
ar
X

iv
:1

70
6.

03
51

2v
1 

 [
m

at
h.

D
G

] 
 1

2 
Ju

n 
20

17

ON TRANSITIVE CONTACT AND CR ALGEBRAS

STEFANO MARINI, COSTANTINO MEDORI, MAURO NACINOVICH,

AND ANDREA SPIRO

Abstract. We consider locally homogeneous CR manifolds and show

that, under a condition only depending on their underlying contact struc-

ture, their CR automorphisms form a finite dimensional Lie group.
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Introduction

In the past years some of the Authors introduced and investigated the

notion of CR algebra (see [2, 14]) to describe the local structure of homo-

geneous CR manifolds. The understanding of local models is important e.g.

for applying the method of E. Cartan to describe the differential invariants

of CR structures. A key point is to find under which conditions the infinites-

imal automorphisms of the structure form a finite dimensional Lie algebra.

A CR structure can be defined by the datum of a smooth involutive complex

distribution. The real parts of its vectors define a real distribution. A strong

version of the condition that the CR manifold is not foliated by CR sub-

manifolds of lower dimension is that this real distribution is a (generalised)

contact distribution, i.e. that its iterated commutators span the full tangent

space. The strong interplay between CR and underlying contact structures
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was clearly exploited in the work of N. Tanaka (see [23, 24]). He consid-

ered, at each point, the nilpotent Z-graded real Lie algebra m canonically

associated to a contact structure. To describe the infinitesimal automor-

phisms, one needs to consider extensions, or prolongations G of m. In this

setting, they can be described recursively in terms of derivations ofm.When

a CR structure is imposed on the contact distribuiton, finite dimensional-

ity of the maximal prolongation is, for this Z-graded model, equivalent to

the fact that the vector valued Levi form has trivial kernel. Thus Cartan’s

method applies, via Tanaka’s theory, to the case where the associated Z-

graded Levi-Tanaka algebras (cf. [13]) are isomorphic at all points and the

Levi form is nondegenerate.

The idea of introducing CR algebras in [14] originated from the observa-

tion that many interesting homogeneous examples of CR manifolds lead to

infinite dimensional Levi-Tanaka algebras, their Levi forms having nontriv-

ial kernels. An obvious generalization of the nondegeneracy condition is

to require that the iterated Levi forms have a trivial kernel. This condition,

that was called weak nondegeneracy in [14] and is equivalent to the notion

of (Levi) k-nondegeneracy used by other authors (see e.g. [5]), is indeed

equivalent to the fact that the corresponding CR manifold is not the total

space of a CR fibration with complex fibres. The differential invariants for

CR manifolds of hypersurface type in real dimension 5 satisfying the notion

of k-nondegenericity have been so far studied by several authors with differ-

ent techniques (see e.g. [9, 15, 12, 18, 16]). Further developments in higher

dimensions appeared in [21, 19]. A theory of invariants for 2-nondegenerate

CR hypersurfaces in arbitrary dimension, modeled on Tanaka’s approach,

has been recently developed by Porter and Zelenko in [20].

In this paper we address the question on finite dimensionality of the full

group of the automorphisms of CR manifolds of arbitrary CR dimension

and CR codimension, whose CR structure is locally homogeneous. Weak

nondegeneracy is a much more restrictive condition that the one we found

to guarantee the finite dimensionality of the Lie algebra of infinitesimal CR

automorphisms. In fact, our criterion only involves the underlying contact

structure. We found this fact very interesting. Indeed, it is preliminary to

an approach where this (generalized) contact structure is a priori given as

a characteristic of the manifold on which the addition of a CR structure is

meant to modelling different geometrical or physical situations. Our con-

dition was called ideal nondegeneracy in [14], where the fact that it was

a sufficient criterion for the finite dimensionality of the maximal extension

was correctly stated; however, in the proof given there there was a gap that

we fill here in §6.

