects were correctly 

predicted as non-AD among 72. Collectively, 147 subjects were properly predicted out 

of 150 subjects. This results in 98% accuracy. For reaching these conclusions, a hybrid-

modelling technique, combining the four adopted models, was introduced. 

 

Figure 6.4. Confusion matrix outcome of the hybrid model (D: Demented; ND: 

Non-demented).  

The performance of the individual subject group is presented in Table 7.3. Nondemented 

and demented subjects were correctly diagnosed with 98.6% and 97.4% accuracy, 

respectively. The weighted average ROC curve of both subjects nearly touches one. 

Hence, maximum AD subject predictions have been made without bias because of hybrid 

modelling. The sensitivity and specificity rates produced were 98.05% and 98%, 

respectively. The ROC curve of the hybrid model is shown in Figure 6.5. Based on the 

evaluation of performance differences in the above three experiments, the intervention 

of hybrid modelling with limited features resulted in being good practice in AD-related 

studies. 

Table 6.3. Performance statistics of hybrid modelling. 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
ROC Class 

98.6 98.7 98.6 0.992 ND 

97.4 97.4 97.4 0.989 D 

98.0 98.05 98.0 0.991 Weighted average 

 



75 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Receiver operating characteristic (ROC) curve of the hybrid model. 

6.4. Discussion 

ML models are highly acknowledged in real-time clinical practice and also in diagnosis 

and AD treatment selection [112]. Several MRI works have been integrated into ML 

models to make AD predictions [86], [137], but there has been no comprehensive model 

to amplify model accuracy. Because of this, we introduced a hybrid model to enhance 

the precise detection of AD based on the analysis of MRIs. 

In this chapter, the significance of joint ML modelling for AD-onset prediction in elderly 

people has been demonstrated. Three different experiments were conducted, including 

manual and automatic feature selection techniques. Fourteen independent MRI features 

were used to identify the AD group using standard diagnostic approaches. Four 

supervised predictive models (NB, ANN, KNN, and SVM) were used, and the obtained 

results indicate the prediction accuracy of each model, constantly increasing between 

experiments. Figure 6.6 compares the prediction accuracy of the three experiments. 1NN 

generated 91.32% accuracy by manual feature selection; SVM had a high 96.12% 

accuracy by automatic feature selection, whereas joint or hybrid modelling enabled 98% 

accuracy in predicting AD in older adults. The outcomes suggest that joint modelling, 

with limited features, is the best practice to assess AD-onset by subject prediction.  
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In the first experiment, all the designed classifiers revealed enough performance values 

in terms of true-positive rates (sensitivity). ANN and 1NN produced the highest 

sensitivity (89.92%), followed by SVM (89.24%) and NB (82.43%). As mentioned, ROC 

curve values between 0.5 and 0.7 indicate low prediction accuracy, between 0.7 and 0.9 

indicate moderate prediction accuracy, and between 0.9 and 1 indicate high prediction 

accuracy [156]. From Table 6.1, it is obvious that the four adopted models produce 

moderate prediction accuracy when checking with manual feature selection.  

To amplify model performances, the second experiment was conducted with selective 

features after wrapping. This resulted in NB of 98.21% sensitivity, followed in descending 

order by SVM (94.94%), ANN (94.92%), and 1NN (89.92%). Both NB and 1NN predict 

subject class in a comparatively better manner, with ROC of 0.942 and 0.916, 

respectively. However, we argued that there could be other possibilities for enhancing 

prediction accuracy to values higher than those identified in the above two experiments. 

To support this claim, a hybrid model was developed by combining the four investigated 

models. A simulation of four recruited models was then performed, and thanks to this 

approach, the sensitivity of the model attained the highest predicted value of 97.4%, 

and its ROC was nearly equal to one (Figure 6.7). 

The developed model produced better accuracy than other conventional models, but the 

present study has some limitations. First, the limited number of subjects investigated 

could hamper the final dementia subject prediction to the overall AD subjects; second, 

the outcome of the integration of three experiments may have influenced the results. 

The use of external MRI information does not guarantee data quality and can affect the 

significance of the study as a whole.  
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Figure 6.6. Prediction accuracy (in %) comparisons of three experiments. 

 

 Figure 6.7. ROC comparison of hybrid modeling with other experiments. 
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Brain studies corroborated with artificial intelligence analysis may offer relatively faster 

investigation methods to modern neurological research. However, it would be preferable 

to avoid data limitations and, therefore, to enlarge as much as possible the size of the 

sample investigated in future studies. At the same time, it is also recommended to apply 

hybrid modelling to younger subjects or subjects with mild AD and to anticipate 

prediction accuracy with other biological tests like cerebrospinal fluid (CSF) or blood 

markers. 

 

6.5. Chapter summary 

Adult-onset dementia disorders are serious brain pathologies caused by the loss of 

neuron functions and to progressive atrophy. AD is the most common of these 

pathologies. It affects primarily elderly people and has a tremendous impact on the lives 

of people suffering from it. Given the long time passing between brain lesions bringing 

about dementia and the onset of clinical symptomatology, early identification of the 

preclinical and prodromal forms of the disease represents a challenge for medicine. This 

will reduce medical costs and could contribute to undertaking therapeutic approaches for 

delaying the conversion of the disease into overt dementia. 

Unfortunately, the identification of AD at very early stages is extremely difficult, and 

there are no tools for its simple detection. We have developed different ML models to 

predict dementia in the elderly based on MRI findings. The hybrid model with selective 

features was found to enhance the accuracy of dementia prediction. Experiments with 

manual feature selection before automatic feature selection with 1NN produced 91.32% 

of accuracy, and the experiment of automatic feature selection generated 96.12% 

accuracy by SVM. This value significantly increased using multi modelling and produced 

98% of accuracy. The predictive models developed in this study forecast early AD 

diagnosis and the associated risk of developing dementia. Although it is difficult to 

develop longitudinal projection models in older adults as compared to the younger 

population, future research in the field should consider addressing both genetic and 

nongenetic features of multifactorial hazards.  

 

The results summarized in this chapter were published in Battineni G, Chintalapudi N, 

Amenta F, Traini E. A Comprehensive Machine-Learning Model Applied to Magnetic 

Resonance Imaging (MRI) to Predict Alzheimer’s Disease (AD) in Older Subjects. J Clin 

Med. 2020;9(7):2146. doi:10.3390/jcm9072146 
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Chapter 7 

Deep learning type CNN model architecture 

for AD detection through MRI 

In this chapter, we considered the Open Access Series of Imaging Studies-3 (OASIS-3) 

dataset with 2,168 Magnetic Resonance Imaging (MRI) images of patients with very mild 

to different stages of cognitive decline. We applied deep learning-based convolution 

neural networks (CNN) which are well-known approaches for diagnosis-based studies.  

7.1. Introduction  

Alzheimer's Disease (AD) is the most well-known and largely diffused neurodegenerative 

disorder occurring in the elderly. AD negatively affects patients' everyday lives, causing 

an advanced decline of cognitive capabilities such as memory, language, behaviour and 

critical thinking [157]. Changes in cognitive impairment of AD patients start slowly and 

evolve rapidly over the long run.  

Similar to other body parts, brains change as people get older. Some people lost thinking 

and incidental issues with recollecting certain things. Excessive cognitive decline, and 

other significant changes in the manner in which brain function is impaired [158]. The 

first symptoms of AD are trouble recalling recently learned data because Alzheimer's 

progressions regularly start in the brain areas involved in learning and memory. As 

Alzheimer's progresses progressively severe symptoms like confusion, mood changes, 

disorientation, unwarranted doubts about family and companions, and trouble talking 

appear. Individuals with cognitive decline or other potential indications of AD may think 

that it’s difficult to remember they have an issue. 

AD is a type of dementia with several implications on the cognitive domain, affecting 

primarily thinking and memory. Specialists and different parental figures screen the 

movement of AD in patients by assessing the level of decrease in the patients' 

psychological capacities that are often classified into three stages: very mild (normal 

cognitive), mild cognitive impairment (MCI), and demented [17]. Figure 7.1 presents 

the magnetic resonance image (MRI) images of different AD conditions. Although the 

MCI and dementia patients both are experiencing a reduction of cognitive abilities, 

dementia patients would suffer from more pronounced difficulties with thinking or 

hampered judgment.  
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Figure 7.1.  Different states of AD presented by MRI images (a) mild dementia; (b) 

moderate demented; (c) nondemented; and (d) very mild demented.      

In clinical practice, the capacity to accurately forecast the patient diagnosis can help by 

adding appropriate medical decisions on treatment approaches. Recently, machine 

learning (ML) algorithms are largely applying to forecast and predict diseases and helping 

in quick decision making [112].  Pattern-related approaches like logistic regression 

[159], support vector machines [88], and linear discriminant analysis [102] are giving 

promising results in the prediction of AD development and early AD detection.   

Deep learning models were used unlabeled data during preprocessing. These are well 

suited for imbalanced datasets and achieve a  knowledge base [39]. At present these 

are largely involved in all other problems that are not able to be addressed by traditional 

artificial intelligence (AI) techniques. Neural networks are the latest deep learning 

algorithms that have discovered the functionality of different situations. Deep neural 

networks (DNN) are characterized contributions to profits through a complex 

composition of layers that presents building blocks including nonlinear functions and 

transformations. Medical experts feel that deep learning could be a promising solution in 

AD identification and stage detection [40]. An effective and comprehensive deep learning 

model can help to identify early AD prediction and ultimately provide timely treatment 

to the suffered patients.  

In this work, we proposed convolutional neural networks (CNN) model of deep learning 

type for detection of early-stage AD and successfully classify the MRI images on four 

different dementia stages presented in Figure 7.2.  
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Figure 7.2. Brain image classification with the CNN model framework  

Experiments were conducted on longitudinal neuroimages of the OASIS-3 database that 

include MR scans of T1-weighted, T2 weighted, ASL, SWI, DTI sequences, FLAIR, time 

of flight, and resting-state BOLD [10].  

7.2. Methods    

Dataset 

The Open Access Series of Imaging Studies (OASIS) contains MR scanning information 

that is openly accessible to scientific communities. They released OASIS-1 (cross-

sectional) and OASIS-2 (longitudinal) MRI datasets among different subjects and these 

datasets are widely used in many studies [160], [161]. OASIS-3 is the extension of 

previous datasets. It includes 1,098 patients ageing from 42 to 95 years. Among 

participants, 609 are associated with normal cognitive decline (very mild), and 489 were 

associated with different cognitive decline stages. OASIS-3 dataset incorporated both 

functional and structural features of more than 2,000 MRI images. The dataset outcome 

of four categories of MR images has presented in Figure 7.3.   
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CNN model architecture 

A convolutional neural network (ConvNet) is deep learning type algorithms that take 

images as input, assign features based on their importance (biases and learnable 

weights) to different image objects, and also be able to separate one from the other 

[162]. When compared with other classification models, ConvNet possesses low complex 

pre-processing steps. In CNN, each input image is gone through sequence convolution 

layers namely pooling layers, filtering layers (kernels), and fully connected layers (FCs). 

To make the proposed model easier for understanding, we created a dense layer block 

and convolution block. The architecture of the CNN model is inspired by the article [163]. 

We built the CNN model by using five convolutional slabs covered with convolution 

layers, feature engineering, max pooling, and classification. We have used cross-entropy 

as a loss function and Adam as an optimizer. SoftMax has been used to classify the 

multiclass AD stages since it is associated with a mutually exclusive relationship. The 

feature representation (fk) works as an input to the SoftMax layer and interprets output 

brain stages. A probability score P (k) for each class as defined as 

Pk = 
exp(𝑓𝑘)

∑ exp(𝑓𝑘)𝐾
𝑘=1

 where fi feature representation; and  

Cross entropy loss function (L) = − ∑ tk log (pk)K
k=1 ; where tk ground truth of MR image 

then  

𝜕𝐿

𝜕𝑓𝑘
 = Pk - tk  

Figure 7.3 presents the most relevant procedures followed to construct the feature data 

of brain images and extraction of AD images developed in this paper. After pre-

processing steps, the given image dataset has been divided into training and validation 

files with standard (80:20) division.  

The procedures indicated red line are MR images that fed to the CNN model for training 

purposes. The model extracts the input image features of trained images under present 

parameters and supplies them to the SoftMax classifier for testing. The SoftMax function 

calculates the loss and model accuracy. For avoiding high loss, network parameters are 

adjusted by the back-propagation algorithm. After applying several iterations (epochs) 

the better-trained parameters have been achieved.  The model visualization metrics like 

loss and receiver operating characteristic area under the curve (ROC AUC) has been 

taken as the performance parameter for AD classification since it has been considered 

one of key metrics in multi-image classification techniques [15]. The experimental setup 
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and AD detection and classification have been done through TensorFlow [16] and python 

language.  

  

Figure 7.3. Dataset outcome of different dementia stages (3*4 image matrix)  
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Figure 7.4. Experimental setup of the work  

 

7.3.  Results 

To do efficient training on our CNN model, a back-propagation algorithm is set to adjust 

the rate of learning and stop the model automatically once it reaches maximum 

accuracy. Since the learning rate is one of the hyperparameters that decides model 

accuracy and time to process the model. OASIS-3 dataset consisted of 2168 independent 

MRI scanners. Among the given images, 1,734 are used for training and 434 were used 

for validation purposes.  Because of the large image dataset, 10-fold cross-validation 

has been used and we have used each fold 70% as training, 10% as validation and 20% 

images are used testing. The distribution of the dataset is presented in Table 7.1.  
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Table 7.1. Total image distribution  

Total Images: 2168 

Type Percentage 

Trained images 1517 (70%) 

Testing images 434 (20%) 

Validation images 217 (10%) 

 

The model-fitting has to be done on a sample of 100 epochs and to prevent model 

overfitting we stop the model early at the 80th iteration. The model took a run time of 

138 min to process the trained images. Figure 7.5 presents a graphical representation 

of ROC AUC and loss metrics after each iteration on both training and validation image 

data.  Though the model evaluation has been done on the validation dataset, we also 

perform the experiments on the testing dataset. The testing dataset model AUC curve 

outcome has presented in Figure 7.6 and the model achieved a ROC of 83.3% which is 

considered as an optimal classifier for AD image detection and this value is significantly 

higher than traditional ML approaches [88], [164].      

 

Figure 7.5. Model AUC and loss metric outcomes 
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Figure 7.6. The ROC curves outcome for test data. 

7.4. Discussion  

In this work, we presented a novel deep learning type CNN model for the classification 

of AD subjects. As mentioned above, AD is the most common adult-onset dementia and 

contributes about 60-70% of worldwide dementia cases [164].  Unfortunately, there is 

no proper medication or cure for AD, and advancements in AD cure have been getting 

slow. Screening among people of AD risk given electronic health records (EHR) in 

preclinical stages may prompt early identification of AD pathology and to suggest better 

approaches for complying with the AD beginning. Current biomarkers of AD have 

required specimen collection (like serum or liquid), MRI image data or more sophisticated 

markers that at the present can be identified just in highly specialized centres.  

On the other hand, the EHRs for example medical records in clinical settings, or 

administrative health information don't require extra time or effort for data collection. 

Likewise, with the coming of digitalization, the measures of such information have 

drastically increased [165]. Since it is omnipresent, enormous, and cost-effective, the 

digitized medical database might be a significant asset for testing different AD predictive 

models. Nonetheless, despite its enormous possible value, somehow thought about the 

degrees to which the enormous scope of EHR data can help in risk of AD prediction [165], 

[166]. The possible prediction of future AD progression is incredibly significant in clinical 

practice also, in healthcare research. Advanced neuroimaging techniques like MRI, 

positron emission tomography (PET) is developed and presented to identify AD-related 

molecular and structural biomarkers.  
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Computer scientists are recommending applying sophisticated computing techniques like 

machine learning and deep learning. For example, Battineni et al (2020) have achieved 

99.1% accuracy through the application of ensemble learning models for late-life AD 

detection among 150 patients [167]. AD prediction among 123 subjects with Pre-MCI 

and MCI was done by clinically transmittable ML algorithms and results reported the 

whole sample accuracy of 96.2% [168]. However, most of the outcomes proposed by 

these algorithms are based on demographic magnetic resonance image (MRI) 

information. Because of this, researchers believed that deep learning algorithms are the 

best approaches if brain images were included [169]. Most of the works associated with 

Machine learning in the early prediction of AD occurred with high success. For instance, 

it is reported that 94.1% of accuracy by 3D convolutional neural networks (CNN) [170].  

This work presented a deep CNN with 10-fold cross-validation and achieved more than 

80% accuracy. While applying computing methods for diagnosis, a small portion of 

datasets are presented. Therefore, our model maintained a random image selection of 

train, test, and validation datasets. The proposed model produced promising results in 

AD image classification. The most notable outcome for this study is the progressions 

among predictiveness of AD diseases.    

7.5.  Chapter summary  

An autonomous AD detection classifier based deep ConvNet framework is presented. We 

adopted the latest release of the OASIS-3 dataset that contains different categories of 

AD datasets. For training, more than 1,500 images model took a bit longer process than 

expected, but it is faster than mankind process. Deep ConvNets do not need any 

handcrafted feature selection approach because of having autonomous feature tuning. 

The main limitation of the study is to adopt only a single classifier for the brain MRI data 

classification and there are other possibilities to do better improvements in the proposed 

model architecture. Although attained results of higher 80% accuracy while compared 

over traditional ML classifiers, many advancements are proposed to enhance the model 

quality.            

The results summarized in this chapter were published in Battineni G, Chintalapudi N, 

Amenta F, Traini E. Deep learning type convolution neural network architecture for 

multiclass classification of Alzheimer’s disease. BIOIMAGING 2021 - 8th Int Conf 

Bioimaging; Part 14th Int Jt Conf Biomed Eng Syst Technol BIOSTEC 2021. Published 

online 2021:209-215. doi:10.5220/0010378602090215       
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Chapter 8 

Conclusions   

The role of computer techniques such as ML and deep learning algorithms in prediction 

of AD among older adults are successfully presented in this thesis.  

We conducted five different works with two dementia datasets; one with demographic 

information of AD patients (OASIS-2) and other with brain MRI data (OASIS-3). 

Classification of AD patients with high risk was separated from adopting single ML 

modelling, multi modelling and hybrid modelling. For identification of true AD subjects 

with single ML modelling was done by support vector machines and decision tree 

algorithms. With SVM modelling proposed in Chapter 3, we achieved 75% of 

classification accuracy. This value has been improved by incorporating other popular 

supervised model named as decision trees. We achieved 88.73% of accuracy with J48 

pruned decision trees.  

In multi-modelling studies, we conducted model evaluation by involving different 

supervised algorithms such as Naïve Bayes, KNN, neural networks, and LR along with 

SVM model. In chapter 5, we presented comparative ML techniques with PCA algorithms 

to classify the positive AD subjects. KNN, and LR were significantly produced the higher 

accuracy values of 97.6% and 98.3% respectively. Besides, these numbers are relatively 

higher than studies with single modeling. However, the mentioned studies produced 

significant performance in AD subject classification, getting 100% of accuracy is 

ultimately important in prediction of serious diseases like dementia.  

For that, in the chapter 6 we conducted three different experiments such as multi-

modelling with manual feature selection, with automatic feature selection and hybrid 

modelling. Experiments with manual feature selection before automatic feature selection 

with 1NN produced 91.32% of accuracy, and the experiment of automatic feature 

selection generated 96.12% accuracy by SVM. This value significantly increased using 

multi modelling and produced 98% of accuracy. As mentioned, in disease classifications, 

computer scientists considered AU-ROC curve as the primary metric to evaluate the 

model performance. The ROC curve produced 99.91% of classification accuracy in 

prediction of true demented subjects. As of this, we would like to conclude that ensemble 

learning models with automatic feature selection are the optimal solutions for early AD 

prediction in older adults.  
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On the other hand, deep learning models like neural networks largely involved in image 

related studies. In chapter 8, we evaluated real time sample of 2168 MRI patient images 

with very mild to different stages of cognitive decline. We applied deep learning-based 

model called CNN to identify the dementia progression.  Model training was done with 

70% of images and achieved 83.3% which is considered as an optimal classifier for AD 

image detection and this value is significantly higher than traditional ML approaches. 

 Presented works having some limitations. Firstly, lowest number AD patient’s data may 

hamper the hypothesis of results to the overall population of dementia patients. When 

compared with existed literature on AD predictions, we accomplish better model 

performance by involving different experimental strategies and methods. Arrangement 

and standardization of subject grouping are not precise much of the time, and it may 

keep an eye on underestimation of dementia in older patients that bring about getting 

low accuracies through SVM modelling. Moving towards ideal supervised models like 

decision trees, KNN, and logistic regression models, we attempted to improve the model 

performance by a selection of feature reduction techniques like pruning and PCA. Finally, 

it is important also to present the studies on real time brain image data that can produce 

clear picture of dementia progression in AD patients. This problem will plan to be 

addressed in future research works and also validate use of deep learning models in real 

time.   
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Annex A- Abbreviations   

 

o AD - Alzheimer's Disease 

o KNN- K-nearest neighbours 

o LR- logistic regression 

o SVM- Support Vector Machine 

o PCA- principal component analysis 

o AUC- area under the curve 

o GDP- Gross Domestic Product 

o APOE- Apolipoprotein E 

o EHR- electronic health records 

o BMI- body mass index 

o ML- machine learning 

o AI- Artificial Intelligence 

o ANN- artificial neural network 

o CV- cross-validation 

o DNN- Deep neural networks 

o CT- computed tomography 

o CNN- convolution neural networks 

o IT- Information Technology 

o IVD- in-vitro medical diagnostics 

o OTSCC- oral tongue squamous cell carcinoma 

o NB- Naive Bayes 

o BDT- Boosted Decision Tree 

o DF- Decision Forest 

o CRC- colorectal cancer 

o RF- random forecast 

o WHO- World Health Organization 

o RTE- Real-time tissue elastography 

o LFI- liver fibrosis index 

o SFFS- sequential forward floating selection 

o LFDA- local Fisher discriminant analysis 

o FDA-Fisher discriminant analysis 

o BPNN- back proportion neural networks 

o FAHP- fuzzy analytic hierarchy process 

o COPD- Chronic obstructive pulmonary disease 



105 
 
 

o SBN- smooth Bayesian network 

o GFR- glomerular filtration rate 

o AKI- acute kidney injury 

o FM- Fibromyalgia 

o CRBM- Conditional Restricted Boltzmann Machine 

o MRI- magnetic resonance imaging 

o p-MCI- progressive Mild Cognitive Impairment 

o PET- positron emission tomography 

o XG-Boost- extreme gradient boosting 

o CSF- cerebrospinal fluid 

o RQ- research questions 

o ROC- receiver operating characteristic 

o LLE- locally linear embedding 

o RBF- radial basis function 

o PPA- Primary progressive aphasia 

o MMSE- mini-mental state examination 

o ND- non-demented 

o D- demented 

o C- converted 

o ADRC- Alzheimer’s disease research Centre 

o MP-RAGE- Magnetization Prepared Rapid Acquired Gradient Echo 

o n-WBV- Normalized Whole-brain Volume 

o CDR- clinical dementia ratio 

o OASIS- Open Access Series of Imaging Studies 

o MCI- Mild Cognitive Impairment 

o SD- standard deviation 

o ARCD- age-related cognitive decline 
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Abstract: This paper reviews applications of machine learning (ML) predictive models in the diagnosis
of chronic diseases. Chronic diseases (CDs) are responsible for a major portion of global health costs.
Patients who suffer from these diseases need lifelong treatment. Nowadays, predictive models are
frequently applied in the diagnosis and forecasting of these diseases. In this study, we reviewed the
state-of-the-art approaches that encompass ML models in the primary diagnosis of CD. This analysis
covers 453 papers published between 2015 and 2019, and our document search was conducted
from PubMed (Medline), and Cumulative Index to Nursing and Allied Health Literature (CINAHL)
libraries. Ultimately, 22 studies were selected to present all modeling methods in a precise way that
explains CD diagnosis and usage models of individual pathologies with associated strengths and
limitations. Our outcomes suggest that there are no standard methods to determine the best approach
in real-time clinical practice since each method has its advantages and disadvantages. Among the
methods considered, support vector machines (SVM), logistic regression (LR), clustering were the
most commonly used. These models are highly applicable in classification, and diagnosis of CD and
are expected to become more important in medical practice in the near future.

Keywords: chronic diseases; prediction models; pathologies; accuracy; disease classification

1. Introduction

Artificial intelligence (AI) is defined as the technology that uses computer knowledge to represent
intelligent behavior with nominal human involvement, and machine learning (ML) is considered as a
subset of AI techniques. Usually, this kind of intelligence is commonly acknowledged as having begun
with the innovation of robotics [1]. With the rapid growth of electronic speeds and programming,
computers may display intelligent behavior similar to that of humans in the near future. This is because
of the large advancements happening in contemporary ideas in the development of AI [2]. Artificial
intelligence can be defined as human intelligence which is performed by machines. In computer
science, it is defined as the machine’s capacity to emulate intelligent behavior by itself, using nothing
but ML [3].

The applications of AI in medicine are developing quickly. In 2016, AI projects coupled with
medicine drew in more speculation from the global economy than other projects [4]. In medicine,
AI refers to the utilization of automated diagnosis processes and the treatment of patients who require
care. Increased AI utilization in prescription will allow a considerable amount of the role to be
automated, opening up medicinal experts’ time to be used in performing different obligations, ones
that cannot be automated. As such, this technology promises progressively significant utilization in
the field of human resources (HR).
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In general, ML is categorized as supervised (i.e., consists of output variables that are predicted
from input variables) [5] or unsupervised (i.e., deals with clustering of different groups for a particular
intervention). ML is used to determine complex models, and extract medical knowledge, exposing
novel ideas to practitioners, and specialists [2]. In clinical practice, ML predictive models can
highlight enhanced rules in the decision-making regarding individual patient care. These are also
capable of autonomous diagnosis of different diseases under clinical regulations [4,6–8]. In [9], the
incorporation of these models in drug prescription can save doctors and offer new medical opportunities
in pathology identification.

With ML models, it can also be possible to improve quality of medical data, reduce fluctuations in
patient rates, and save in medical costs. Therefore, these models are frequently used to investigate
diagnostic analysis when compared with other conventional methods [10]. To reduce the death rates
caused by chronic diseases (CDs), early detection and effective treatments are the only solutions [11].
Therefore, most medical scientists are attracted to the new technologies of predictive models in disease
forecasting [12]. These new advancements in medical care have been expanding the accessibility of
electronic data and opening new doors for decision support and productivity improvements [13]. ML
methods have been effectively utilized in the computerized interpretation of pneumonic capacity tests
for the differential analysis of CDs. It is expected that the models with the highest accuracies could
gain large importance in medical diagnosis.

Due to the low-progress nature of CDs, it is important to make an early prediction and provide
effective medication. Therefore, it is essential to propose a decision model which can help to diagnose
chronic diseases and predict future patient outcomes. While there are many ways to approach this in
the field of AI, the present study focuses distinctly on ML predictive models used in the diagnosis
of CDs, which highlights the importance of this study. In this study, we conducted a systematic
literature review of different state-of-art of predictive models, and our significant contribution in this
paper is to develop comparative model analysis to propose model optimization. In comparison to
the conventional data analysis techniques, this review article will able to find promising results that
enhance the quality of patient data and analysis of specific items that are related to ML algorithms in
medical care.

2. Methods

2.1. Search Strategy

The systematic literature search was conducted through the libraries of PubMed (Medline) and
Cumulative Index to Nursing and Allied Health Literature (CINAHL). Keywords like ‘chronic diseases’,
‘predictive models’, ‘ML in CD diagnosis’, and ‘model classifiers’ were used during the document
search. The search was conducted in January 2020 and resulted in 453 documents. The documents
were filtered based on its publication dates ranging from 2015 to 2019 to evaluate the latest literature
on ML classifiers in CD prediction.

2.2. Selection Criteria

The title and abstract of the individual articles were retrieved based on the mentioned search
terms. Finally, a few of the items were found to be eligible to fulfill the research objectives. This
research only describes predictive models used to perform CD diagnosis and does not concentrate on
overall trends in AI medicine. Further article revision was conducted to filter the duplicates between
the two databases. Moreover, the inclusion and exclusion criteria of our review were based on time,
methodological quality and language. Reports and other studies published before 2015 were excluded
as outside the limitations on the timeframe of this study. The inclusion criteria used in Pub Med and
CINAHL are as follows: free full text, English, original papers and research outcomes. We excluded
276 items among the total search documents because of duplication. The remaining 177 were screened
to match the methodologies related to the current research topic.
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2.3. Data Extraction

Data evaluation was conducted in two phases. In the first phase, depending on the inclusion
criteria, 55 documents were identified for extended revisions. In the second phase, two individual
researchers (GB and GGS) were equally distributed for quality check. As discussed, the proposal of a
precise model in CD diagnosis was considered as the main focus of this paper. Therefore, articles were
extracted based on the authors’ information, the study design of sampling pattern and method types,
and diagnostic criteria. The analysis of each article was individually revised and recorded.

2.4. Quality Evaluation

Quality assessment check was accomplished by the adoption of the Newcastle–Ottawa Scale
(NOS), which is a renowned method in the assessment of study relevance and research interest [14].
The quality of each published article was evaluated as weak (0–4), moderate (5–6), or strong (7–9).
Each selected study score was recorded in separate excel sheets to compute whether an individual
paper was suitable or not for this review. Ultimately, 22 studies were selected, which are in line with
the predictive models in the CD diagnosis (Figure 1). Based on their content, the selected papers were
tabled into predictive models used in CD identification (Table 1) and pathologies with model usage,
along with their strengths and limitations (Table 2).
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Table 1. Machine learning (ML) algorithms on different pathologies along with input features and
outcomes measures.

CD Diagnosis Study Type Input Features Outcomes Models Reference

Hepatic fibrosis Cross-sectional Age, sex and RTE
images

Accuracy,
Sensitivity, and

Specificity

NB, RF, KNN,
SVM, and NN [16–18]

Chronic hepatitis
B stages Case study Gene expressions Precision and

AU-ROC RF, KNN, SVM [19]

COPD
exacerbation

events
Retrospective COPD symptoms TP, FP, ROC BN [20]

Aggravating event
identification of

COPD
Longitudinal EDGE digital

health system AU-ROC LR [21]

Exacerbations of
COPD patients Case-control Equi-ripple

bandpass (BP)

Sensitivity,
specificity,

accuracy, PPV,
NPV

PCA coupled
SVM [22]

Diabetes
classification Case study Age and clinical

data

Sensitivity,
specificity,
accuracy,
AU-ROC

LR, ANN, NB,
KNN, and RF [23]

Glomerulus
filtration rate

estimation

Retrospective
cohort study

(RCT)

Age, sex, and
serum creatinine

99mTc-DTPA
imaging

Accuracy ANN, SVM [24]

Asthma
exacerbations

events
Case-control Telemonitoring

data

Sensitivity,
specificity,
accuracy

NB, adaptive
Bayesian

network, and
SVM

[25]

Stage of lung
cancer

Prospective
cohort study

Cyrano’s 320
sensor device,

age

Accuracy,
sensitivity, and

specificity
SVM [26]

Pulmonary
function tests RCT Blood analysis,

lung images Accuracy DT [27]

Dementia
prediction Case-control MRI

Accuracy,
precision, and

specificity
SVM [28]

Identification of
ischemic stroke

lesions
Cross-sectional MRI Accuracy NB [29]

Course of
depression Case study

A shortened
version of the

IDS (QIDS)
Accuracy LR [30]

Late-life dementia
assessment

Prospective
cohort

MRI/CT, Blood
Tests

ROC, AUC and,
MCA SVM [31]

Degenerative
movement
disorders

Cross-sectional Pathological Not defined
Hierarchical

clustering
analyses

[32]

Checking CT
imaging

effectiveness
Case study CT images, Age,

and sex
Accuracy,
AU-ROC NN [33]

Discriminatory
peptide

identification of
heart failures

Experimental Age, sex, and
renal function

Sensitivity,
specificity SVM [34]
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Table 1. Cont.

CD Diagnosis Study Type Input Features Outcomes Models Reference

Classification of
chronic

periodontitis
patients

Case-control Age and PH
subjects

Accuracy,
Sensitivity,
Specificity

SVM [35]

Classification of
fibromyalgia Case Study ICD-9 codes Mean K-means

clustering [36]

Chronic diseases
assessment

Prospective
Cohort

Community
question answers Accuracy NB, SVM, and

RNN [37]

Table 2. Pathology types with used models and their strengths and weakness.

Pathology
Type Name Models Accuracy

(%) Strengths Limitations Future
Developments

Liver

Hepatic fibrosis
stage[16], and

chronic
hepatitis-B [19]

NB, RF, KNN,
SVM, and NN 78.1–82.7

Liver related
diseases produce

large patient
information,

metabolomics
analyses, and

EHR. Deep
learning

algorithms help in
the prediction of
liver therapeutic

discovery.

There is
currently no
complete AI

system that can
able to detect a

couple of
abnormalities

overall through
the human
body [38].

Further studies
are needed to

develop an
advanced deep

learning algorithm
to remedy greater

complicated
medical imaging
troubles, along

with ultrasound or
Positron-emission

tomography
(PET) [18].

Pulmonary

COPD
exacerbation,

asthma
exacerbation[25],

lung cancer
stages [26]

Bayesian
Network, LR,
SVM, NB, and

PCA

62.3–76.1

Studies proposed
a data-driven

methodology that
can help to

produce COPD
predictive models

and asthma
exacerbations. It

would be useful to
support both
patients and

physicians [39].

Even it is less
cost of devices

like spirometers
to check lung

functionality but
it is not likely to

replaced by
quantified
computed

tomography.

It is highly
recommended in
future studies to
incorporate ML
models in the

predictive
analysis [40].

Nervous
system

Dementia,
Ischemic stroke

lesions
identification [29],

late-life
dementia [31],
degenerative

moment
disorders [32]

SVM, LR, NB,
RF,

Hierarchical
clustering

analyses, and
DSI

69–80

ML studies in
Nervous systems

can help to
improve the
diagnosis of

Nerve system
conditions

AI-based
behavioral

systems are still
in early to

understand the
discrete

behavior of
patient chronic

conditions

Future AI might
be able to

represent these
features into one

cognitive
reinforcement-

mastering
model [41].

Diabetes Type 2 Diabetes
Mellitus [23]

LR, ANN, NB,
KNN, and RF 73.2–91.6

These techniques
in diabetic studies
can be helpful in

symptoms
recognition, and

disease forecasting

Technological
advancements
in AI need to
more effective

with large data
sets in diabetes
prediction [42]

ML applications
need to produce
facts on big data

mining of medical
data sets [42,43].

Kidney
Diseases

Glomerular
filtration rate

estimation [24]

ANN, SVM,
Regression

and ensemble
learning

73.1–76.0

Risk prediction
can highly

effective in kidney
diseases

The research gap
in the artificial

kidney
implantation
needs to be

addressed [44].

Many demanding
situations need to
be a success before
it becomes a fact

and a part of
medical practice
in nephrology.
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Table 2. Cont.

Pathology
Type Name Models Accuracy

(%) Strengths Limitations Future
Developments

Disease-
related to

muscle pains

Fibromyalgia
(FM) [36] KNN -

In FM class
division, K-means

clusters can
helpful for

categorization of
pain, clinical

procedure usage,
and symptom

severity

KNN is a
self-learner in
trained data

classification [45].

Future studies are
needed to propose

feasible
algorithms to
forecast FM

causes.

Heart
diseases

peptides for
heart

failure [34]
NB, and SVM 84–91

Optimized
data-driven ML
techniques are

helped to predict
heart diseases that

improve total
research and

preventive care.
Also, it will make

sure that many
people can

happily lead a
healthy lifestyle

To predict the
risk quality of

the heart dataset
is needed in

clinical practice
to support

high-quality
datasets of heart

patients.

Scientists’ are
needed to propose
precise models to
predict the risk of
heart failures [46]

Infections Periodontitis [35] SVM, NN Not defined

NN and SVM
algorithms are
useful in the

diagnosis and
prediction of
periodontal

diseases

Lack of optimal
datasets and

model
improvements

A computer-aided
classification
system can be

expected to
become an

efficient and
effective

procedure for
these inflectional

diseases [47]

3. Results

3.1. Predictive Models Applied in Diagnosis of CD

From Table 1, it is evident that about 45% of studies used SVM models, 23% of the studies used
K-Nearest Neighbor (KNN), and Naïve Bayes (NB) models, 18% of studies applied LR, and 14% of
studies applied random forest (RF) models in the CD diagnosis. Regression-based ML models were
largely used to predict liver, gas chromatography, and pathological changes. Two studies successfully
implemented the random forest (RF) model to do a prediction of the liver fibrosis stages [16,19]. These
studies also applied the linear regression (LR) statistical analysis to understand the relationship of
image parameter and liver fibrosis stages. The results highlight that RF models are better at identifying
the liver fibrosis index (LFI) degree than other statistical approaches [16]. A review of 427 patients
on hepatitis-C produced better predictions through the decision trees [17], and multilayer perceptron
(MLP) neural networks were best in predicting late-stage liver fibrosis.

In [20], COPD patient’s data were analyzed by Bayesian network models. The usage of support
vector machines (SVM), LR, Bayesian network, and K-Nearest Neighbor (KNN) models is useful in
forecasting the aggravating events of COPD patients [20–22]. Among them, SVM models show better
accuracy in predicting exacerbations and COPD detection. In addition, artificial neural networks (ANN)
and LR models can effectively be used to understand whether a patient is diabetic or not [23]. In [24],
scholars estimated the glomerular filtration rate of the kidney can be done through ensemble models.

3.2. Model Accuracies along with advantages and limitations

Model accuracy is defined as a percentage of true predictions from total predictions. From Table 2,
it is evident that diabetic predictions show an accuracy of 73.1–91.6% [23]. Cardiac diseases produce a
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prediction accuracy of 84–91% [34], while in the prediction of liver diseases, NB, RF, KNN, SVM, and
NN models produce an accuracy in a range of 78.1–82.7%. In particular, RF and NN models are found
to have the highest accuracy. In nervous system pathologies, the LR model with feature extraction
techniques has identified reasons for depression with accuracy between 72% and 80% [48]. KNN
models could be better used to identify disease patterns [49]. In Fibromyalgia, these have the capability
to classify pain, clinical usage, and symptom severity [36]. In pulmonary diseases, Bayesian models
produced low accuracy range in between 62.3% and 76.1%, because these are not recommended in
high dimensional data sets. In contrast, ANN models produced the highest accuracy of 76% in kidney
diseases, since they can detect the possible connection between classification variables [50].

Despite the above results, it is still debatable matter on the existence of particular microbial profiles
for distinct periodontal conditions. Studies conducted on the ML model development in classifying
patient data based on bacterial species [35] have shown that SVM with kernel methods are more
helpful. At the same time, dementia is one of the chronic diseases that happen in older people, and,
in particular, Alzheimer’s is associated with 60–70% of dementia cases. AD prediction through ML
models concluded that prediction accuracy depends on the data type and model input [28,31]. These
studies with the Disease State Index (DSI) technique produced an accuracy of 79%. All the mentioned
studies found that age, cognition, subjective memory complaints, and vascular factors were input
features, which can affect the chances of dementia. Therefore, it is understandable that dataset type,
input features, and user outcomes can differ by individual study and no model can predict diseases
with 100% accuracy.

4. Discussion

The present study analyses the distinct prediction models of machine learning in the diagnosis
of chronic diseases. Sometimes, it could be hard to propose the best learning method in disease
predictions since it depends on dataset size and user access. Supervised machine learning (SML)
approaches are followed in the highest number of studies, with the integration of easy and simple
predictive modeling. The implementation of these models in clinical practice certainly can help to
provide better health services and enhance specialist decision-making.

It is rudimentary to confirm the different algorithms based on a specific problem, and review
studies could help to analyze the performance and determine optimal machine learning models. Before
machine learning, recommendations for practice in medicine development depended on individual
studies. Therefore, it is affecting the data science because all this medical information is coming from
different platforms and people. Due to contemporary trends in computational models, healthcare
services are quickly transformed by having the ability to record large amounts of patient data. However,
it is highly impossible to analyze huge medical records with human knowledge. On the other hand,
with the evolvement of big data in biomedical and medicinal service networks, accurate analysis of
medical data becomes possible that could improve patient care [51]; if there is an unavailability of
quality medical data, it could result in poor decision-making. Eventually, machine-learning techniques
can able to find clear data patterns that can empower health experts in clinical care such as precision
medicine. As mentioned in Table 1, different studies have used different predictive models coupled
with their results. However, a proper interpretation of medical data will not only help to recommend
suitable machine learning models, but also for physicians in the provision of immediate medication.

Aging is one of the significant difficulties facing in the western world, meaning that lowering
the weight of continuous infection and enhancing life span is necessary [52,53]. Few researchers have
anticipated the safety of each aging compound with a collection of deep neural network classifiers [53].
In addition, predictive models can help in active decision support, in particular if a couple of identical
cases are accessible, or where diagnostic symptom knowledge is not precisely available [54]. In this
study, we compared and discussed the recent advancements in ML methods used for disease predictions.
Studies like pulmonary patient data classification demand the algorithm to anticipate discrete values
by distinguishing the patient information either as an individual, or group [27]. The final clinical
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diagnosis depended on the integration of a full pulmonary function identification decided by medical
expert choice. In the end, clinical diagnosis was classified into ten individual groups, which were
validated by experts in the panel. Medical imaging data such as MRI, CT scans, and RTE images
follow the classification type SVM models. In contrast, regression problems look at continuous data,
and most of the adopted studies followed these model examples of pathologies in [16,30,33,48] gene
expression [19], and others.