Our proof of the existence of maximal extensions of CR algebras relies on

a review of the classical work on transitive geometry (see e.g. [6, 7, 10, 11]),

allowing us to substitute formal power series to the canonical construction

of Tanaka in the Z-graded case. Our discussion is restrained mostly at a

purely algebraic level. Thus, for a better understanding of the geometrical
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significance of our results, we refer the reader to [4] for a thorough intro-

duction to CR and homogeneous CR manifolds.

Let us briefly describe the contents of the paper.

§1 collects some general notions we thought relevant for the exposition.

Contact and transitive pairs and triples and CR algebras are defined, not

restraining to finite dimensionality. We explicitly required that the (pos-

sibly infinite dimensional) Lie algebras involved have a topological struc-

ture, although this structure is implicitly defined by the requirement that the

isotropy subalgebra is closed and has finite codimension. We also list vari-

ous nondegeneracy conditions that will be investigated in the later sections.

In §2 we construct a canonical descending chain of subspaces which is

associated to a contact pair to explain contact nondegeneracy.

An analogous construction in §3, characteristic of CR algebras, describes

weak CR-nondegeneracy. We show by an example that it is in fact a much

more restrictive condition than nondegeneracy of the underlying contact

structure.

We found convenient to explain in §4 the way the abstract contact triples

of §1 relate to actual homogeneous contact manifolds, to motivate our later

use of transitive contact geometry.

In §5 we introduce graded Lie algebras and the finiteness criterion of

Noburu Tanaka.

By using Tanaka’s criterion, we prove in §6 our main result, which states

that CR algebras whose corresponding contact triple is nondegenerate are

finite dimensional.

In §7 we deal with the general construction of the representation of tran-

sitive contact pairs by structures involving vector fields with formal power

series coefficients. This is the main tool in the transitive geometry of [11]:

in this purely algebraic setting a germ of homogeneous space is substituted

by a topological Lie algebra in which the isotropy subalgebra is closed and

has finite codimension. This describes a situation in which the values of the

infinitesimal automorphisms of the structure span the full tangent space at

a point.

In the final §8 we utilize transitive geometry to construct maximal ex-

tensions of CR algebras. Then the result of §6 yields the theorem that lo-

cally homogeneous CR manifolds with a nondegenerate underlying contact

structure have a finite dimensional Lie algebra of infinitesimal CR auto-

morphisms and hence, in particular, their CR automorphisms make a finite

dimensional Lie group.

1. Definitions and preliminaries

In this section we introduce some notions which are relevant for an infini-

tesimal description of homogeneous (generalised) contact manifolds and of

various geometrical structures that can be defined on them. We are partic-

ularly interested in partial complex structures, and CR algebras (see [14])

fall in this realm.
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A topological Lie algebra is a Lie algebra g0 over a topological field k

with a fixed structure of topological Hausdorff vector space for which the

Lie product is continuous. We say that g0 is linearly compact if the inter-

section of any family of affine subspaces of g0 having the finite intersection

property has a nonempty intersection. (For details, see e.g. [7]).

In the following we assume that g0 is real and denote by g its complex-

ification. Conjugation in g is always understood with respect to the real

form g0. For a C-linear subspace L of g we set

(1.1) L̃0 = {Re(Z) | Z ∈ L}, L̆0 = L ∩ L̄ ∩ g0.

Definition 1.1. • A contact pair is the pair (g0,L0) consisting of a

linearly compact topological real Lie algebra g0 and a closed linear

subspace L0 of g0 having a finite dimensional complement in g0 and

spanning g0 as a Lie algebra.

• A contact C-pair is the pair (g0,L) consisting of a linearly compact

topological real Lie algebra g0 and a closed complex linear subspace

L of g such that (g0, L̃0) is a contact pair.

• A transitive pair (g0, h0) consists of a linearly compact topological

Lie algebra g0 and a closed subalgebra h0 having finite codimension

in g0 and not containing nontrivial ideals of g0.
• A contact triple is a triple (g0, h0,L0) such that (g0,L0) is a contact

pair, (g0, h0) a transitive pair, h0 ⊆ L0 and [h0,L0] ⊆ L0.