On the other hand, unsupervised ML deals with a deep learning model containing a medical
data set that it can handle without having a clear direction regarding what and how to proceed. The
neural network attempts automatic detection of structured data and performs key feature extraction.
Depending on the pathology type, it can follow different patterns like clusters that involve a group of
particular information [37]. However, some models in machine learning can make immediate decisions
on chronic diseases thanks to recent developments in AI. Our findings suggest that stimulating
the power of these predictive models in the CDs diagnosis and in structuring medical data will
empower medical experts or physicians that will result in a significant tendency decision making at
medical centers.

It is also evident that SVM and LR models significantly implemented in the large number of
studies to do CD diagnosis. Sixteen studies were adopted these models especially for hepatitis B,
COPD, diabetes, and others. An SVM model is popular among others to identify COPD from the
beginning, and it could be greatly assisted in the relationship between doctor and patient. Bayesian
networks and NB models help to forecast the diagnosis of asthma problems. These models encompass
old patient records to look up clinical symptoms and footing on Bayesian networks to present the
relationship individual case and diagnose future possible symptoms. The KNN algorithm is associated
with five studies for diagnosis, forecasting, and to critically follow the CD’s stages with the help of
different primary and secondary data.

The main limitation of the present study is most of the adopted literature on disease prediction
or classification was adopted with supervised models, and it is important to adopt unsupervised
(clustering) and deep learning (neural networks) models as well in future works.

5. Conclusions

The present study evaluated the studies associated with the diagnosis of chronic diseases.
However, the implementation of correct methods or selection of the right models is a prerequisite to
perform ideal decisions, as modern researchers are claiming that some ML models are compromised
by enlarging contained datasets with malicious data that can have severe consequences. On the other
hand, diagnosis limitations may lead to life-threatening attacks, and sometimes it might be a driving
factor of fatality. In contrast, the wrong diagnosis prompts the skepticism in machine learning use, that
can lead policy makers to avoid predictive model usage. Therefore, reviews on predictive models can
provide evidence to propose excellent methods for the CDs diagnosis.

In the future, AI techniques like ML, cognitive computing and deep learning may play a critical
role in the interpretation of chronic diseases. However, researchers are progressively attracted by
predictive model techniques in the advancement of health care. As new advancements in medical care
are being established and are expanding the access to electronic data, this opens new doors to decision
support and productivity improvements. These models are designed to emphasize the responsibility
of patient care quality and cut down medical costs.
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Acronyms

ML: Machine Learning; AI: Artificial Intelligence; SML: Supervised Machine Learning; DSS:
Decision-support systems; CVD: Cardio Vascular Diseases; RTE: Real-Time Electrographs; CHB:
Chronic Hepatitis B; NB: Naïve Bayes; RF: Random Forest; ANN: Artificial Neural Networks; RNN:
Recurrent neural networks; KNN: K-Nearest Neighborhood; SVM: Support Vector Machine; NN:
Neural networks; LR: Logistic Regression; PCA: Principal Component Analysis. DSI: Discrete Smooth
Interpolation; FP: False positives; TP: True positives; FN: False negatives; TN: True negatives; AU-ROC:
Area under receiver operating characteristics; COPD: chronic obstructive pulmonary disease; PPV:
Positive Predictive Value; NPV: Negative Predictive Value. QIDS: Quick Inventory of Depressive
Symptomatology; CT: Computerized Tomography; MRI: Magnetic Resonance Imaging; MCA:
Multiple Correspondence Analysis; DTPA: Diethylene Thiamine Penta acetate; PET: Positron-emission
tomography; EHR: Electronic Health Record.
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A B S T R A C T

Machine Learning (ML) is considered as one of the contemporary approaches in predicting, identifying, and
making decisions without having human involvement. ML is quickly evolving in the medical industry ranging
from diagnosis to visualization of diseases and the study of disease transmission. These algorithms were de-
veloped to identify the problems in medical image processing. Numerous studies previously attempted to apply
these algorithms on MRI (Magnetic Resonance Image) data to predict AD (Alzheimer's disease) in advance. The
present study aims to explore the usage of support vector machine (SVM) in the prediction of dementia and
validate its performance through statistical analysis. Data is obtained from the Open Access Series of Imaging
Studies (OASIS-2) longitudinal collection of 150 subjects of 373 MRI data. Results provide evidence that better
performance values for dementia prediction are achieved by low gamma (1.0E-4) and high regularized
(C= 100) values. The proposed approach is shown to achieve accuracy and precision of 68.75% and 64.18%.

1. Introduction

Machine learning (ML) was considered as an integral part of
Artificial Intelligence (AI), also a data analysis technique that compu-
terizes the explanatory model structure. In most scenarios, based on the
learning method, two types of ML algorithms (supervised & un-
supervised) were used [1]. At present, these algorithms are engaging in
all the major industries like healthcare, banking, transport, social
media, etc. [1,2]. Above all, the medical industry is advancing quickly
with high volumes of information and increasing difficulties in in-
ventory and patient outcomes. Economically developed nations such as
USA, Japan, European countries are even facing the problems with the
enormous collection of medical data [3]. However, by using conven-
tional techniques, it is not possible to analyze this significant volume of
information because of time consumption and efforts. Therefore, ML
techniques are coming up with various algorithms and programs to
avoid these issues. Besides that, the selection of proper algorithm is not
an easy task since it depends on multiple factors such as data volume,
information type, and outcomes related to industry requirements [1].

Nowadays, ML algorithms are progressively utilized in neuroima-
ging studies like a prediction of Alzheimer's disease (AD) from auxiliary
MRI. Also, many studies attempted different ML strategies in predicting

AD and their causes [3,4]. In the study of AD prediction and retrieval, a
multistage classifier utilizing ML, including Naive Bayes classifier,
support vector machine (SVM), and K-nearest neighbor (KNN) was used
to group Alzheimer's illness in the more acceptable and effective way
[5]. Similarly, a study from Ref. [6], concluding that the utilization of
locally linear embedding (LLE) kind of unsupervised learning was uti-
lized to categorize AD based on fundamental MRI data. Besides, some
preliminary studies with ML techniques concluded that these methods
are valid and accomplish with high precision (up to 98%) in diagnosing
clinical events with analysis of patient medical records [7].

Despite of it, AD is one of common type in dementia and associated
mostly with older people [8]. In this paper, we explain how to predict
dementia and calculate performance by using support vectors. Typi-
cally, SVM's are considered as supervised machine learning, which
solves the data issues related to classification and regression analysis
[9]. An SVMs give a compelling and adaptable structure for MRI, and
that the proposed classifier perception technique has potential as a
system for the assessment of characterization solutions [9,10]. This is
also used to categorize dementia subjects and is similar to the research
that use a uniform algorithm to differentiate 3 Primary progressive
aphasia (PPA) subtypes in predicting PPA [11]. Distinguishing early
morphological changes in the mind and making initial finding is
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significant for dementia. High-resolution MRI data can be utilized to
support finding and forecast of the disease [11]. To do this, we propose
to find an optimal solution by experimenting with radial basis function
(RBF) kernel in the SVM. The proposed method of calculation is in-
spired by a new approach of using an ensemble SVM for dementia
classification [12], using MRI data and mini-mental state examination
parameters (MMSE).

In contrast, we consider the attributes like MR delay; CDR, ASF,
AGE, and GENDER included with MMSE that corresponds to subject ID.
We strongly believe that it is the novel way of examining the im-
portance of each parameter while forecasting dementia in older pa-
tients. Despite it, our work aims to predict dementia in elder individuals
by SVM algorithms to accomplish promising outcomes. This paper is
organized as follows; section 2 describes the SVM background with its
key parameters; Section 3 will explain the data collection and metho-
dology; section 4 will provide experimental results; Section 5 on pro-
posed discussion and little conclusion in section 6.

2. Support vector machines (SVM)

2.1. Background

Support Vector Machines are a well-known ML technique for clas-
sification and other learning activities. SVM is a discriminative classi-
fier and formally characterized by an optimal hyperplane. It produces
an outcome of the optimal hyperplane, which classifies new examples
and datasets that support hyperplane are called support vectors [13]. In
two-dimensional (2D) region, this hyperplane is a line isolating into two
segments wherein each segment lay in either side. For instance, mul-
tiple line data classification had done with two distinct datasets (i.e.,
squares and dots) and ready to propose an affirmative interpretation
(Fig. 1). However, the selection of optimal hyperplane is not an easy job
as it should not be noise sensitive, and generalization of data sets should
be accurate [14]. Pertinently, SVM trying to find out optimized hy-
perplane that provides considerable minimum distance to the trained
data set [13,14].

In mathematical notation, for 2D space, a line can distinguish the
linearly separable data. The equation of the line is y = ax + b. By
rename x with x1 and y with x2, the equation will change to
ax1−x2+b = 0. If we specify X = (x1, x2) and w = (a, −1), we get w⋅
x + b = 0, which is called the equation of the hyperplane.

2.1.1. Derivation of SVM optimization problem
To estimate w & b of the optimal hyperplane, it is mandatory to

address a performance issue with the need of the geometric edge for
every pattern must be more prominent to M [16].

Max w, b M; Subject to γi≥M, i= 1 … m (1)

If M= ∥ ∥
F
w the above equation can be rewritten as:

Max w, b M; Subject to fi≥ F, i= 1 … m (2)

The case that rescales w and b are yet boosting M, and the en-
hancement result will not change. Let us rescale w & b and make F=1;
the above equation shift to

∥ ∥
≥ =Max subject1

w
; to fi 1 , i 1...mw b,

(3)

This maximization issue is proportionate to the accompanying
minimization issue written as

Min w, b||w||; subject to fi≥ 1, i= 1 … m (4)

This minimization issue is proportionate to the accompanying
minimization issue written as

+ − ≥ =w wx bmin 1
2

‖ ‖ ; subject to y ( ) 1 0, i 1...mw b,
2

1 (5)

The above statement refers to the SVM optimization problem.

2.1.2. SVM classifier
When we have the hyperplane, eventually we would be able to

utilize the hyperplane to make predictions. The hypothesis function of
H is

= ⎧
⎨⎩

+ ≥
− <

if w x
if w x

H(x )
1 . 0
1 . 0i

2.2. Tuning parameters

To comprehend the SVM working, it is critical to understand about
some prerequisites like kernel, regularization, and gamma.

2.2.1. Kernel
In machine learning, the kernel is a technique that is used to solve

the non-linear problem with the use of linear classifier and involved in
exchanging linearly non-separable data into linearly separable data
[17]. The idea behind this concept is linearly non-separated data in N-
dimensional space might be linearly separate in high M-dimensional
space. Mathematically, kernel indicated as K (a, b) =<F (a), F (b)> ,
Where K: kernel function and a, b are n-dimensional inputs. ‘F’ is
mapping from N-dimensional to M-dimensional space (i.e., M > N).
The mapping in the kernel is defined as K (a, b)=Ø (a). Ø (b).

Kernel Functions: There are several kernels functions some of them
listed below here [18].

❖ Polynomial Type: is well known for nonlinear modeling and is re-
presented as

K (a, b) = (a, b) d (6)

❖ Gaussian Radial Basis Type: Radial basis functions mostly with
Gaussian form and represented by

= − −k(a,b) exp( ‖a b‖
2σ

)
2

2 (7)

❖ Exponential Radial basis: function produces a bitwise linear solution
that will be useful when discontinuities are satisfactory

= − −k(a, b) exp( ‖a b‖
2σ

)2 (8)

In addition to them, there are many more functions such as multi-
layer perceptron, Fourier, additive, and tensor products type [18].

2.2.2. Regularization
The regularization parameter (C) explains the SVM optimization

Fig. 1. Data classification using multiple lines [On left ] and data classification:
optimal hyperplane [On Right] [15].
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and percentage of escaping the misclassified trained data [19]. For high
C values, training data will categorize accurately by hyperplane; simi-
larly, for low C, optimizer looks for higher margin separating hyper-
plane while it will misclassify the more data points.

2.2.3. Gamma
It describes the impact of specific training data [13,17,19]. The high

gamma values (Fig. 2 left) results in consideration of datasets that are
near to separation line. Similarly, for low gamma values (Fig. 2.Right)
datasets that are away from the separation line, will also be taken into
consideration while in the calculation of separation line (Chapter 2:
SVM (Support Vector Machine) — Theory – Machine Learning 101 –
Medium).

3. Data collection and methodology

3.1. Dataset

We consider a longitudinal collection of OASIS - MRI data set [21],
comprising of demented and non-demented subjects with right-hand
(R) type aging from 60 to 96. A sample size of 150 subjects, including
men and woman, have attended scanning sessions more than two visits;
sessions were separated by at least one year with 373MR Sessions. The
sample training data (Table 1) included with demographic values of
Subject ID, MRI ID, Group, Visit, MR delay, Sex, Age, Social Economic
Status (SES), Education level (EDUC), MMSE [22], Clinical Dementia
Ratio (CDR) [23], estimated Total Intracranial Volume (e-TIV), nor-
malized Whole Brain Volume (n-WBV) and Atlas Scaling Factor (ASF).
Also, Fig. 3. Explaining the present MRI sessions categorization based
on the current CDR (0–2) score and total sessions of non-demented
(190), demented (146) and converted (37) were evaluated. In

particular, some subjects treated as demented at initial visit later
transformed into the non-demented managed by converted type. If CDR
value is equal to zero, the subjects were considered as mostly non-de-
mented, simultaneously if CDR≥1 the subjects will face the tendency to
have dementia.

3.2. Methodology

The methodology layout that used and analyzed in the current study
in explaining in Fig. 4.

❖ Data collection

The trained data set was collected from the Open Access Series of
Imaging Studies (OASIS) included with longitudinal MRI data of 150
subjects.

❖ Data Preprocessing

Real world data is available more likely incomplete with missing
entries. Therefore, data preprocessing is one of the data mining tech-
niques to address this issue. Missing entries were filled-up by averaging
of particular attribute values.

❖ Attribute Selection

Select a specific characteristics to predict the outcome to do map-
ping with input correspondence values. We choose the group column as
output variable that corresponds to the dementia status based on other
input variables.

❖ Input variable matching

Performance of any ML model largely depends on the number of
input attributes taken into consideration. To maintain better perfor-
mance, selection of the corresponding attributes, instead of selecting
multiple ones is very important. Attributes like Subject ID, CDR, MMSE,
Age, MR Delay, and n WBV chosen as input to SVM that were directly
targeted to the dementia group attribute.

❖ Classifier

We consider three groups of dementia as demented, non-demented,
and converted.

Fig. 2. High Gamma Close points (left) and Low Gamma Far away points found
(Right) [20].

Table 1
Example of actual portion dataset of Longitudinal OASIS-2 MRI data.

SUBJECT ID MRI ID GROUP VISIT MR Delay M/F Hand Age EDUC SES MMSE CDR E TIV n-WBV ASF

OAS2_0100 OAS2_0100_MR1 Non
Demented

1 0 F R 77 11 4 29 0 1583 0.777 1.108

OAS2_0100 OAS2_0100_MR2 Non
Demented

2 1218 F R 80 11 4 30 0 1586 0.757 1.107

OAS2_0100 OAS2_0100_MR3 Non
Demented

3 1752 F R 82 11 4 30 0 1590 0.760 1.104

OAS2_0101 OAS2_0101_MR1 Non
Demented

1 0 F R 71 18 2 30 0 1371 0.769 1.280

OAS2_0101 OAS2_0101_MR2 Non
Demented

2 952 F R 74 18 2 30 0 1400 0.752 1.254

OAS2_0101 OAS2_0101_MR3 Non
Demented

3 1631 F R 76 18 2 30 0 1379 0.757 1.273

OAS2_0102 OAS2_0102_MR1 Demented 1 0 M R 82 15 3 29 0.5 1499 0.689 1.171
OAS2_0102 OAS2_0102_MR2 Demented 2 610 M R 84 15 3 29 0.5 1497 0.686 1.172
OAS2_0102 OAS2_0102_MR3 Demented 3 1387 M R 86 15 3 30 0.5 1498 0.681 1.171
OAS2_0103 OAS2_0103_MR1 Converted 1 0 F R 69 16 1 30 0 1404 0.750 1.250
OAS2_0103 OAS2_0103_MR2 Converted 2 1554 F R 74 16 1 30 0.5 1423 0.722 1.233
OAS2_0103 OAS2_0103_MR3 Converted 3 2002 F R 75 16 1 30 0.5 1419 0.731 1.236
OAS2_0104 OAS2_0104_MR1 Demented 1 0 M R 70 16 1 25 0.5 1568 0.696 1.119
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❖ Results

Finally, the classification performance has achieved and analyzed.
Performance value calculated as the percentage of correctly predicted
outcomes divided by the total number of samples

= ×i e peformance. ,
True predicted an outcomes

Total number of samples
100

4. Results

Once the mapping has done by input attributes with targeted output
group column, the machine will run the SVM algorithm automatically.

4.1. Kernel

The Kernel outcome model with 150 support vectors (Table 2) has
generated, and three different categories of training data set are ob-
served. As mentioned, kernel mapping with three input values for-
mulated, as K (ND, D, C)= ø(79).ø(50).ø(21), where K is kernel func-
tion with three input class vectors such as non-demented (ND),
Demented (D) and converted (C) and corresponding mapping values of
79, 50 and 21. Besides, bias value is equal to −0.3 (offset defines
compensate the feature vectors that are not centered around the zero).

4.2. Gamma VS. C

As discussed, Gamma and C values are obligatory to confirm op-
timal hyperplane. In further, Radial Basis Function (RBF) kernel is one
of the novel kernel approaches that related to gamma. Hence, SVM
anticipated with following performance conditions

⎧

⎨
⎩

= − = =
= − = =
= − = =

if
RBF E C p
RBF E C p
RBF E C p

1.0 4 ; 100 69.2%;
1.0 3 ; 100 69.2%
1.0 1 ; 10 57.1%

Here, two conditions were supporting identical performance gain.
However, as per condition of SVM it prefers to choose optimal hyper-
plane region with low RBF (1.0E-4), and High C (100) which re-
presented by Yellow colored circle explained in Fig. 5.

4.3. Performance, precision, and recall

❖ Assessment of performance done by the percentage of true predicted
subjects from the total subjects. From Table 3, sum of true predicted
subjects were 105, therefore performance was calculated as 70%
(105

150
*100). This value is matching with the optimal system perfor-

mance 69.2% by utilization of RBF and C values that proves the SVM
hypothesis.

❖ Precision is define as percentage of positive predictive values for
each subject category. For demented subjects precision validates as
of 64.18% ( + + *10043

43 14 10 ) and for demented 75%. On the counter
note, no valid predicted values for converted category subjects. SVM
algorithm predicted two subjects as a converted category, but in a
real scenario, it belongs to non-demented ones.

❖ In the context of ML, recall is referred as sensitivity or true positive
rate. Thus, recall for non-demented subjects validated with 81.13%
( + + *10043

43 8 2 ), and demented 65.85%.

Fig. 3. Categorization of dementia sessions based clinical dementia ratio (CDR).

Fig. 4. Methodology layout.

Table 2
Kernel outcome statistic values.

Total number of Support Vectors: 150

Bias (offset): 0.3 and Number of classes: three
Number of support vectors for class Non-demented - 79
Number of support vectors for class Demented- 50
Number of support vectors for class Converted - 21
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5. Discussion

In present study, we considered longitudinal MRI subjects from
OASIS datasets, and input information to machine chose as key attri-
butes like MMSE, CDR, MR delay and n WBV. The forecasting of de-
mentia depends on the scores of mentioned attributes. As best of our
insight, this is the essential investigation for foreseeing dementia de-
pendent on these scores by utilizing SVM calculations. Additionally, we
locate an ideal hyperplane by using RBF and C esteems that is also used
in the study of weather forecast datasets [24]. It helped us to make a
correlation between hyperplane parameters to investigate better sup-
port vectors. We classified MRI sessions into three groups based on the
CDR scale (0–2). Additionally, we conduct statistical analysis by bar
charts to differentiate subject category. In next sections, we are going to
introduce the outcomes of these group-level comparisons, after that, we
discuss in more detail about how SVM produces optimized performance
values to forecast dementia using kernel functions and study limitations
when compared to other methods.

5.1. Dementia prediction by a selection of key attributes

As discussed, current MRI sessions division was done based on the
current CDR value. Beyond that, our subject group classifications are in
line with the study designed for investigating diagnostic agreements
[25]. However, it is not feasible to predict dementia disease with single
attribute or parameter. Thus, we examine with other key parameters
such as MMSE, AGE, n WBV and MR delay that matched with targeted
group column. At the same time we tried to exclude other demographic
values like Gender, SES, EDU, and ASF since these parameters not good
enough in dementia prediction, also by considering many attributes
performance may get low [26]. In addition, outcomes mentioned that
100 subjects (Fig. 6) are predicted non-demented (actually these dis-
tributed as 63ND, 24D and 13C types), and 47 subjects predicted as

demented (but these distributed as 11ND, 34D and 2C types). Finally, 3
non-demented subjects forecasted as converted type.

The prediction was validated and done on the confidence values of
the actual category of each subject (refer appendix). For example, in
real time scenario Subject, ID-04 was non-demented based current CDR
score (=0) but predicted as demented. This might be caused by the
high age [27] or more significant delay in the MR value [28]. Therefore,
this will change from subject to subject depending on the present re-
ports.

5.2. Selection of optimal hyperplane

The performance for the given dataset by SVM algorithm producing
about 70% and recall or sensitivity providing in the range of 65–82%
that depended on the subject category. Until now, only single research
tried to develop a new method for an ensemble of SVM for classification
of dementia using systematic MRI and MMSE values [12]. The re-
searchers performed ensemble SVM using RBF kernel or linear to
achieve distinct class accuracies. In their results, accuracy was

Fig. 5. Spatial distribution of Gamma (RBF) Vs. C values.

Table 3
Confusion Matrix of given subjects TND*: True Non-Demented; TD*: True
Demented; TC*: True Converted; PND*: Predict Non-Demented; PD*: Predict
Demented, and PC*: Predict Converted.

TND TD TC precision

PND 43 14 10 64.18%
PD 8 27 1 75.00%
PC 2 0 0 0.00%
Recall 81.13% 65.85% 0.00% 0.00%

Fig. 6. Subject Classification between Predictions subject groups Vs Actual
Subject Groups.
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increased from 55% to 59.1%. Our SVM approach by considering total
brain value with MMSE and CDR, producing the accuracy nearly 70%.
Additionally, we compared the statistical calculation of performance
outcomes with optimal hyperplane coordinates to verify whether ma-
chine-generated results were performing similar SVM optimal perfor-
mance (Fig. 5). In the end, outcomes generated by the ML system and
Hyperplane are matched to prove the theory of support vector algo-
rithms.

5.3. Limitations

The relatively lowest number of subjects may hamper the specula-
tion of outcomes to the overall population of dementia patients. Despite
that, our study closely related to Ref. [12], but we achieve better per-
formance values by introducing an optimal hyperplane study. Classifi-
cation and normalization of subject groups are not accurate in most
cases, and it might tend to underestimation of dementia in older pa-
tients that result in getting low accuracies through SVM categorization.
Nevertheless, approaching optimal hyperplanes, we tried to increase
the performance by a selection of low RBF and high C values. Even-
tually, the order between sets of different subjects was an optimal hy-
perplane, which does not reflect the issue regarding accurate differ-
ential determination between a few neurological diseases. This issue
should be addressed in future researches validating the use of SVM
approaches consistently in real life.

6. Conclusion

Dementia is one of the significant health issues that has challenged
health experts worldwide. In addition, it mostly happened in older
people (age > 60). Unfortunately, there are no proper medicines for
completely cure this disease, and sometimes it will directly affect
person memory skills and reduce the human ability to perform daily
activities. Many healthcare professionals and computer scientists were

performing research activities on this problem from last two decades.
Still, there is an extreme need for identification of relevant character-
istics that can forecast the detection of dementia. We approached
support vectors for classification and prediction purposes of dementia
and achieved optimized results with efficient performance values.
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Appendix. Dementia predicted outcome dataset after SVM implementation

N Age CDR MMSE MR Delay N WBV Group Conf (ND) Conf (D) Conf (Con) Prediction

1 87 0.0 27 0 0.7 Nondemented 1 0 0 Nondemented
2 80 0.5 22 1895 0.7 Demented 1 0 0 Nondemented
3 88 0.0 28 0 0.7 Nondemented 1 0 0 Nondemented
4 90 0.0 27 538 0.7 Nondemented 0 1 0 Demented
5 85 0.0 30 1603 0.7 Nondemented 0 0 1 Converted
6 71 0.5 28 0 0.7 Demented 1 0 0 Nondemented
7 75 1.0 27 1281 0.7 Demented 1 0 0 Nondemented
8 68 0.5 27 0 0.8 Demented 0 1 0 Demented
9 66 0.5 30 0 0.8 Demented 1 0 0 Nondemented
10 68 0.5 29 854 0.8 Demented 1 0 0 Nondemented
11 78 0.0 29 0 0.7 Nondemented 1 0 0 Nondemented
12 80 0.0 29 730 0.7 Nondemented 1 0 0 Nondemented
13 85 0.0 29 1456 0.7 Nondemented 1 0 0 Nondemented
14 81 0.5 27 617 0.8 Nondemented 0 1 0 Demented
15 86 0.0 27 2400 0.8 Nondemented 1 0 0 Nondemented
16 87 0.0 30 0 0.7 Converted 1 0 0 Nondemented
17 88 0.0 29 489 0.7 Converted 1 0 0 Nondemented
18 92 0.5 27 1933 0.7 Converted 1 0 0 Nondemented
19 64 0.0 29 828 0.8 Nondemented 1 0 0 Nondemented
20 82 0.5 27 0 0.7 Demented 0 1 0 Demented
21 71 0.0 30 609 0.8 Nondemented 0 1 0 Demented
22 73 0.0 30 1234 0.8 Nondemented 1 0 0 Nondemented
23 77 0.0 29 0 0.7 Nondemented 1 0 0 Nondemented
24 60 0.0 30 0 0.8 Nondemented 1 0 0 Nondemented
25 86 0.0 30 0 0.7 Converted 1 0 0 Nondemented
26 90 0.5 21 0 0.7 Demented 0 1 0 Demented
27 88 0.0 30 0 0.7 Nondemented 1 0 0 Nondemented
28 89 0.0 27 405 0.7 Nondemented 1 0 0 Nondemented
29 75 0.0 29 2369 0.8 Nondemented 1 0 0 Nondemented
30 85 0.5 29 1123 0.7 Demented 1 0 0 Nondemented
31 89 0.5 26 2508 0.7 Demented 1 0 0 Nondemented
32 83 0.5 25 486 0.7 Demented 1 0 0 Nondemented
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33 86 0.5 27 567 0.7 Demented 0 1 0 Demented
34 73 0.0 28 756 0.8 Converted 1 0 0 Nondemented
35 75 0.0 30 0 0.7 Nondemented 1 0 0 Nondemented
36 66 1.0 21 248 0.7 Demented 0 1 0 Demented
37 68 1.0 19 647 0.7 Demented 0 1 0 Demented
38 69 1.0 4 1233 0.7 Demented 0 1 0 Demented
39 78 0.0 30 1510 0.7 Nondemented 1 0 0 Nondemented
40 84 0.0 28 842 0.7 Nondemented 0 1 0 Demented
41 85 0.0 29 0 0.7 Converted 1 0 0 Nondemented
42 87 0.5 24 846 0.7 Converted 0 1 0 Demented
43 67 0.0 27 726 0.8 Nondemented 1 0 0 Nondemented
44 71 0.0 28 0 0.8 Nondemented 1 0 0 Nondemented
45 85 0.0 30 1340 0.7 Nondemented 1 0 0 Nondemented
46 79 0.5 26 212 0.7 Demented 0 1 0 Demented
47 70 0.0 30 873 0.7 Nondemented 1 0 0 Nondemented
48 72 0.0 30 1651 0.7 Nondemented 1 0 0 Nondemented
49 79 0.0 29 0 0.7 Nondemented 1 0 0 Nondemented
50 83 0.0 29 1351 0.7 Nondemented 1 0 0 Nondemented
51 81 0.5 27 490 0.7 Demented 1 0 0 Nondemented
52 81 0.5 26 830 0.7 Demented 0 1 0 Demented
53 82 0.5 18 1282 0.7 Demented 0 1 0 Demented
54 62 0.5 30 497 0.7 Demented 0 1 0 Demented
55 68 0.0 29 451 0.7 Nondemented 1 0 0 Nondemented
56 71 0.0 29 1438 0.7 Nondemented 0 1 0 Demented
57 73 0.0 28 2163 0.7 Nondemented 1 0 0 Nondemented
58 90 0.0 29 743 0.7 Nondemented 1 0 0 Nondemented
59 82 0.0 30 432 0.7 Nondemented 1 0 0 Nondemented
60 82 0.0 29 672 0.7 Nondemented 1 0 0 Nondemented
61 84 0.0 29 1415 0.7 Nondemented 1 0 0 Nondemented
62 86 0.0 30 2386 0.7 Nondemented 1 0 0 Nondemented
63 84 1.0 28 365 0.7 Demented 1 0 0 Nondemented
64 70 0.0 29 0 0.8 Nondemented 1 0 0 Nondemented
65 72 0.0 28 580 0.8 Nondemented 0 1 0 Demented
66 75 0.5 22 567 0.7 Demented 0 1 0 Demented
67 66 0.0 30 0 0.7 Nondemented 1 0 0 Nondemented
68 73 0.0 29 1393 0.7 Nondemented 1 0 0 Nondemented
69 89 0.0 28 0 0.7 Nondemented 1 0 0 Nondemented
70 71 1.0 16 584 0.7 Demented 0 1 0 Demented
71 66 0.5 25 0 0.7 Demented 0 1 0 Demented
72 68 0.5 30 580 0.7 Demented 0 1 0 Demented
73 69 0.5 28 1209 0.7 Demented 1 0 0 Nondemented
74 82 0.5 26 0 0.7 Demented 0 1 0 Demented
75 78 1.0 21 0 0.7 Demented 0 1 0 Demented
76 72 1.0 27 563 0.7 Demented 0 1 0 Demented
77 75 0.0 29 680 0.8 Nondemented 1 0 0 Nondemented
78 76 0.0 30 1345 0.8 Nondemented 1 0 0 Nondemented
79 61 0.0 30 0 0.8 Nondemented 1 0 0 Nondemented
80 67 0.5 28 661 0.8 Demented 1 0 0 Nondemented
81 80 0.5 27 0 0.8 Demented 0 1 0 Demented
82 77 0.0 29 0 0.8 Nondemented 1 0 0 Nondemented
83 76 0.0 30 1631 0.8 Nondemented 1 0 0 Nondemented
84 82 0.5 29 0 0.7 Demented 1 0 0 Nondemented
85 86 0.5 30 1387 0.7 Demented 1 0 0 Nondemented
86 75 0.5 30 2002 0.7 Converted 0 1 0 Demented
87 87 0.0 30 675 0.7 Nondemented 1 0 0 Nondemented
88 70 1.0 22 0 0.7 Demented 0 1 0 Demented
89 65 0.5 17 881 0.7 Demented 0 1 0 Demented
90 78 0.5 20 558 0.7 Demented 0 1 0 Demented
91 75 0.5 28 504 0.7 Demented 0 1 0 Demented
92 76 0.5 27 0 0.7 Demented 0 1 0 Demented
93 74 0.0 30 576 0.8 Nondemented 0 1 0 Demented
94 78 0.0 29 1927 0.7 Nondemented 1 0 0 Nondemented
95 81 0.0 28 0 0.8 Nondemented 1 0 0 Nondemented
96 74 0.0 30 647 0.7 Nondemented 1 0 0 Nondemented
97 86 0.0 30 0 0.7 Nondemented 1 0 0 Nondemented
98 88 0.0 30 597 0.7 Nondemented 0 1 0 Demented
99 71 0.5 27 472 0.7 Demented 1 0 0 Nondemented
100 79 0.0 29 0 0.7 Converted 1 0 0 Nondemented
101 81 0.5 29 1042 0.7 Converted 1 0 0 Nondemented
102 84 0.5 29 2153 0.7 Converted 1 0 0 Nondemented
103 86 0.5 30 2639 0.7 Converted 1 0 0 Nondemented
104 76 0.0 28 0 0.8 Nondemented 1 0 0 Nondemented
105 78 0.0 30 0 0.7 Nondemented 1 0 0 Nondemented
106 82 0.0 29 1591 0.6 Nondemented 0 0 1 Converted
107 65 0.5 30 0 0.8 Converted 1 0 0 Nondemented
108 74 0.0 30 0 0.7 Nondemented 1 0 0 Nondemented
109 78 0.0 27 1146 0.7 Nondemented 1 0 0 Nondemented
110 74 0.5 28 0 0.7 Demented 1 0 0 Nondemented
111 75 0.5 30 636 0.7 Demented 1 0 0 Nondemented
112 73 0.0 29 0 0.8 Nondemented 1 0 0 Nondemented
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113 67 0.5 29 0 0.8 Demented 1 0 0 Nondemented
114 76 0.5 26 0 0.7 Demented 0 1 0 Demented
115 65 0.0 30 0 0.8 Nondemented 1 0 0 Nondemented
116 91 0.0 30 561 0.7 Nondemented 0 1 0 Demented
117 93 0.0 29 1553 0.7 Nondemented 0 0 1 Converted
118 68 0.0 30 0 0.8 Converted 1 0 0 Nondemented
119 82 0.0 30 1806 0.7 Nondemented 1 0 0 Nondemented
120 81 0.0 29 0 0.7 Nondemented 1 0 0 Nondemented
121 73 0.5 30 0 0.7 Demented 1 0 0 Nondemented
122 66 0.0 29 0 0.8 Nondemented 1 0 0 Nondemented
123 68 0.0 29 790 0.8 Nondemented 1 0 0 Nondemented
124 77 0.0 28 791 0.7 Nondemented 1 0 0 Nondemented
125 75 1.0 18 764 0.7 Demented 0 1 0 Demented
126 73 0.5 29 0 0.8 Demented 1 0 0 Nondemented
127 76 0.5 28 759 0.8 Demented 1 0 0 Nondemented
128 77 0.0 29 0 0.7 Nondemented 1 0 0 Nondemented
129 82 0.5 23 0 0.7 Demented 0 1 0 Demented
130 84 0.5 22 621 0.7 Demented 0 1 0 Demented
131 77 1.0 23 0 0.8 Demented 0 1 0 Demented
132 79 2.0 25 580 0.8 Demented 0 1 0 Demented
133 73 0.0 30 691 0.7 Nondemented 1 0 0 Nondemented
134 77 0.0 30 493 0.8 Nondemented 1 0 0 Nondemented
135 75 0.5 30 0 0.7 Demented 1 0 0 Nondemented
136 70 0.5 26 0 0.7 Demented 0 1 0 Demented
137 73 0.5 28 1343 0.7 Demented 1 0 0 Nondemented
138 87 0.0 30 774 0.7 Converted 1 0 0 Nondemented
139 68 0.0 26 0 0.8 Nondemented 0 1 0 Demented
140 70 0.0 28 665 0.8 Nondemented 1 0 0 Nondemented
141 89 0.0 29 0 0.8 Nondemented 1 0 0 Nondemented
142 90 0.0 28 600 0.7 Nondemented 0 1 0 Demented
143 79 0.5 26 0 0.7 Demented 0 1 0 Demented
144 74 0.5 26 0 0.7 Demented 0 1 0 Demented
145 73 0.5 23 0 0.7 Demented 0 1 0 Demented
146 66 0.0 30 182 0.7 Nondemented 1 0 0 Nondemented
147 86 0.5 26 2297 0.7 Demented 1 0 0 Nondemented
148 61 0.0 30 0 0.8 Nondemented 1 0 0 Nondemented
149 63 0.0 30 763 0.8 Nondemented 1 0 0 Nondemented
150 62 0.0 26 1180 0.7 Nondemented 1 0 0 Nondemented
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disease (AD). AD and different kinds of dementia were 
becoming a global challenge and tending to the death 
in one of three elder peoples in the USA. While the rea-
sons for these diseases have not yet completely under-
stood, they can effectively affect discourse, memory, 
and other essential psychological abilities.

Machine learning (ML) is a category of an algorithm 
that allows software applications to become more ac-
curate in outcome prediction without being explicitly 
programmed [1]. The basic premise of these methods 
is to build algorithms that can receive input data and 
use statistical analysis to predict an output. Nowadays, 
it is hard to exclude these techniques because most of 
them used in real-time purposes, and many researchers 
are thinking that it is an ideal approach to gain grounds 
toward human-level artificial intelligence (AI) [2,3]. Fur-
thermore, ML methods are similar to data mining, and 
prediction algorithms as of both require data explora-
tion to search for examples and to change program ac-
tivities in the same manner [2,4]. Recently, these tech-
niques are gradually increasing in the medical filed for 
prediction or visualization of patient data [5], develop-
ment of medical diagnostics case studies [6,7]. Present 
concentrate on late-life AD detection with the help of 
MRI demographic data and AD prediction were evalu-
ated with feature characteristics. Pruned decision trees 
(J48) model was employed to conduct this analysis, and 
model performance was assessed by accuracy, preci-
sion, and receiver operating characteristic curve (ROC). 

Methods

Patients

Abstract
Machine Learning (ML) is a contemporary technique of ar-
tificial intelligence. These methods are exponentially rising 
in the medical field, especially in diagnosis and disease 
predictions. The present study was aimed to develop a 
decision tree model to predict late-life Alzheimer’s disease 
(AD). A dataset of 150 subjects along with 373 MRI ses-
sions demographic values were considered in this paper. 
Pruned decision trees (J48) were employed to do predictive 
analysis on AD subjects. Model validation was conducted 
with cross fold (k = 10) methods. Performance measures 
were evaluated by accuracy, precision, and receiver oper-
ating characteristic (ROC) curve. Results were provided an 
accuracy of 88.7%, precision of 86.7%, and ROC of 91.8% 
was recorded.
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Introduction
There are some established plans and proposals for 

a medical practice on some external examinations and 
hard-coded into their software. However, these pro-
grams are restrained the data precision because they 
are generated from different people and conditions. 
Dementia is one of the global medical issues that was 
high in demand. Most of the studies are related to de-
mentia causes explaining the risk reduction, early med-
ication, and immediate disease finding in older adults. 
Therefore, it is mandatory to conduct some advanced 
studies dealing with these diseases.

In general, subjects with Mild Cognitive Impairment 
(MCI) are relevant groups for the cure as they are at 
the prodromal stages and a higher risk of Alzheimer’s 
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validation (CV) techniques were employed to validate 
the model. The CV is a resampling technique with a 
unique parameter ‘k,’ which used in model evalua-
tion on a limited data sample. Based ‘k’ value data 
can split into test and train groups. The cross-valida-
tion was conducted with k = 5 to avoid fitting issues, 
which means of five data folds (or subgroups) for 
testing and k-5 folds for training purposes had used. 
For generating pruning decision tree, we considered 
limited features of CDR, MMSE, n-WBV, gender, and 
MR delay since these are highly correlated with the 
group category.

Model performance was evaluated by accuracy, pre-
cision, and area under receiver operating characteristic 
curve (AU-ROC). Data preprocessing was conducted by 
selection of highly correlated features coupled with AD 
group. Model training was held between the target AD 
group and rest of the features, model drive the opera-
tion of dementia forecasting along performance mea-
sures and confusion matrix (Figure 1).

From Figure 1, it is evident 331 were correctly 
classified among 373 MRI sessions with an accuracy 
of 88.7%. Weighted average of true positive predic-
tion (i.e., precision) of 86.7% was recorded. Precision 
(or sensitivity) was calculated by the ratio of true pos-
itives and a total number of positive predictions. For 
example, the precision of true AD subjects is evaluat-
ed as 91.3% (Equation 1).

 True AD predictive AD
188 *100 91.3%

( ) 188 18
TrueADsubjects

True AD ADnon ADcon subjects
= =

+ + +
       (1)

A dataset of consists of 150 patients (i.e., subjects) 
of demographic MRI data with age ranging from 60 
to 96 were considered. All Subjects are giving in in-
formed consent and extracted from the open Access 
Series of Imaging Studies (OASIS) [8]. Each subject 
was exposed at least two scanning sessions and a 
total of 373 MR session information was available. 
All subjects associated with right hand irrespective 
gender. Present AD status was decided by the clinical 
dementia ratio (CDR) and each session was catego-
rized into 3 groups of 146 AD (demented), 190 ADnon 
(Non-demented), and 37 ADcon (converted).

Decision trees

Decision trees are the conventional model of ma-
chine learning techniques and produce results with 
higher accuracy when compared to others. An algo-
rithmic methodology developed these that data split-
ting was done by distinct conditions [9]. Many studies 
were considered decision trees as a great approach 
to conducting a predictive analysis. In AD prediction, 
we begin from the tree root feature and compare this 
feature with other tree node features. Based on the 
correlation, we pursue the branch relating to that val-
ue and jump to the next node [10]. It is important 
to keep different AD groups and other tree internal 
nodes until we achieve a leaf node with a predicated 
class.

Results
Based on the AD group, all the features were ex-

posed to the J48 decision trees model. Cross (k-fold) 

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Number of Instances

331
42

88.7399%
11.2601%

0.7992
0.1085
0.2609

28.1314%
59.4574%

373

--------- Detailed Accuracy By Class -------------

Precision ROC Area Class
Nondemented
Demented
Concerted

0.913           0.937
0.924           0.962
0.409           0.650
0.867           0.918Weighted Avg.

---------- Confusion Matrix ----------

a b c < -- classified as
188 1 1| a = Nondemented
0 134 12| b = Demented
18 10 9| c = Converted

Figure 1: Model outcome.
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MRI session classification was done as ADnon with an 
accuracy of 92%. The second branch CDR > 0, splitting 

The J48 pruned decision tree with a central node of 
CDR can be observed (Figure 2). If the branch CDR ≤ 0, 

CDR

<= 0        > 0

Nondemented (206.0/18.0)  MR Delay

<= 675        > 675

Demented (111.0/2.0)             MMSE

<= 23        > 23

Demented (16.29)            M/F

= M                          = F

<= 28        > 28                                     <= 1123    > 1123

MMSE                                                  MR Delay

nWBV               Converted (11.0/5.0)              Age             Converted (8.0/1.0)

<= 0.685     > 0.685                            <= 82         > 82

Converted (3.0/1.0)| Demented (10.0)| Demented (5.71/1.0)| Converted (2.0)|

Figure 2: Pruned decision tree outcome (CDR: Clinical Dementia Ratio; MMSE: Mini Mental State Examination; n-WBV: 
Total Brain Volume; MRI: Magnetic Resonance Imaging).

True positive rate (sensitivity)

False positive rate (1-specificity)

1 

0.5

0
0                                                                  0.5                                                                 1

Demented subject
ROC = 0.962

Threshould ROC

Specificity = TN/TN+FP

Figure 3: ROC curve of AD subjects.
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ing the dementia problem; such patients can over-
come this issue by some extent through early doctor 
approach. At the same time, reduction of MR delay 
could also a comprehensive precaution to overcome 
probability of AD happening. Therefore, there is more 
chance to save AD patients in future before they turn 
into helpless situations.
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into two branches of MR delay as the central node. It 
generated AD subject accuracy of 98.2%, along with 
another branch with an MMSE central node. This tree 
follows the bottom node with a group category. As 
mentioned, there are some specific cases ADcon (i.e., 
characterized as non-demented at first visit and sub-
sequently described into demented at a later visit and 
vice versa), which are having a more significant effect 
on other dementia factors. Generated decision tree 
predictions have correctly mapped and analyzed with 
confidence values of dementia status. Eventually, the 
highest confidence value of dementia will predict the 
future dementia status of the particular patient, and 
the mentioned model explains and predict the pa-
tient’s condition by utilizing specific benefits to help 
patients by assisting them in advance.

Discussion
In AD diagnosis of most MCI studies, MRI demo-

graphic information along with other features highly 
important in AD forecasting [11]. In this study, we have 
developed a machine-learning model with a feature re-
duction (pruning) technique to enhance classification 
accuracy. Distinct medical diagnostics have developed 
with the connection of ML implementation. But, few 
studies were only associated with AD classification. 
AD is one of the complex data analysis because it re-
quires test information, physical test, cognitive testing, 
research facility studies, and MR images [11-13]. As of 
this, we consider specific features such as CDR, MR de-
lay, MMSE, and n-WBV.

At first, the AD group was mapped with the rest of 
the features, which were highest correlated with pres-
ent AD status. The CDR value evaluated late-life AD pre-
diction. Despite age, if CDR ≤ 0, then subjects were clas-
sified as ADnon, and CDR > 0 highest percent of subjects 
were classified as AD, and rest were as ADcon. The out-
come tree was generated with different sub-branches 
and left a decision at the end, considered as a leaf of the 
corresponding branch. In the end, outcomes suggesting 
that pruned decision tree models are one of the best 
approaches with an accuracy of 88.7%.

ROC curve value was evaluated as fundamental 
analysis in medical diagnosis [14], and it’s a plot of true 
positive rate on y-axis and false positive rate on x-axis 
(Figure 3). According to [15], in diagnosis classification 
an excellent model possess ROC near to one that means 
it has effective measure of separability. If it near to 
zero said to have worst measure of separability. In this 
experiment, we got ROC of AD classification is 0.962, 
which means that comprehensive classification of AD 
patients was done.

Conclusions
Highest percent of mortality rates were happened 

due to the lack of early disease diagnosis, and AD is 
one among them. Especially, old patients were fac-
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Abstract: Dementia is one of the brain diseases that were significantly affecting the global population. Mainly it is 
exposed to older people with an association of memory loss and thinking ability. Unfortunately, there are no 
proper medications for dementia prevention. Doctors are suggesting that early prediction of this disease can 
somehow help the patient by slowdown the dementia progress. Nowadays, many computer scientists were 
using machine learning (ML) algorithms and data-mining operations in the healthcare environment for 
predicting and diagnosing diseases. The current study designed to develop an ML model for better 
classification of patients associated with dementia. For that, we developed a feature extraction method with 
the involvement of three supervised ML techniques such as support vector machines (SVM), K-nearest 
neighbor (KNN), and logistic regression (LR). Principal component analysis (PCA) was selected to extract 
relevant features related to the targeted outcome. Performance measures were assessed with accuracy, 
precision, recall, and AUC values. The accuracy of SVM, LR, and KNN was found as 0.967, 0.983, and 0.976, 
respectively. The AUC of LR (0.997) and KNN (0.966) were recorded the highest values. With the highest 
AUC values, KNN and LR were considered optimal classifiers in dementia prediction.      

1 INTRODUCTION 

Dementia is a broad category of brain diseases, and 
this can be happening very often in older adults. 
Neurodegenerative disorders are one of the leading 
causes of the development of this disease (Barragán 
Martínez et al. 2019). There are different types of 
dementia, like Alzheimer’s disease (AD), Lewy body 
dementia, and front temporal disorders. More than 
50-60% of dementia was associated with AD type 
(McKhann et al. 2011). Sometimes AD can generate 
the loss of mental ability, individual thinking, 
memory loss, and visual perception (Barragán 
Martínez et al. 2019; Mahalingam and Chen 2019).  

At present, there are is no proper prevention 
methods for dementia. Early prediction of dementia 
could enhance patient life expectancy and slow down 
the progress of this disease. Despite, machine 
learning (ML) is emerged as a branch of artificial 
intelligence (AI) and associated with techniques that 
allow computers to autonomous learning with 
nominal human involvement (Baştanlar and Özuysal 
                                                                                                          
a  https://orcid.org/0000-0003-0603-2356 

2014). Machine self-learning means that machines 
can be able to understand and identify input data. 
Ultimately, it can develop relations and predictions 
based on data feeding (Domingos 2012). Nowadays, 
these techniques are globally evolving health care 
from diagnosis to drug discovery.  

Many studies were associated with the integration 
of ML approaches in automatic analysis of 
biomedical data. Glomerular diseases (Liu et al. 
2017), detection of liver pathologies (Li, Jia, and Hu 
2015), cancer predictions (Guyon et al. 2002; Kourou 
et al. 2015), Type 2 diabetes classifications (Luo 
2016), dementia prediction (Battineni, Chintalapudi, 
and Amenta 2019), and cardiovascular disease (CVD) 
risk assessments (Kakadiaris et al. 2018) were the 
some of the applications in machine learning. Despite 
that, many researchers were attempted to find out the 
best ML algorithm in dementia predictions. For 
example, a study on the identification of developing 
dementia patients through ML obtained 84% 
accuracy (Mathotaarachchi et al. 2017).  The risk 
factors associated with dementia were well-validated 



in (Aditya and Pande 2017; Pekkala et al. 2017), with 
the usage of supervised machine learning approaches. 
However, there has been little discussion on the 
involvement of feature extraction methods in 
dementia forecasting. As of this, the present study 
aimed to propose supervised machine learning 
algorithms for AD patients to understand the patterns 
associated with knowledge discovery in AD. We 
adopt longitudinal MRI data in demented and non-
demented patients whose ages from 60 to 98. In this, 
we have studied the performance of three different 
models: SVM, Linear regression (LR), and K-nearest 
neighbor (KNN) algorithms to forecast dementia in 
older adults.  

Table 1: Statistical report of OASIS longitudinal studies 
(where EDUC: education; SES: social-economic status; 
MMSE: mini-mental state examination; CDR: clinical 
dementia rating; e-TIV: estimated total intracranial volume; 
n-WBV: normalized whole brain volume; ASF: atlas 
scaling factor; D: demented; ND: Non-demented; Con: 
Converted. 

N Variable Min-Max Range (N) Percentage
1 Subject ID - 150 100 
2 MRI ID - 373 100 

3 Group - 
D (146) 

ND (190) 
Con (37) 

39.14 
50.93 
9.91 

4 Visit 1-5 

1-1.4 (150) 
1.8-2.2(144) 
3.0-3.4 (58) 
3.8-5.0 (21) 

40.21 
38.60 
15.54 
5.62 

5 MR delay 0-2639 
0-880 (280) 

881-1759 (71) 
1760-2639 (22) 

75.06 
19.03 
5.89 

6 Sex - 
Male (160) 

Female (213) 
42.89 
57.10 

7 Hand (R) - 373 100 

8 Age 60-98 
60-73 (106) 
74-85 (213) 
86-98 (54) 

28.41 
57.10 
14.47 

9 EDUC 6-23 
6-11 (23) 

12-17 (270) 
18-23 (80) 

6.16 
72.38 
21.44 

10 SES 1-5 
1-3 (191) 
4-5 (163) 

51.20 
43.69 

11 MMSE 4-30 
4-12.5 (2) 

12.6-21.3 (33) 
21.4-30 (336) 

0.05 
8.84 

90.08 

12 CDR 0-2 
0-1(329) 
1-2 (44) 

88.19 
11.81 

13 e-TIV 1106-2004
1106-1555(263) 
1556-2004(110) 

70.51 
29.49 

14 n-WBV 
0.644-
0.837 

373 100 

15 ASF 
0.876-
1.587 

0.87-1.23 (229) 
1.23-1.58 (144) 

61.39 
38.61 

2 MATERIALS AND METHODS  

2.1 Data Selection  

An open-access series of imaging studies (OASIS) 
dataset with 150 patients with at least 60years of age 
was considered (Smith 2009). Each patient exposed 
to at least two MRI sessions, and a total of 373 MRI 
sessions were analyzed. Current AD status (i.e., along 
with 15 independent variables) classified into three 
groups: Demented, Non-demented, and Converted, 
had mentioned in Table 1.  

2.2 Feature Extraction  

Feature extraction is a method that can be used to 
remove irrelevant (redundant) features from the 
actual dataset (Guyon and Elisseeff 2006). In model 
design, feature extraction is an essential step because 
the reduction of irrelevant or partially relevant 
features can tend to have a high-performance model. 
In this study, the selection of high correlated 
attributes was measured to conduct the feature 
extraction technique. The principal component 
analysis (PCA) method was adopted to reduce the 
actual dataset features (Ruby-Figueroa 2015).  

We considered OASIS longitudinal dataset to find 
a combination of input attribute that matches actual 
data distribution. Feature extraction experiment was 
performed with the help of auto package PCA 
(auto.pca) in the ‘R’ platform (https://cran.r-
project.org/web/packages/auto.pca/index.html).  

2.3 Classifiers     

2.3.1 Support Vector Machines (SVM) 

SVM is a supervised machine learning (SML) 
approach; it is one of the highly used classification 
algorithms in machine learning (Wang and Lin 2014). 
In SVM, each data segment was represented as a 
single point in N-dimensional (where N is the total 
number of features in the actual dataset) space, with 
the forecasting of each element is being the 
estimation of specific coordinates. At that point, we 
perform classification action by finding the 
hyperplane (i.e., decision boundaries to classify data 
points) that correctly separates the output classes. The 
best hyper-plane can be chosen among the number of 
hyper-planes on the premise of the separation 
between the two categories that isolates. The plane, 
which has the highest margin between the two 
classes, is called the high margin hyper-plane.  



 

Figure 1: SVM representation example. 

The hyperplane can be described by w. x + b = 0, where 

w is a normal vector and  
௕

∥୵∥
 is the hyperplane offset along 

w vector. 

For n data points, SVM defined as(x1, y1)... (xn, yn), 
and optimization can be written as 

 

In the example (Figure 1), two hyperplanes are 
passing through support vectors (y=±1): (w. x) − b = 
−1 and (w. x) − b = 1. The distance between the two 
hyperplanes and origin is 

 

2.3.2 Linear Regression (LR)  

LR is utilized to finding the linear relation between 
the target variable and the predictor variable. It 
explores the relationship between two variables by 
the linear equation to the test data. One variable is 
viewed as a logical type, and the other variable is 
considered to be a dependent type (Kumar 2006).  

In the present study, a dataset of 150 patients’ 
information (trained data) about the relationship 
between “14 different features” and “group attribute.” 
We aimed to design a model that can predict a patient 
group based on other features. A regression line was 
obtained (with minimum error) by using trained data. 
Thus, if trained data exposed to the feature extraction 
technique, the model should predict the patient group 
with less or no error.  

 

2.3.3 K-nearest Neighbor (KNN) 

KNN is easy to understand and address the issues of 
classification and regression. It uses similar features 
to predict the estimations of new data points. 
Therefore, the new data point will be allotted a value 
based on how closely it coordinates the points in the 
trained dataset (Chen, Li, and Tang 2013).   

3 RESULTS AND DISCUSSION 

3.1 Model Outcome  

A comparison of the three machine-learning 
classifiers' performance was done. Initially, OASIS 
longitudinal dataset exposed to the R platform (Figure 
2) and model testing conducted with two datasets: an 
actual data set and dataset after PCA. Preprocessing 
involved with the prediction of missing values by the 
imputation of K-NN. Feature extraction was 
performed with the help of the PCA technique. 
Highly correlated features were selected for better 
outcomes. Each ML classifier was evaluated 
independently by cross-validation techniques (with 
k=10).  

 

Figure 2: Experimental workflow and design. 

3.2 Performance Parameters 

To predict specific patient associated with AD or not, 
a predictive model should be correctly classified the 
instances. Accuracy (A) is a ratio of correctly 
predicted outcomes to a total number of input samples 
(Powers 2011). Three supervised ML techniques 
(SVM, LR, and KNN) were used to develop 
predictive models (Table 2). The performance of 
three predictive models was analyzed using 
parameters such as precision (Davis and Goadrich 



2006), recall, and area under the curve (AUC) (Davis 
and Goadrich 2006; Powers 2011). LR produced the 
highest accuracy of about 98.3%. Followed to LR, 
KNN and SVM produced accuracy about 97.6%, and 
96.7%, respectively. Three models were generating 
similar accuracy rates. Sometimes, accuracy is not 
only enough to judge the model performance. 
Therefore, analysis of other parameters such as 
precision, recall, and AUC is mandatory to define 
model validation.   

Precision can define positive outcomes from total 
predicted positive instances. In this study, we found 
similar accuracy for two models (LR and KNN) about 
98± 0.04%. When compared with the other two 
models, SVM was producing a low positive 
prediction rate of 97.1%. On the other hand, recall 
(sensitivity) can define true positives from total actual 
positives. Both precision and recall are based on the 
understanding of the relevance of positive outcomes. 
From Table2, the sensitivity for LR predictive model 
found at about 97.4%. Alternatively, KNN was with 
the highest sensitivity rate of 98.3%, and SVM with 
the lowest sensitivity rate of 96.6% can found. 
Despite this, in machine learning, AUC can help to 
overcome classification problems. It is one of the key 
performance tools for model performance checks. 
Generally, the AUC was ranging in between [0, 1]. 
By definition, if AUC ≈ 1, then the model was 
correctly distinguishing the target class. The AUC 
values of LR, KNN, and SVM were 99.7%, 99.6%, 
and 98.3%, respectively.     

Table 2: Performance metrics of different predictive 
models. 

Model Accuracy Precision Recall AUC 

SVM 0.967 0.971 0.966 0.983 

LR 0.983 0.986 0.974 0.997 

KNN 0.976 0.982 0.983 0.996 

 

Figure 3: Graphical representation of AUC values. 

 

4 CONCLUSIONS  

In this study, three supervised ML algorithms (SVM, 
LR, and KNN) were defined to classify dementia 
patients. Feature extraction performed using the 
principal component analysis method using the R 
platform. Different performance parameters set was 
defined the model validation. Results validated that 
the three models are accurately classifying dementia 
patients with better rates from 96.7-98.3%. In 
unbalanced datasets, accuracy is not only the 
parameter to validate the model. Therefore, other 
metrics, such as precision, recall, and AUC, were also 
considered. The AUC of LR and KNN reached the 
highest value of one, such that these two predictive 
models were well classified the dementia patients. 
This work is concluding that employment PCA 
techniques were much better than the manual 
selection of attributes with minimum medical 
knowledge. Therefore, with limited features and 
integration of the PCA method, we were achieved 
better accuracy rates when compared with previous 
studies in dementia classifications. 
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Abstract: Increasing evidence suggests the utility of magnetic resonance imaging (MRI) as an
important technique for the diagnosis of Alzheimer’s disease (AD) and for predicting the onset of this
neurodegenerative disorder. In this study, we present a sophisticated machine learning (ML) model
of great accuracy to diagnose the early stages of AD. A total of 373 MRI tests belonging to 150 subjects
(age ≥ 60) were examined and analyzed in parallel with fourteen distinct features related to standard
AD diagnosis. Four ML models, such as naive Bayes (NB), artificial neural networks (ANN), K-nearest
neighbor (KNN), and support-vector machines (SVM), and the receiver operating characteristic (ROC)
curve metric were used to validate the model performance. Each model evaluation was done in three
independent experiments. In the first experiment, a manual feature selection was used for model
training, and ANN generated the highest accuracy in terms of ROC (0.812). In the second experiment,
automatic feature selection was conducted by wrapping methods, and the NB achieved the highest
ROC of 0.942. The last experiment consisted of an ensemble or hybrid modeling developed to combine
the four models. This approach resulted in an improved accuracy ROC of 0.991. We conclude that the
involvement of ensemble modeling, coupled with selective features, can predict with better accuracy
the development of AD at an early stage.

Keywords: MRI; machine learning; feature selection; ensemble methods; ROC

1. Introduction

Adult-onset dementia disorders are among the prevalent global medical issues in industrialized
countries that have a high impact on individuals’ lifestyles. These disorders represent a great challenge
for the community over their advancement from early diagnosis to end of life [1]. Statistical studies
have estimated that every three seconds, a new dementia case is developing in the world. This means
that approximately 50 million patients are suffering from this disease worldwide [1,2]. These numbers
might double every twenty years and possibly reach 100 million patients by 2040.

Dementia is a syndrome that develops largely in older adults. It affects brain functionality,
daily activities, and communication efficiency [1,3]. Alzheimer’s disease (AD) represents the prevalent
form of adult-onset dementias. Some studies have highlighted that the early diagnosis of dementia
is useful for starting treatments and for predicting outcomes of the disease but did not offer reliable
methods for the early diagnosis of AD [4–6]. At the same time, some forms of mild cognitive impairment
(MCI) do not evolve into overt dementia, whereas other forms of MCI represent a very mild form of
AD [7]. In view of this, advanced computer techniques may represent a tool for the early diagnosis of
AD and for predicting the evolution of prodromal forms of the disease or MCI into dementia.

J. Clin. Med. 2020, 9, 2146; doi:10.3390/jcm9072146 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0003-0603-2356
https://orcid.org/0000-0003-0818-306X
https://orcid.org/0000-0002-0555-1034
http://dx.doi.org/10.3390/jcm9072146
http://www.mdpi.com/journal/jcm
https://www.mdpi.com/2077-0383/9/7/2146?type=check_update&version=2


J. Clin. Med. 2020, 9, 2146 2 of 14

Magnetic resonance imaging (MRI) techniques are becoming a relevant tool for prodromal AD
and MCI evaluation [8]. A few studies based on the comparative analysis of cognitive testing and
neuroimaging have hypothesized that AD neuroimaging may be enough to predict disease [8–10].
On the other hand, dementia forecasting with machine learning (ML) is becoming a more diffused
approach in clinical practice [11]. In spite of the practical interest to quantify AD evolutions based on
MRI data, only a few studies have calculated AD incidence rates based on MRI.

Neuroimaging and primarily MRI provide essential information for AD dementia classification
and prediction [12–14]. ML models, coupled with MRI information, can provide high diagnostic
accuracy of age-related cognitive decline (ARCD) in dementia subjects [15]. It has been hypothesized
that ML-supervised methods generate the knowledge of features necessary to correlate AD sample
data [16]. It is also reported that logistic regression, coupled with cross-validation, can enhance the
accuracy of AD prediction by speech amalgamation [17]. On the other hand, support vectors, along with
feature reduction techniques, were able to classify dementia subjects with 70% accuracy [4].

The present study was designed to detect AD based on MRI findings along with the use of four ML
models, such as naive Bayes, neural networks, k-nearest neighbor, and support vectors. Each model
was validated separately by tenfold cross validation (CV). The receiver operating characteristic (ROC)
curve value was used to evaluate the model accuracy. Three individual experiments were designed
to test the model, and model performance was separately evaluated with given MRI characteristic
information. The experiments that were done included

1. Models with manual selection of MRI features,
2. Models with automatic feature selection, and
3. A single model with ensemble learning or hybrid modeling.

The subsequent part of this paper is organized as follows. In Section 2, subject information of MRI
features, feature selection techniques, and adopted models of AD prediction are analyzed. In Section 3,
the experimental results of the four models are presented. In Section 4, each model is discussed and
compared by accuracy and ROC parameters. Finally, Section 5 summarizes the main results of the
present work.

2. Materials and Methods

2.1. Subjects

A longitudinal collection of 150 subjects and 373 MRI sessions was considered for this study.
Each subject had undergone full screening of complete clinical assessment conducted at the Alzheimer’s
Disease Research Center (ADRC) of Washington University. All subjects included, both men and
women, were right-handed with a minimum age of 60 years and a maximum age of 96 years [18].
The subjects included 72 nondemented (ND) individuals and 64 demented (D) individuals (including
51 with mild to moderate AD). The remaining 14 subjects were identified as nondemented at the initial
visit but resulted as demented when examined in subsequent visits. These subjects were defined as
belonging to the converted (C) type.

Subjects undergoing age-related normal brain changes, such as leukoaraiosis, mild atrophy,
and regular dementia cases of AD, were included in this study. All MRI sessions were done in one
year. These sessions were followed by clinical tests made on 0–352 days (mean—111 days) after
MRI. Twelve confirmed demented subjects were scanned with a delay ranging from 374 to 924 days
(mean—653 days) and were included in this study as they had a clinical dementia rating (CDR) higher
than zero in previous clinical assessments. Two nondemented subjects, with a scan delay range of 392
to 431 days, were also included because they did not display dementia symptoms in successive clinical
evaluations. With this approach, each subject had at least two individual scan sessions with a mean
delay of 719 days (range: 183–1707 days) between each visit. The demographic characteristics of the
subjects are presented in Table 1. Diagnostic characteristics of subjects of different age groups on the
initial clinical visit are detailed in Table 2.
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Table 1. Demographic characteristics of the subjects investigated.

Subjects 78 D 72 ND
Male 40 D 22 ND

Female 38 D 50 ND
Age range (years) 60–96

Median 77.0
Mean ± SD 77.01 ± 7.3

D: demented; ND: nondemented; SD: standard deviation.

Table 2. Age and characteristics of the individuals investigated on the first clinical visit [18].

Non-Demented Demented

Age Group N n Mean Male Female Convert n Mean Male Female CDR 0.5/1

60s 34 23 65.71 6 17 3 11 65.67 8 3 8/3
70s 71 35 74.91 11 24 4 36 73.97 20 16 29/7
80s 41 26 84.30 9 17 7 15 82.33 7 8 13/2
90s 4 2 92.50 0 2 0 2 93.00 1 1 1/1
Total 150 86 75.82 26 59 14 64 74.95 36 29 52/13

CDR: clinical dementia rating.

2.2. MRI Acquisition Methods

Three or four separate T1-weighted MRI scans were acquired with a 1.5T Siemens Vision MRI
scanner for each single subject. A high-resolution Magnetization Prepared Rapid Acquired Gradient
Echo (MP-RAGE) was used to handle the classification of subject scans. For each subject, separate
scan files were generated using Siemens proprietary IMA to 16-bit NiFTI1 format by employing
the traditional conversion program. The MR images were corrected for interscan head rotation and
wrapped spatially into atlas space. The transformation outcome placed the brains in a correlated
coordinate system, with the bounding box as the actual atlas. With this procedure, every image
was turned out as a unique, high contrast, averaged MP-RAGE image in an atlas-space. The insight
explanation on image acquisition and postprocessing steps are detailed in [18].

The estimated total intracranial volume (eTIV) was defined manually across intracranial volume
on an atlas. Normalized whole-brain volume (nWBV) was computed with the FAST program of the
FSL software suite. Image segmentation was done to classify brain tissue as spinal fluid or white or
gray matter. This segmentation process was iteratively assigned as voxels to tissue classes based on
high probability estimates of hidden Markov random field models. In the end, nWBV was calculated
as the proportion of accumulated voxels across the brain mask, and the normalized volume was
expressed in a percentage of total gray and white matter voxels of eTIV [18]. The atrophy rates were
estimated as the slope of the line that connects to nWBV. Details of the MRI acquisition characteristics
are summarized in Table 3.

Table 3. Magnetic resonance imaging (MRI) acquisition details [17].

MR Characteristics Values

Sequence MP-Rage
TR (repetition time) 9.7 msec

TE (echo time) 4.0 msec
Flip angle 10◦

TI 20 msec
TD 200 msec

Orientation Sagittal
Thickness 1.25 mm

Gap 0 mm
Slice number 128

Resolution 256 × 256 (1 × 1 mm)

MP-RAGE: Magnetization Prepared Rapid Acquired Gradient Echo; TI: Inversion time; TD: Dead time.
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2.3. Feature Description

The dataset included 373 pieces of MRI information with 15 independent characteristics (attributes).
The description of each feature is detailed in Table 4. The subject attribute “Group” specifies the
dementia status (Demented/Nondemented) and is considered as an outcome of a binary classifier.
In this study, scoring rules of Clinical Dementia Rating (CDR), Mini-Mental State Evaluation (MMSE),
and Visit were used to determine the dementia status (Table 5). All subjects underwent similar
procedures and received the same tests, including MMSE.

Table 4. Dataset feature description.

Features Description

Subject ID Subject identification number
MRI ID Image identification number of an individual subject

Visit Number of subject visits
Gender Male/Female
Hand Right/Left handed
EDUC Subject education level (in years)

SES Socioeconomic status
MMSE Mini-mental state examination score
CDR Clinical dementia rating score
eTIV Estimated total intracranial volume result

nWBV Normalized whole brain volume result
ASF Atlas scaling factor
Age Subject age while scanning

Group Demented/Nondemented/Converted
MR delay Magnetic resonance (MR) delay is the delay time that is prior to the image procurement

Table 5. Scoring rules.

Features Range Condition

CDR 0–3 None—0, Very mild—0.5, Mild—1, Moderate—2, Extreme—3

MMSE 1–30

Extreme impairment (<10)
Moderate dementia (10–19)

Early-stage Alzheimer’s aliment (19–24)
Normal (>25)

Visit 0 or 1 Low status—0High status—1

2.4. Feature Selection

In this step, the machine performed an autonomous selection of input features that correlates to
the subject group [19]. Selection techniques are largely used and standardized to reduce unnecessary
features and to enhance model accuracy [20]. Moreover, this approach measures the relationship
between independent variables and the target outcome. Feature selection can be conducted by three
approaches, namely, filtering, regularization, and wrapping [20,21]. In this study, the wrapping
technique was used because it amplifies model performance with limited features.

2.5. Feature Importance

This method results in a “feature score” assigned to independent characteristics and a defined
score to each characteristic that is highly correlated with the subject “group”. The correlation between
each characteristic-associated group variable is shown in Figure 1. The CDR rating was excluded during
model development because it did not have the highest relevance, but it helps in subject groupings.
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In the wrapping method, feature search represents a big challenge in calculating model
accuracy [22]. Feature selection can be made as either step backward or forward, and exhaustive.
Feature search helps the identification of primary features in the enhancement of model performance.
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2.7. Model Classifiers

The purpose of the present study is to develop a sophisticated ML model of dementia detection in
aged subjects based on MRI findings. It is unanimously recognized that advanced age is the greatest
risk factor for AD [23]. In this work, four popular ML models such as neural networks (NN) [24],
k-nearest neighbor (KNN) [25], naive Bayes (NB) [26], and support vector machines (SVM) [27] were
used. These models were selected because of the easy implementation and production of high accuracy
during model development. A short description of each model is provided below.

Neural networks are able to learn from independent features to predict target outcomes. They allow
the design of an artificial neural network (ANN) to admit machines with the integration of new data [28].
ANN is largely associated with clustering (combining the unlabeled data of similar features) and
classification (trained data grouping) procedures. One of the conventional and popular neural networks
is the multilayer perception (MLP) type, which includes one or more neuron layers [29]. These neuron
layers largely intervene to develop predictive models for forecasting clinical diagnoses [30].

KNN is a comprehensive model used to perform both regression and classification problems [25].
It is also called a “lazy” learner because instead of the model development approach, it calculates the
nearest neighbors during prediction. When KNN initiates predictive analysis, it searches for nearest
neighbors (i.e., K) in the trained dataset. The neighboring distance is then calculated with the Euclidean
function, which defines the similarity between two points [31].

NB is a probabilistic model that predicts output based on Bayes’ principle. It calculates the outcome
value of individual groups, which is not associated with other variables [26]. Due to its simplicity
during target prediction, it has become popular in classification and multiclass predictions [32].

SVM is another algorithm developed for subject classification. In SVM plotting, dataset features
are described in n-dimensional space (here, “n” is feature count), and classification is done to decide
the optimal hyperplane [27]. In more detail, SVM produces an optimal hyperplane with the trained
label data that classifies new feature examples. This hyperplane is a line of binary classification
and tuning parameters, such as “kernel”, “gamma”, and “C”, that can help to improve SVM model
performance [33,34].

2.8. Performance Measures

After model development, it is important to evaluate individual model performance. This is
calculated through the prediction of the trained model of a test dataset. Different parameters like
accuracy (Acc), sensitivity (Se), specificity (Sp), and receiver operating characteristic (ROC) curve define
model performance. To calculate each parameter, the confusion matrix (CM) was used to identify
misclassifications in tabular form (Table 6). A subject is true-positive when it is diagnosed as demented
(X = D), and a subject is true-negative when it diagnosed as “nondemented” (Y = ND).

Table 6. Simple confusion matrix (CM).

Prediction X Y

X = D TP FN
Y = ND FP TN

D: demented; ND: nondemented; TP: true-positive; TN: true-negative; FP: false-positive; FN: false-negative.

The performance measures evaluated by CM are given below:

• Accuracy: Percentage of total true predicted outcomes from total outcomes, i.e., Accuracy (%) =

( TP+TN
TP+TN+FP+FN ∗ 100).

• Sensitivity: It measures the proportion of true-positives, i.e., Sensitivity (%) =
(

TP
TP+FN ∗ 100

)
.

• Specificity: It measures the proportion of true-negatives, i.e., Specificity (%) = ( TN
TP+FN ∗ 100).
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• ROC: ROC is a performance visualization tool of binary classifiers with the false-positive rate (FPR)
on the X-axis and the true-positive rate (TPR) on the Y-axis. In this study, we mainly highlight the
ROC value to determine model performance because it is frequently used in medical diagnosis.

2.9. Model Validation and Framework

Model validation can be done by either holdout (spilt) or cross-validation (CV) techniques.
During his study, we adopted the CV technique because of its popularity in target prediction, with
low bias. Simultaneously, it also applies a resampling method with limited features during model
validation [35]. In CV, the dataset is distributed into N-folds of equal size. The first fold is used for
validation, and the remaining k-1 folds are kept for training. The model framework used during
simulation is represented in Figure 3.
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2.10. Experiments Design

A large number of MRIs for a low number of subjects could generate bias in dementia detection.
Therefore, we considered final MRI scans that define the status of each subject. Three experiments
were conducted, including manual and automatic feature selection techniques.

In the first experiment, model training was done using the original dataset with manual feature
selection. In ANN, the number of layers (N) is used as a search parameter during model evaluation.
In KNN, k is tuned to one (i.e., 1NN). In SVM, the linear kernel coupled to regularization parameter
“C” and a standard deviation of radial basis function “r” are implemented in model tuning. Finally,
model validation was done with a 10-fold CV to avoid data fitting issues [36]. The model performance
was, therefore, assessed by the above parameters.

In the second experiment, limited features that occurred as the result of wrapping were considered
for conducting model training. For NB and KNN, an exhaustive search was used to calculate model
accuracy with potential feature alliance in order to select the best of them [37]. In SVM, genetic
algorithms (GAs) were used for the feature search. GAs are frequently applied in bioinformatics to
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generated models with high accuracy [38]. For ANN, the feature search was excluded, and the search
consisted of the identification of the hidden neuron layers. Model tuning was adjusted by maintaining
batch size as 100 in NB, (C, gamma) as (1.0, 1.0 × 10−12) in SVM, and k = 1 in KNN. MRI characteristics
that were highly correlated (≥0.5) with subject groups were selected (see Figure 2).

In the third experiment, the four models were combined to develop an ensemble or hybrid
model. By doing this, there is the advantage of getting a high prediction accuracy of the adopted
dataset. Moreover, combining several models can enable noise reduction (bagging), low bias (boosting),
and better predictions (voting). We used a voting technique in this experiment because of the capability
to create standalone models from trained data [39].

3. Results

3.1. Experiment 1: Handling of the Feature Set Prior to Autonomous Feature Selection

Table 7 summarizes the performance outcomes of the four models in manual feature selection.
The CDR rating was excluded as it represents a dementia factor that can affect model accuracy. From the
performance comparison matrix, it can be seen that the 1NN model offers better performance compared
to the other tested models in terms of accuracy, sensitivity, and specificity. As already mentioned,
the ROC curve plays a relevant role in diagnostic assessments to differentiate the true state subjects
and to find optimal cutoff values. Moreover, a higher ROC offers better dementia prediction in given
subjects [40]. In view of this, the ANN model correctly discriminates against the true demented
subjects, with a ROC of 0.812. The ROC of NB, 1NN, and SVM models produced ROCs of 0.753, 0.787,
and 0.796, respectively.

Table 7. Performance comparison matrix (4 × 4) of four classifiers.

Model Accuracy (%) Sensitivity (%) Specificity (%) ROC

NB 88.76 82.43 85.72 0.753
ANN 83.56 89.92 88.84 0.812
1NN 91.32 89.92 89.56 0.787
SVM 89.67 89.24 89.45 0.796

NB: naive Bayes; ANN: artificial neural networks; 1NN: 1-nearest neighbor; SVM: support vector machines;
ROC: Receiver operating charactersitcs.

3.2. Experiment 2: Automatic Feature Selection with Wrapping

Table 8 shows the model performance outcomes obtained with automatic feature selection.
With this approach, progress in terms of accuracy and ROC compared to manual feature selection was
noticeable. SVM resulted in high accuracy (96.12%), and 1NN, NB, and ANN produced an accuracy of
95.92%, 93.44%, and 83.56%, respectively. With regard to ROC, NB was a better diagnosis predictor,
with 0.942, followed by 1NN, SVM, and ANN, with 0.916, 0.834, and 0.817, respectively.

The results of the present experiment, in which performance results were better than those
obtained in the previous one, stimulated the identification of other approaches for maximizing
prediction accuracy. We, therefore, extended our work to explore the outcomes of joint modeling with
limited features.

Table 8. Model performance evaluation after feature selection (with selective features).

Model Accuracy (%) Sensitivity (%) Specificity (%) ROC

NB 93.44 98.21 97.32 0.942
ANN 83.56 89.92 88.84 0.817
1NN 95.92 94.92 97.36 0.916
SVM 96.12 94.94 98.23 0.834
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3.3. Experiment 3: AD Predictions with Hybrid Modeling

To check if a model correctly predicted the target variable (occurrence of dementia), a confusion
matrix was used. In this analysis, vertical labeling presents actual subjects, and horizontal labeling
presents predicted subjects. As shown in Figure 4, 76 subjects were correctly predicted as AD among
78 subjects, and 71 subjects were correctly predicted as non-AD among 72. Collectively, 147 subjects
were properly predicted out of 150 subjects. This results in 98% accuracy. For reaching these conclusions,
a hybrid-modeling technique, combining the four adopted models, was introduced.
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The performance of the individual subject group is presented in Table 9. Nondemented and
demented subjects were correctly diagnosed with 98.6% and 97.4% accuracy, respectively. The weighted
average ROC curve of both subjects nearly touches one. Hence, maximum AD subject predictions have
been made without bias because of hybrid modeling. The sensitivity and specificity rates produced
were 98.05% and 98%, respectively. The ROC curve of the hybrid model is shown in Figure 5. Based on
the evaluation of performance differences in the above three experiments, the intervention of hybrid
modeling with limited features resulted in being good practice in AD-related studies.J. Clin. Med. 2020, 9, x FOR PEER REVIEW 11 of 15 
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Table 9. Performance statistics of hybrid modeling.

Accuracy (%) Sensitivity (%) Specificity (%) ROC Class

98.6 98.7 98.6 0.992 ND
97.4 97.4 97.4 0.989 D
98.0 98.05 98.0 0.991 Weighted average
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4. Discussion

ML models are highly acknowledged in real-time clinical practice and also in diagnosis and
AD treatment selection [41]. Several MRI works have been integrated into ML models to make AD
predictions [12,17,42], but there has been no comprehensive model to amplify model accuracy. In view
of this, we introduced a hybrid model to enhance the precise detection of AD based on the analysis
of MRIs.

In this paper, the significance of joint ML modeling for AD-onset prediction in elderly people has
been demonstrated. Three different experiments were conducted, including manual and automatic
feature selection techniques. Fourteen independent MRI features were used to identify the AD
group using standard diagnostic approaches. Four supervised predictive models (NB, ANN, KNN,
and SVM) were used, and the obtained results indicate the prediction accuracy of each model,
constantly increasing between experiments. Figure 6 compares the prediction accuracy of the three
experiments. 1NN generated 91.32% accuracy by manual feature selection; SVM had a high 96.12%
accuracy by automatic feature selection, whereas joint or hybrid modeling enabled 98% accuracy in
predicting AD in older adults. The outcomes suggest that joint modeling, with limited features, is a
best practice to assess AD-onset by subject prediction.

In the first experiment, all the designed classifiers revealed enough performance values in terms
of true-positive rates (sensitivity). ANN and 1NN produced the highest sensitivity (89.92%), followed
by SVM (89.24%) and NB (82.43%). As mentioned, ROC curve values between 0.5 and 0.7 indicate
low prediction accuracy, between 0.7 and 0.9 indicate moderate prediction accuracy, and between 0.9
and 1 indicate high prediction accuracy [43]. From Table 7, it is obvious that the four adopted models
produce moderate prediction accuracy when checking with manual feature selection.
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To amplify model performances, the second experiment was conducted with selective features
after wrapping. This resulted in NB of 98.21% sensitivity, followed in descending order by SVM
(94.94%), ANN (94.92%), and 1NN (89.92%). Both NB and 1NN predict subject class in a comparatively
better manner, with ROC of 0.942 and 0.916, respectively. However, we argued that there could be
other possibilities for enhancing prediction accuracy to values higher than those identified in the
above two experiments. To support this claim, a hybrid model was developed by combining the four
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investigated models. A simulation of four recruited models was then performed, and thanks to this
approach, the sensitivity of the model attained the highest predicted value of 97.4%, and its ROC was
nearly equal to one (Figure 7).
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Figure 7. ROC comparison of hybrid modeling with other experiments.

The developed model produced better accuracy than other conventional models, but the present
study has some limitations. First, the limited number of subjects investigated could hamper the final
dementia subject prediction to the overall AD subjects; second, the outcome of the integration of three
experiments may have influenced the results. The use of external MRI information does not guarantee
data quality and can affect the significance of the study as a whole.

Brain studies corroborated with artificial intelligence analysis may offer relatively faster investigation
methods to modern neurological research. However, it would be preferable to avoid data limitations
and, therefore, to enlarge as much as possible the size of the sample investigated in future studies.
At the same time, it is also recommended to apply hybrid modeling to younger subjects or subjects
with mild AD and to anticipate prediction accuracy with other biological tests like cerebrospinal fluid
(CSF) or blood markers.

5. Conclusions

Adult-onset dementia disorders are serious brain pathologies caused by the loss of neuron
functions and to progressive atrophy. AD is the most common of these pathologies. It affects primarily
elderly people and has a tremendous impact on the lives of people suffering from it. In view of the long
time passing between brain lesions bringing about dementia and the onset of clinical symptomatology,
early identification of the preclinical and prodromal forms of the disease represents a challenge for
medicine. This will reduce medical costs and could contribute to undertaking therapeutic approaches
for delaying the conversion of the disease into overt dementia.

Unfortunately, the identification of AD at very early stages is extremely difficult, and there are
no tools for its simple detection. We have developed different ML models to predict dementia in the
elderly based on MRI findings. The hybrid model with selective features was found to enhance the
accuracy of dementia prediction. Experiments with manual feature selection prior to automatic feature
selection with 1NN produced 91.32% of accuracy, and the experiment of automatic feature selection
generated 96.12% accuracy by SVM. This value significantly increased using multi modeling and
produced 98% accuracy. The predictive models developed in this study forecast early AD diagnosis and
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the associated risk of developing dementia. Although it is difficult to develop longitudinal projection
models in older adults as compared to the younger population, future research in the field should
consider addressing both genetic and nongenetic features of multifactorial hazards.
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Abstract: Alzheimer’s disease (AD) is one of the common medical issues that the world is facing today. This disease 
has a high prevalence of memory loss and cognitive decline primarily in the elderly. At present, there is no 
specific treatment for this disease, but it is thought that identification of it at an early stage can help to manage 
it in a better way. Several studies used machine learning (ML) approaches for AD diagnosis and classification. 
In this study, we considered the Open Access Series of Imaging Studies-3 (OASIS-3) dataset with 2,168 
Magnetic Resonance Imaging (MRI) images of patients with very mild to different stages of cognitive decline. 
We applied deep learning-based convolution neural networks (CNN) which are well-known approaches for 
diagnosis-based studies. The model training was done by 70% of images and applied 10-fold cross-validation 
to validate the model. The developed architecture model has successfully classified the different stages of 
dementia images and achieved 83.3% accuracy which is higher than other traditional classification techniques 
like support vectors and logistic regression. 

1 INTRODUCTION 

Alzheimer's Disease (AD) is the most well-known 
and largely diffused neurodegenerative disorder 
occurring in the elderly. AD negatively affects 
patients' everyday lives, causing an advanced decline 
of cognitive capabilities such as memory, language, 
behaviour, and critical thinking (Alzheimer’s Disease 
International (ADI ) 2010). Changes in cognitive 
impairment of AD patients start slowly and evolve 
rapidly over the long run. 

Similar to other body parts, brain can change as 
people get older. Some people lost thinking and 
incidental issues with recollecting certain things. 
Excessive cognitive decline, and other significant 
changes in the manner in which brain function is 
impaired (Jaussent et al. 2012). The first symptoms of 
AD are trouble recalling recently learned data 
because Alzheimer's progressions regularly start in 
the brain areas involved in learning and memory. As 
Alzheimer's progresses progressively severe 
symptoms like confusion, mood changes, 

disorientation, unwarranted doubts about family and 
companions, and trouble talking appear. Individuals 
with cognitive decline or other potential indications 
1of AD may think that it’s difficult to remember they 
have an issue. 

AD is a type of dementia with several 
implications on the cognitive domain, affecting 
primarily thinking and memory. Specialists and 
different parental figures screen the movement of AD 
in patients by assessing the level of decrease in the 
patients' psychological capacities that are often 
classified into three stages: very mild (normal 
cognitive), mild cognitive impairment (MCI), and 
demented (Gaugler et al. 2016). Figure 1 presents 
the magnetic resonance image (MRI) images of 
different AD conditions. Although the MCI and 
dementia patients both are experiencing a reduction 
of cognitive abilities, dementia patients would suffer 
from more pronounced difficulties with thinking or 
hampered judgment. 
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Figure 1: AD presented by MRI images (a) mild dementia; 
(b) moderate demented; (c) nondemented; and (d) very 
mild demented. 

In clinical practice, the capacity to accurately 
forecast the patient diagnosis can help by adding 
appropriate medical decisions on treatment 
approaches. Recently, machine learning (ML) 
algorithms are largely applying to forecast and predict 
diseases and helping in quick decision making 
(Battineni, Sagaro, et al., 2020). Pattern-related 
approaches like logistic regression (Johnson et al., 
2014), support vector machines (Battineni, 
Chintalapudi, en Amenta 2019), and linear 
discriminant analysis (Rathore et al. 2017) are 
giving promising results in the prediction of AD 
development and early AD detection. 

Deep learning models were used unlabeled data 
during preprocessing. These are well suited for 
imbalanced datasets and achieve a knowledge base 
(Mittal et al. 2019). At present these are largely 
involved in all other problems that are not able to be 
addressed by traditional artificial intelligence (AI) 
techniques. Neural networks are the latest deep 
learning algorithms that have discovered the 
functionality of different situations. Convolutional 
neural networks (CNN) are characterized 
contributions to profits through a complex 
composition of layers that presents building blocks 
including nonlinear functions and transformations. 

Medical experts feel that deep learning could be a 
promising solution in AD identification and stage 
detection (Khan et al., 2020). For instance, 
(Basheera en Sai Ram, 2019) applied CNN 
modeling for AD diagnosis based on T2 weighted 
magnetic resonance imaging (MRI) and achieved 
90.47% accuracy. A Siamese CNN can also help to 
categorize the AD and studies reported 99.05% of 
accuracy (Mehmood et al. 2020). It is also reported 
that AD prediction from MCI using the CNN model 
reported 79.9% of accuracy(Lin et al., 2018). 
Therefore, it is assumed that an effective and 
comprehensive deep learning model can help to 
identify early AD prediction and ultimately provide 
timely treatment to 

the suffered patients. In this work, we proposed 
convolutional neural networks (CNN) model of 
deep learning type for detection of early-stage AD 
and successfully classify the MRI images on four 
different dementia stages presented in Figure 2. 

Experiments were conducted on longitudinal 
neuroimages of the OASIS-3 database that include 
MR scans of T1-weighted, T2 weighted, ASL, SWI, 
DTI sequences, FLAIR, time of flight, and resting- 
state BOLD. The rest of the paper is structured 
according to the following outline: Section 2 presents 
the dataset and proposed model architecture; section 
3 presents the experimental results, and section 4 
makes a discussion which is followed by the 
conclusion in section 5. 

 
Figure 2: Brain image classification with the CNN model 
framework. 

2 METHODS 

2.1 Dataset 

The Open Access Series of Imaging Studies 
(OASIS) contains MR scanning information that is 
openly accessible to scientific communities. They 
released OASIS-1 (cross-sectional) and OASIS-2 
(longitudinal) MRI datasets among different subjects 
and these datasets are widely used in many studies 
(Sweeney et al. 2013; Palumbo et al. 2019). OASIS- 
3 is the extension of previous datasets. It includes 
1,098 patients aging from 42 to 95 years. Among 
participants, 609 are associated with normal cognitive 
decline (very mild), and 489 were associated with 
different cognitive decline stages. OASIS-3 dataset 
incorporated both functional and structural features of 
more than 2,000 MRI images. The dataset outcome of 
four categories of MR images has presented in Figure 
3. 
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Figure 3: Dataset outcome of different dementia stages 
(3*4 image matrix). 

2.2 CNN Model Architecture 

A convolutional neural network (ConvNet) is deep 
learning type algorithms that take images as input, 
assign features based on their importance (biases and 
learnable weights) to different image objects, and 
also be able to separate one from the other 
(Krizhevsky, Sutskever, en Hinton 2017). When 
compared with other classification models, ConvNet 
possesses low complex pre-processing steps. In CNN, 
each input image is gone through sequence 
convolution layers namely pooling layers, filtering 
layers (kernels), and fully connected layers (FCs). 

To make the proposed model easier for 
understanding, we created a dense layer block and 
convolution block. The architecture of the CNN 
model is inspired by the article (Pan et al. 2020). We 
built the CNN model by using five convolutional 
slabs covered with convolution layers, feature 

engineering, max pooling, and classification. We 
have used cross-entropy as a loss function and Adam 
as an optimizer. SoftMax has been used to classify the 
multiclass AD stages since it is associated with a 
mutually exclusive relationship. The feature 
representation (fk) works as an input to the SoftMax 
layer and interprets output brain stages. A probability 
score P (k) for each class as defined as 

Pk=
  ୣ୶୮ ሺ௙௞ሻ  

∑ ௘௫௣ೖ
ೖసభ  ሺ௙௞ሻ

;where fi feature representation, and 

Cross entropy loss function as 

(L)= ∑ 𝑡𝑘. log ሺ𝑝𝑘ሻ௞
௞ୀଵ ; where tk ground truth of  

 

MRimage then 
డ௅

డ௙௞=Pk-tk. 

2.3 Experimental Setup 

Figure 4 presents the most relevant procedures 
followed to construct the feature data of brain images 
and extraction of AD images developed in this paper. 
After pre-processing steps, the given image dataset 
has been divided into training and validation files 
with standard (80:20) division. 

The procedures indicated red line are MR images 
that fed to the CNN model for training purposes. 
The model extracts the input image features of 
trained images under present parameters and supplies 
them to the SoftMax classifier for testing. The 
SoftMax function calculates the loss and model 
accuracy. For avoiding high loss, network 
parameters are adjusted by the back-propagation 
algorithm. After applying several iterations (epochs) 
the better-trained parameters have been achieved. 
The model visualization metrics like loss and 
receiver operating characteristic area under the curve 
(ROC AUC) have been taken as the performance 
parameter for AD classification since it has been 
considered one of the key metrics in multi-image 
classification techniques. The experimental setup 
and AD detection and classification have been done 
through TensorFlow and python language. 
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Figure 4: Experimental setup of the work. 

3 RESULTS 

To do efficient training on our CNN model, a back-
propagation algorithm is set to adjust the rate of 
learning and stop the model automatically once it 
reaches maximum accuracy. Since the learning rate is 
one of the hyperparameters that decides model 
accuracy and time to process the model. OASIS-3 
dataset consisted of 2168 independent MRI 
scanners. Among the given images, 1,734 are used 
for training and 434 were used for validation 
purposes. Because of the large image dataset, 10-
fold cross-validation has been used and we have 
used each fold 70% as training, 10% as validation, 
and 20% images are used testing. The distribution of 
the dataset is presented in Table 1. 

Table 1: Total image distribution. 

Total Images: 2168 

Type Percentage 

Trained images 1517 (70%) 

Testing images 434 (20%) 

Validation images 217 (10%) 
 

The model-fitting has to be done on a sample of 
100 epochs and to prevent model overfitting we stop 
the model early at the 80th iteration. The model took 
a run time of 138 min to process the trained images. 
Figure 5 presents a graphical representation of ROC. 

AUC and loss metrics after each iteration on both 
training and validation image data. 
 

 

 
Figure 5: Model AUC and loss metric outcomes. 

Though the model evaluation has been done on 
the validation dataset, we also perform the 
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experiments on the testing dataset. The testing 
dataset model AUC curve outcome has presented in 
Figure 6 and the model achieved a ROC of 83.3% 
which is considered as an optimal classifier for AD 
image detection and this value is significantly higher 
than traditional ML approaches (Battineni, 
Chintalapudi, en Amenta 2019; A. Khan en Zubair 
2020). 

 

Figure 6: The ROC curve of test data. 

4 DISCUSSION 

In this work, we presented a novel deep learning 
type CNN model for the classification of AD subjects. 
As mentioned above, AD is the most common adult- 
onset dementia and contributes about 60-70% of 
worldwide dementia cases (A. Khan en Zubair 2020). 
Unfortunately, there is no proper medication or cure 
for AD, and advancements in AD cure have been 
getting slow. Screening among people of AD risk 
given electronic health records (EHR) in preclinical 
stages may prompt early identification of AD 
pathology and suggest better approaches for 
complying with the AD beginning. Current 
biomarkers of AD have required specimen collection 
(like serum or liquid), MRI image data, or more 
sophisticated markers that at the present can be 
identified just in highly specialized centres 
(Mantzavinos en Alexiou 2017; Hadjichrysanthou et 
al. 2020). 

On the other hand, the EHRs for example medical 
records in clinical settings, or administrative health 
information don't require extra time or effort for data 
collection. Likewise, with the coming of 
digitalization, the measures of such information have 

drastically increased (Shao et al. 2019). Since it is 
omnipresent, enormous, and cost-effective, the 
digitized medical database might be a significant 
asset for testing different AD predictive models. 
Nonetheless, despite its enormous possible value, 
somehow thought about the degrees to which the 
enormous scope of EHR data can help in risk of AD 
prediction (Shao et al. 2019; Mayer et al. 2015). The 
possible prediction of future AD progression is 
incredibly significant in clinical practice also, in 
healthcare research. Advanced neuroimaging 
techniques like MRI, positron emission tomography 
(PET) is developed and presented to identify AD- 
related molecular and structural biomarkers 
(Hadjichrysanthou et al. 2020). 

Computer scientists are recommending applying 
sophisticated computing techniques like machine 
learning and deep learning. It is reported that 99.1% 
of accuracy has been achieved through the application 
of ensemble learning models for late-life AD 
detection among 150 patients (Battineni, 
Chintalapudi, et al. 2020). AD prediction among 123 
subjects with Pre-MCI and MCI was done by 
clinically transmittable ML algorithms and results 
reported the whole sample accuracy of 96.2% (Grassi 
et al. 2018). However, most of the outcomes proposed 
by these algorithms are based on demographic 
magnetic resonance image (MRI) information. 
Because of this, researchers believed that deep 
learning algorithms are the best approaches if brain 
images were included (Choi en Jin 2018). Most of the 
works associated with Machine learning in the early 
prediction of AD occurred with high success. For 
instance, it is reported that 94.1% of accuracy by 3D 
convolutional neural networks (CNN) 
(Esmaeilzadeh et al. 2018). 

This work presented a deep CNN with 10-fold 
cross-validation and achieved more than 80% 
accuracy. While applying computing methods for 
diagnosis, a small portion of datasets are presented. 
Therefore, our model maintained a random image 
selection of train, test, and validation datasets. The 
proposed model produced promising results in AD 
image classification. The most notable outcome for 
this study is the progressions among predictiveness of 
AD diseases. 

5 CONCLUSIONS 

An autonomous AD detection classifier based deep 
ConvNet framework is presented. We adopted the 
latest release of the OASIS-3 dataset that contains 
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different categories of AD datasets. For training, 
more than 1,500 images model took a bit longer 
process than expected, but it is faster than mankind 
process. Deep ConvNets do not need any handcrafted 
feature selection approach because of having 
autonomous feature tuning. The main limitation of 
the study is to adopt only a single classifier for the 
brain MRI data classification and there are other 
possibilities to do better improvements in the 
proposed model architecture. Although attained 
results of higher 80% accuracy while compared over 
traditional ML classifiers, many advancements are 
proposed to enhance the model quality. 
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Abstract: Adult-onset dementia disorders represent a challenge for modern medicine. Alzheimer’s
disease (AD) represents the most diffused form of adult-onset dementias. For half a century, the
diagnosis of AD was based on clinical and exclusion criteria, with an accuracy of 85%, which did
not allow for a definitive diagnosis, which could only be confirmed by post-mortem evaluation.
Machine learning research applied to Magnetic Resonance Imaging (MRI) techniques can contribute
to a faster diagnosis of AD and may contribute to predicting the evolution of the disease. It was also
possible to predict individual dementia of older adults with AD screening data and ML classifiers. To
predict the AD subject status, the MRI demographic information and pre-existing conditions of the
patient can help to enhance the classifier performance. In this work, we proposed a framework based
on supervised learning classifiers in the dementia subject categorization as either AD or non-AD
based on longitudinal brain MRI features. Six different supervised classifiers are incorporated for the
classification of AD subjects and results mentioned that the gradient boosting algorithm outperforms
other models with 97.58% of accuracy.

Keywords: Dementia; Alzheimer’s disease; machine learning; prediction; performance; AUROC

1. Introduction

Alzheimer’s disease (AD) is an adult-onset cognitive disorder (AOCD) which repre-
sents the sixth leading cause of mortality and the third most common disease after car-
diovascular diseases and cancer [1]. AD is mainly characterized by nerve cell widespread
loss, neuro-fibrillary tangles, and senile plaques occurring primarily in the hippocampus,
entorhinal cortex, neocortex, and other brain regions [2]. It is hypothesized that there are
44.4 million people experiencing dementia in the world and this number will probably in-
crease to 75.6 million in 2030 and 135.5 million in 2050 [3]. For half a century, the diagnosis
of AOCD was based on clinical and exclusion criteria (neuropsychological tests, laboratory,
neurological assessments, and imaging findings). The clinical criteria have an accuracy
of 85% and do not allow a definitive diagnosis, which could only be confirmed by post-
mortem evaluation. Clinical diagnosis has been associated with time with instrumental
examinations, such as analysis of the liquoral levels of specific proteins and demonstration
of cerebral atrophy with neuroimaging [4]. Further evolution of neuroimaging techniques
is associated with quantitative assessment.

Various neuroimaging approaches, such as the AD neuroimaging initiative (ADNI) [4],
were developed to identify early stages of dementia. The early diagnosis and possible
prediction of AD progression are relevant in clinical practice. Advanced neuroimaging
techniques, such as magnetic resonance imaging (MRI), have been developed and presented
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to identify AD-related molecular and structural biomarkers [5]. Clinical studies have
shown that neuroimaging modalities such as MRI can improve diagnostic accuracy [6]. In
particular, MRI can detect brain morphology abnormalities associated with mild cognitive
impairment (MCI) and has been proposed to predict the shift of MCI into AD accurately at
an early stage.

A further suggested approach is the analysis of the so-called multimodal biomarkers
that can play a relevant role in the early diagnosis of AD. Studies of Gaubert and coworkers
trained the machine learning (ML) classifier using features such as EEG, APOE4 genotype,
demographic, neuropsychological, and MRI data of 304 subjects [7]. The model is trained
to predict amyloid, neurodegeneration, and prodromal AD. It has been reported that
EEG can predict neurodegenerative disorders and demographic and MRI data are able to
predict amyloid deposition and prodromal at five years, respectively. In line with the above
investigations, ML techniques were considered useful to predict AD. This helps in quick
decision making [8]. Different supervised ML models were developed and tested their
performance in AD classification [9]. However, it is said that boosting models [10] such
as the generalized boosting model (GLM Boost) and gradient boosting machines (GBM)
outperform other models in terms of classification accuracy and specificity.

Dementia can also be predicted via integrating ML knowledge with the patient’s
clinical history. A gradient boosting model (light GBM) to predict the onset of dementia
using two years AD patient records was proposed as well [11]. This obtained 87% of
accuracy. Another approach using Recurrent Neural Networks (RNN) was presented for
the AD progression modeling [12]. This network was compared with another existing RNN
modeling with data assertion and regression method. This resulted in a 74% of accuracy
even with unlabeled data. At the same time, MRI demographic data can also help to predict
AD by learning the intradata relationships. It has been reported that with this approach
random forest (RF) models outperform other classification algorithms such as SVM [13].
In particular, deep learning models produced promising results in predicting the shift of
MCI into overt AD and in early AD detection [14]. Deep learning models used unlabeled
data during pre-processing and are well suited for imbalanced datasets and achieving a
knowledge base. It has been suggested that deep learning could be a promising solution
in AD identification and symptom detection [15]. An effective and comprehensive deep
learning model can help to an early AD prediction, and consequently, to provide timely
treatment to the suffering patients.

Discretization of MRI data efficiently handles the outliers and thereby improves the
accuracy of ML classifiers. It is reported that the successful classification of dementia
subjects can be done by supervised models associated with feature selection [16]. In
another study, patient classification was accomplished via multifactor affiliation analysis
with the inter feature relationships [17]. This technique helps in getting better patient
classification and produce higher performance compared with classification trees and
generic-distribution zones [17]. The above approaches did not highlight the importance of
data-centric ML techniques and the adoption of model boosting knowledge, which can
transform weak learners into strong learners and improve model performance.

In this study, we have applied the datacentric ML classification techniques by involv-
ing both supervised and boosting models and comparing performance in the detection of
the best model. To achieve this, we proposed an ML framework for the classification of
AD and non-AD patients, and the classifier performance was assessed and validated with
cross-validation techniques. This work has developed the presentation and comparison of
the classification models efficiently on smaller datasets. The main purpose of this inves-
tigation was to present the list of classification accuracies along with other performance
metrics, such as precision and recall. The most notable outcome for this research study is
the analysis of the progression among prediction and classification of AD detection.
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2. Methods
2.1. Subjects

The dataset was retrieved from the Open Access Series of Imaging Studies (OASIS) of
neurology. Patients in the age group between 60 and 96 years of age were chosen from a
bigger dataset of people who had taken an interest in MRI studies at Washington University.
The dataset is based on the accessibility of something like two separate visits in which
clinical and MRI data were recorded, three or more gained T1-weighted images per imaging
session and right-hand strength. The patient database was acquired from the longitudinal
pool of Alzheimer Disease Research Centre (ADRC) at Washington University [18]. The
controlled group and psychologically disabled patients’ group were enlisted in the ADRC,
especially through media offers, among which 80% of people by direct contact with the
center and the rest of people by doctors’ referral. All the patients took part as per the rules
of the Human Studies Committee, Washington University. Endorsement for public sharing
of the anonymized data was also explicitly obtained. The subject demographic information
is shown in Table 1.

Table 1. Demographic characteristics of the subjects investigated (D: demented; ND: nondemented;
SD: standard deviation).

Subjects 78 D 72 ND

Male 40 D 22 ND
Female 38 D 50 ND

Age range (years) 60–96
Median 77.0

Mean ± SD 77.01 ± 7.3

2.2. Clinical Assessment

Dementia status was assessed by the Clinical Dementia Rating (CDR) scale. The
classification of dementia or non-dementia control groups was based on clinical criteria,
without reference to psychometric execution, and any likely reasons for dementia (known
neurological, clinical, or mental issues), which would not lead to dementia. The diagnosis
of AD was made based on clinical data (obtained basically from an insurance source). The
subjects experienced a slow, gradual decrease in memory and other psychological and
functional impairments. In particular, the CDR is a dementia scale, which rates patients
for the level of impedance in every one of six areas: memory, orientation, judgment and
critical thinking, work in the community, home and hobbies, and individual care. Based
on the reliable source and subject meeting, the global CDR score is obtained from singular
evaluations in each domain. The global CDR of 0 indicates no dementia and a CDR of 0.5,
1, 2, and 3 indicate extremely mild, mild, moderate, and severe dementia, respectively [19].
The proposed techniques here take into account the clinical finding of AD in people with
a CDR of 0.5 or more prominent based on standard criteria based on histopathological
assessment in 93% of the people [20]. Those in the earliest or mildest cognitive decline
(CDR of 0.5) of AD might be considered as MCI. The diagnostic characteristics of different
age groups considered are presented in Table 2.

2.3. Image Acquisition

For each subject, three or four individual T1-weighted magnetizations prepared rapid
gradient-echo (MP-RAGE) images were acquired on a 1.5-T Vision scanner (Siemens,
Erlangen, Germany) in a single imaging session. Head movement was minimized by
padding and utilizing a thermoplastic face mask. Each image presents 14 independent
features each corresponding to classify the dependent value of the subject group. The binary
classifier subject group defines each individual either as non-demented (0) or demented (1).
Table 3 presents the description of each independent feature allowing the classification of
the subject group.
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Table 2. Age and characteristics of the individuals investigated on the first clinical visit [18].

Non-Demented Demented

Age N n Mean Male Female Convert n Mean Male Female CDR
(0.5/1)

60s 34 23 65.71 6 17 3 11 65.67 8 3 8/3
70s 71 35 74.91 11 24 4 36 73.97 20 16 29/7
80s 41 26 84.30 9 17 7 15 82.33 7 8 13/2
90s 4 2 92.50 0 2 0 2 93.00 1 1 1/1

Total 150 86 75.82 26 59 14 64 74.95 36 29 52/13

Table 3. Dataset feature description.

Features Description

Subject ID Subject identification number
MRI ID Image identification number of an individual subject

Visit Number of subject visits
Gender Male/Female
Hand Right/Left-handed
EDUC Subject education level (in years)

SES Socioeconomic status
MMSE Mini-mental state examination score
CDR Clinical dementia rating score
e-TIV Estimated total intracranial volume result

n-WBV Normalized whole brain volume result
ASF Atlas scaling factor
Age Subject age while scanning

Group Demented/Nondemented/Converted

MR delay Magnetic resonance (MR) delay is the delay time
that is before the image procurement

2.4. Experimental Setup

The experimental setup was introduced for the classification of AD patients and included

â A learning model that can effectively predict and segregate true AD subjects from a
given population.

â The development of a novel ML classifier and validate its performance.

To achieve this, OASIS longitudinal MRI data of 150 subjects were used. The ML model
pipeline approach was applied in the diagnosis of AD, to classify true dementia subjects.
The proposed ML framework can learn data by the provided classifiers and categorize
them as true and non-AD subjects. The Jupiter platform with Python libraries was used
for an experimental setup; this platform is well known by developers for processing,
assessment, and model building. Python is a high-level programming language with
dynamic semantics. Figure 1 shows the proposed method to evaluate a high-performance
model in AD patient classification.

2.4.1. Data Pre-Processing
(a) Missing Data Handling

The real-world data contain missing values and noise, also in a raw format that cannot
be directly involved in the development of ML models. To convert such noisy data into
a machine-understandable format, data pre-processing steps are needed, such as data
cleaning and data formatting. The first step in data pre-processing was the handling of
missing data. In this, we identified that the SES (1–5) feature had 19 missing values and
MMSE (0–30) had 2 missing values. For handling these two features, we replaced missing
data points with the values that occurred the most (for SES this was 2 and for MMSE this
was 30) [21].
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(b) Data Visualization

In this step, we perform an exploratory data analysis (EDA) technique that incorpo-
rates different methods and tools employed to advance the statistical insight and graphical
data representation. Figure 2 represents the value distribution of different MRI features in
the prediction of the target AD group value.

The identification of a relationship between different MRI features helps in the detec-
tion of highly correlated features with the target group. To do that correlation, a matrix was
developed to understand the relationship among given features and targeted outcomes.
The features with at least 50% of correlation with the target group are included. The
outcome of the correlation matrix heatmap can be visualized in Figure 3. Similarly, an
outlier can be a data point that varies significantly from other parameters. The dataset
outliers present the quantitative distribution of data in a way that helps in the comparison
of given features. The box plots of outliers with 50% of correlation were reported as e-TIV,
age, n-WBV, ASF, MR delay, and VISIT are presented in Figure 4.



Diagnostics 2021, 11, 2103 6 of 15
Diagnostics 2021, 11, x FOR PEER REVIEW 6 of 16 
 

 

 

Figure 2. Histogram representation of the feature value distribution. 

The identification of a relationship between different MRI features helps in the de-

tection of highly correlated features with the target group. To do that correlation, a matrix 

was developed to understand the relationship among given features and targeted out-

comes. The features with at least 50% of correlation with the target group are included. 

The outcome of the correlation matrix heatmap can be visualized in Figure 3. Similarly, 

an outlier can be a data point that varies significantly from other parameters. The dataset 

outliers present the quantitative distribution of data in a way that helps in the comparison 

of given features. The box plots of outliers with 50% of correlation were reported as e-TIV, 

age, n-WBV, ASF, MR delay, and VISIT are presented in Figure 4. 

Figure 2. Histogram representation of the feature value distribution.

Diagnostics 2021, 11, x FOR PEER REVIEW 7 of 16 
 

 

 

Figure 3. Correlation matrix heatmap after processing of missing values. 

2.4.2. Data Splitting 

In this method, we divided the dataset into three subsets for cross-validation pur-

poses. One subset is used for model prediction (i.e., test data) and the other two sets (i.e., 

training and validation) are used to assess model performance by training against new 

data. After data preprocessing, we randomly split the whole dataset into an 80:20 ratio, 

where 80% was used for training and 20% was used for testing. This will enable the ma-

chine to create new combinations every time to run the model and make it possible to 

predict it with the highest accuracy. 

After model training, the training dataset was split into two subsets for training and 

validation (Ref. Figure 5). The validation dataset helps to choose hyper tuning parameters, 

such as regularization and learning rate. These hyper tuning parameters can limit the 

model overfitting and improve accuracy. After a model has been performed efficiently 

with a validation subset, the model stops training itself at a particular epoch to avoid re-

peating the same experiment. 

Figure 3. Correlation matrix heatmap after processing of missing values.



Diagnostics 2021, 11, 2103 7 of 15
Diagnostics 2021, 11, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 4. Box plot representation of the features with high correlation. 

 

Figure 5. Schematic representation of the data splitting stage. 

2.4.3. Training of ML Classifiers 

The training of the ML classifier depends on the trained data for the prediction of the 

subject group across the given features. The classifier will then be well-tuned and vali-

dated on holdout data. Firstly, model training involves a process that ML can pass with 

the trained data and the classifier uncovers the train data patterns. Therefore, the param-

eters are inputted to the target variables. As mentioned, we aimed to propose an ML clas-

sifier for an explicit work of classifying AD and non-AD patients with the highest accu-

racy. To predict the AD patient status given to a set of independent features, we applied 

Figure 4. Box plot representation of the features with high correlation.

2.4.2. Data Splitting

In this method, we divided the dataset into three subsets for cross-validation purposes.
One subset is used for model prediction (i.e., test data) and the other two sets (i.e., training
and validation) are used to assess model performance by training against new data. After
data preprocessing, we randomly split the whole dataset into an 80:20 ratio, where 80%
was used for training and 20% was used for testing. This will enable the machine to create
new combinations every time to run the model and make it possible to predict it with the
highest accuracy.

After model training, the training dataset was split into two subsets for training and
validation (Figure 5). The validation dataset helps to choose hyper tuning parameters, such
as regularization and learning rate. These hyper tuning parameters can limit the model
overfitting and improve accuracy. After a model has been performed efficiently with a
validation subset, the model stops training itself at a particular epoch to avoid repeating
the same experiment.

2.4.3. Training of ML Classifiers

The training of the ML classifier depends on the trained data for the prediction of the
subject group across the given features. The classifier will then be well-tuned and validated
on holdout data. Firstly, model training involves a process that ML can pass with the
trained data and the classifier uncovers the train data patterns. Therefore, the parameters
are inputted to the target variables. As mentioned, we aimed to propose an ML classifier
for an explicit work of classifying AD and non-AD patients with the highest accuracy. To
predict the AD patient status given to a set of independent features, we applied different
supervised and ensemble learning models to propose an optimized ML classifier in AD
subject categorization. Four supervised algorithms, namely Random Forest (RF), Support
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Vector Machines (SVM), Naive Bayes (NB), and Logistic Regression (LR), and ensemble
learning models such as gradient boosting and Adaboosting, are employed to conduct
model training. A brief description of each model is given below.
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v Random Forest (RF)

The RF model is a bootstrap aggregating (bagging) model, which is implemented using
a set of randomly generated decision trees or applying the divide and conquer method
with random sampling, and calculates a weighted average of nodes reached [22]. For each
sample taken in the training dataset, a decision tree is formed and then trained followed
by grid search using 10-fold cross-validation with different parameters combinations. The
classifier performance of the RF model is studied using the Gini criterion.

v Support Vector Machines (SVM)

The SVM is a non-linear ML classifier, which finds a hyperplane that separates the
data points and classifies them into multi-dimensional space depending on the number
of features [23]. It can be used for classification and regression analysis but is most often
used for classification. To divide data into different classes, SVM generates the best line
or decision boundary known as the hyperplane. The extreme points or vectors chosen by
SVM to draw the hyperplane are known as support vectors. This hyperplane was crucial
in improving the SVM model’s performance. This model is implemented initially without
fine-tuning, just taking the regularization parameter, C = 1, and radial basis function as
the kernel. Then, fine-tuning is done as with grid search and different combinations of ‘C’
values and kernel functions, followed by 10-fold cross-validation. Finally, its classification
or prediction performance is studied with the help of a confusion matrix.

v Gaussian Naive Bayes (GNB)

The GNB classifier uses the Bayes theorem and is implemented using mutually inde-
pendent variables [24]. An NB classifier is a probabilistic machine learning model that uses
the Bayes theorem to perform classification:

p(A|B) = p(B|A) p(A)

p(B)

We calculate the probability of A occurring when features B occurred using Bayes’
Theorem. The prediction or assumption is based on a strong assumption of feature in-
dependence. The predictors or features are self-contained and unrelated to one another.
Because of its predictability, this model is famous in the ML environment. The GNB model
is applied as a selective classifier for dementia, which calculates the set of probabilities by
counting the frequency and combination of values in a given dataset. After training the
GNB model, a 10-fold cross-validation was performed.
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v Logistic Regression (LR)

The LR classifier is a linear type that is implemented similar to the SVM with depen-
dent and independent variables, but with a greater number of values for regularization
parameter ‘C’ [25]. This model will use the ‘sigmoid function’ for the prediction probability
and classifier decision boundaries.

v Gradient Boosting

The Gradient boosting (GB) model is an ensemble ML algorithm, which utilizes a
gradient boosting structure and is built on basis of the decision tree [26]. When it is
implemented for structured data, decision tree-based algorithms are performing best,
whereas ensemble learning algorithms outperform other algorithms, in prediction or
classification problems involving unstructured data. Here, we implement the gradient
boosting machine (GBM) model to classify dementias and predict the shift of MCI to AD.

v AdaBoost

AdaBoosting is one of the ensemble boosting classifiers, which was proposed by
Yoav Freund and Robert Schapire [27]. It is an iterative ensemble learning system, which
incorporates a sequential combination of several base/weak classifiers, resulting in an
efficient classifier with improved accuracy. The main concept of the AdaBoost algorithm is
to set the weights of classifiers and train the sample data in each iteration to predict the
unusual observations accurately with minimal error.

2.4.4. Model Validation

Model validation is the practice of identifying an optimal model through skipping
the train and test on the same data and helps to reduce complex overfitting issues. To
overcome such an issue, we performed the cross-validation (CV) method to train the model
and thereafter to calculate the accuracy [28]. It is always a challenge to validate the model
with a trained dataset, and to ensure the model is noise-free, computer scientists use CV
techniques. In this work, we applied the CV technique because it is a popular ML technique
and produces low bias models. CV technique is also known as a k-fold approach that
segregates the entire dataset into k divisions with equal size. For each iteration, the model
is trained with the remaining k-1 divisions [29]. Ultimately, performance is evaluated by
the mean of all k-folds for estimating the ability of the classifier problem. Usually, for the
imbalanced dataset, the best value for k is 5 or 10. For this work, we applied the 10-fold CV
technique, which means that model was trained and tested 10 times.

2.5. Performance Metrics

Once the ML model is created, the performance of each model can be defined in terms
of different metrics such as accuracy, sensitivity, F1-score, and area under the receiver
operating characteristic (AUROC) curve values. To do that, the confusion matrix can help
to identify misclassification in tabular form. When the subject is classified as demented (1)
is considered as a true positive, when it is classified as non-demented, (0) is considered a
true negative. The confusion matrix representation of a given dataset is shown in Table 4.

Table 4. Confusion matrix of demented subjects.

Classification 1 0

D = 1 TP FN
ND = 0 FP TN

D: demented; ND: nondemented; TP: true-positive; TN: true-negative; FP: false-positive; FN: false-negative.

The performance measures are defined by the confusion matrix explained below.
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Accuracy: The percentage of the total accurately classified outcomes from the total
outcomes. Mathematically, it is written as:

Acc (%) =
TP + TN

TP + TN + FP + FN
× 100

Precision: This is calculated as the number of true positives divided by the sum of true
positives and false positives:

Precision =
TP

TP + FP

Recall (Sensitivity): This is the ratio of true positives to the sum of true positives and
false negatives:

Sensitivity (%) =
TP

TP + FN

AU-ROC: In medical diagnosis, the classification of true positives (i.e., true demented
subjects) is vital, as leaving true subjects can lead to disease severity. In such cases, accuracy
is not the only metric to evaluate model performance; therefore, in most medical diagnosis
procedures, an ROC tool can help to visualize binary classification.

3. Results

After cross-validation, the classifiers were tested on a test data subset to understand
how they accurately predicted the status of the AD subject. The performance of each
classifier was assessed by the visualization of the confusion matrix. The confusion matrices
were used to check the ML classifiers were predicting target variables correctly or not. In
the confusion matrix, virtual labels present actual subjects and horizontal labels present
predicted values. Figure 6 depicts the confusion matrix outcomes of six algorithms and the
performance comparison of given AD classification models are presented in Table 5.

Table 5. Performance results of binary classification of each classifier.

N Classifier Accuracy Precision Recall F-Score AUROC

1. Gradient
boosting 97.58 0.98 0.96 0.97 0.981

2. SVM 96.77 0.98 0.95 0.96 0.968
3. LR 96.77 0.98 0.95 0.96 0.977
4. RF 96.77 0.96 0.96 0.96 0.983
5. AdaBoosting 96.77 0.96 0.96 0.96 0.971
6. NB 95.96 0.96 0.95 0.95 0.980

As can be seen from Table 5, all given classifiers produced better accuracy in the
classification of AD subjects, but gradient boosting outperforms all the adopted classifiers.
The highest classification accuracy was achieved by the accusation of missing data with
the most occurring values and features with high correlation values. It resulted in a
high classification accuracy of 97.58% against 95.96% of NB classifiers with low accuracy
among them. We can also observe that SVM, LR, RF, and Adaboosting have the same
accuracy of 96.77%. As mentioned by [30], for imbalanced datasets, we cannot justify model
performance through accuracy metrics; therefore, by creating ROC plots, conclusions can
be drawn by the reliability of classification performance. Figure 7 presents the AUROC
curves of the given algorithms.
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The RF classifier had the highest AUC value of 0.983, which was followed by the
values of gradient boosting (0.981) and NB classifier (0.980), and the lowest AUC value
(0.968) was generated by SVM classifiers. LR and AdaBoosting presented AUC scores
of 0.977 and 0.971, respectively. These observations indicate that boosting techniques
outperformed the supervised models; in particular, the gradient boosting technique has a
large capability in the classification of true AD subjects.
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4. Discussion

Adult-onset dementia disorders have serious effects on the lifestyles of people due
to the loss of cognitive functions and the progression of brain atrophy. AD is the most
common form of dementia and contributes to about 60–70% of adult-onset dementia cases
worldwide. Unfortunately, as already mentioned in the introduction, diagnosis of AD was
based on clinical and exclusion criteria which have an accuracy of 85% and do not allow a
definitive diagnosis, which could only be confirmed by post-mortem evaluation. On the
other hand, an early and accurate diagnosis of AD is important for timely brain health
interventions. Screening among people of AD risk in preclinical stages may prompt early
identification of AD pathology and suggest better remedial procedures for complying with
the AD beginning. Current biomarkers of AD have required specimen collection (such as
serum or liquid) or MRI data.

Finding a computational approach for early detection of AD patients who do not
exhibit any clinical signs of AD at the time of the test is an open challenge [31]. As the
disease’s prevalence increases, several symptoms are found in cognitive abilities, such as
language, memory, psychology, etc. Consequently, there is a need for precise and early
diagnosis of dementia for helping health professionals to treat the disease at an aborning
stage. There are a few techniques currently available for diagnosing adult-onset dementia.
These include CSF (cerebrospinal fluid) measures, CT (Computer-based Tomography),
MRI (Magnetic Resonance Imaging) assessments, ultrasound, and PET (photon outflow
tomography) as a blend of neurological and psychological tests [32]. These approaches are
expensive, could be partially invasive, and require time and dedicated resources. Hence,
discovering effective strategies to identify dementia and finding sub-types is a challenging
issue today.

Previous studies on dementia detection using conventional approaches, such as labo-
ratory tests, patient medical history, or behavioral changes, produced less accuracy in AD
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diagnosis. Subsequently, computer researchers incorporated ML technologies in neurolog-
ical diagnostic procedures. ML modeling was used to predict the conversion of MCI to
dementia patients with a focus on cognitive reserve among 169 subjects [33]. The outcomes
showed that the gradient boosting algorithm generated the highest accuracy, i.e., 93%, and
also proved that cognitive reserve can play an important role in the conversion of MCI
to dementia patients. It is reported that ML models can help to distinguish age-related
cognitive decline (ARCD) from different dementia types (including AD, MCI, and VD)
using neurocognitive tests [34].

Most health informatics researchers prefer data-centric machine learning approaches
in the diagnosis of early-stage AD [35–37]. In data-centric approaches, data are system-
atically changed or preprocessed for the datasets for enhancing the performance of ML
models. This is generally ignored and data collection is considered as one of the tasks. It
is all about the data quality which helps to accurate data labelling [38]. The era of data-
driven approaches in dementia assessment is generated with the capacity to alternate the
healthcare systems with more efficiency, transparency, and personalized services for AD.
The main reason behind the “dirty” AD clinical data is because there is no standardization
in pathways of dementia care. For example, the dementia-related data in Northern Ireland
is properly retrieved and analyzed based on the social and healthcare organizations, but
the set of datasets of dementia assessments across diverse practice sites can be different.
Similarly, doctors in England are also followed similar non-standardization approaches in
dementia assessments [39]. This research was further validated by proposing data-driven
approaches based on deep learning models from data dementia patients for calculating the
agitation rates [37].

The studies with the experimental setup of ML-based data-centric methods with
preprocessed MRI data can help efficient screening of MCI levels. For instance, some
authors that adopted kernel density estimations for extracting texture information from
the MR images and reported linear discriminant analysis (LDA) and SVM achieved high
detection accuracy with limited features [40]. AD diagnosis through data preprocessing-
based recursive feature elimination is proposed in [41], and results produced the highest
AD subjects classification accuracy with different levels of dementia.

There is a scarcity of works that proposed data-centric ML models on demographic
MRI features; rather, most of them focused on the image related datasets. Therefore, the
present work strives to achieve comprehensive performance analysis in the classification
of AD patients and proposed data-driven ML methodologies which utilize the data of
longitudinal MRI features. Handling of missing data was done by replacing the highest
occurrence value followed by normalization and standardization. With the adoption of
EDA techniques, we present the feature dataset distribution and inclusion of the highest
correlated features along with outliers helped us achieve the highest classification accuracy.
Thereafter, we trained six different ML classifiers without reducing the dimensions of
the data.

The data-driven ML classifiers were used to successfully classify the true dementia
subjects and these studies were carried out by applying a combination of supervised
and boosting algorithms. The advantage of conducting these types of studies can help
the early identification of AD and as a result reduce medical expenses and contribute to
undertaking therapeutic measures. Despite generating the highest classification accuracy,
this study has some limitations, namely the small sample size involved in the final dementia
subject classification. The OASIS datasets are very popular in brain studies. However,
incorporation of external MRI data cannot guarantee the data quality and this can affect
the study significance.

5. Conclusions

ML research associated with neurological studies can offer a more precise analysis of
AD. We proposed a framework based on supervised learning models in the classification
of AD patients into two categories, i.e., either AD or non-AD, based on longitudinal
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brain MRI features. It was also possible to predict individual dementia of older adults
with a screening of AD data by ML classifiers. To predict the AD subject status, the MRI
demographic information and pre-existing conditions of the patient can help to enhance
the classification accuracy. Three classifiers (RF, NB, and Gradient boosting) produced the
highest average AUC scores of 0.98. However, by considering both classification accuracy
metric and AUC, the gradient boosting technique can seem a better potential classifier
than others. In this study, we suggested a simple and efficient method of dementia subject
identification technique by using ML classifiers. More sophisticated prediction models
with detailed subject data and clinical features around the world should be investigated in
future studies.
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