• A contactC-triple is a triple (g0, h0,L), such that (g0, h0) is transitive,

(g0,L) is a contact C-pair, h0 ⊂ L and [h0,L] ⊆ L .

• A fundamental almost CR pair is a contact C-pair (g0,L) for which

L̆0 is a Lie subalgebra of g0 and [L̆0,L] ⊆ L . The contact triple

(g0, L̆0, L̃0) is said to be associated to (g0,L).

• A fundamental CR algebra is an almost CR pair (g0, q) such that q
is a complex Lie subalgebra of g.

Remark 1.1. In the definition of a CR algebra (g0, q) of [14] it was not

required that (q + q̄) ∩ g0 generates g0 as a Lie algebra. When this is not the

case and (g0, q0) is a Lie algebra associated to a homogeneous CR manifold

M0, then the manifold M0 can be described, at least locally, as the product

M′
0
× N0 of a CR manifolds M′

0
having the same CR dimension of M0 and

a totally real N0. For many purposes we could reduce to M′
0
, which is a

homogeneous CR manifold whose CR algebra at a point has the same q,
while g0 is substituted by the span of q̃0.

We will use the following notions.

Definition 1.2 (Nondegenracy conditions).

We say that a contact triple (g0, h0,L0) is

• strictly nondegenerate if {X ∈ L0 | [X,L0] ⊆ L0} = h0.
• nondegenerate if any ideal of g0 which is contained in L0 is already

contained in h0.

A fundamental almost CR-pair (g0,L) is
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• strictly nondegenerate if {Z ∈ L̄ | [Z,L] ⊂ L + L̄} = L ∩ L̄ .

• weakly non-degenerate if there is no almost CR pair (g0,L
′) with

L $ L ′ ⊆ L + L̄.

• contact nondegenerate if the associated contact triple (g0, L̆0, L̃0) is

nondegenerate.

Remark 1.2. For a fundamental almost CR pair, strict nondegeneracy is

equivalent to strict nondegeneracy of the associated contact triple and im-

plies weak nondegeneracy, which in turn implies contact nondegeneracy.

2. Descending chain of a contact pair

Given a contact pair (g0,L0), we construct a descending chain of R-linear

subspaces of g0

(2.1) · · · ⊇ G−h ⊇ G1−h ⊃ · · ·G−1 ⊇ G0 ⊇ G1 ⊇ · · ·Gh ⊇ Gh+1 ⊇ · · ·

defining by recurrence

(2.2)






G−1 = L0,

Gh = Gh+1 + [Gh+1,G−1], if h < −1,

Gh = {X ∈ G−1 | [X,G−1] ⊆ Gh−1} if h ≥ 0.

Since, by assumption, L0 is a subspace of finite codimension that generates

g0 as a Lie algebra, there is a nonnegative integer µ such that G−µ = g0.
Indeed the ascending chain of subspaces

{0} = (G−1/G−1) ⊆ (G−2/G−1) ⊆ · · · (G−h/G−1) ⊆ (G−h−1/G−1) ⊆ · · ·

of the finite dimensional vector space (g0/G−1) stabilizes and, by their def-

inition, if (G−h/G−1) = (G−h−1/G−1), then G−r = G−h for all r > h. For a

contact pair
⋃

hG−h = g0, and hence G−h = G−h−1 = g0 for some h > 0.

Definition 2.1. The smallest nonnegative integer µ for which G−µ = g0 is

called the depth, or kind, of the contact pair (g0,L0).

Proposition 2.1. Let (g0,L0) be a contact pair, (2.1) the associated descend-

ing chain. Set

(2.3) c0 =
⋂

h∈Z
Gh.

Then:

(1) All Gh are closed subspaces of g0.
(2) c0 is the largest ideal of g0 contained in L0.

(3) (2.1) is a filtration of g0.
(4) For all h ≥ 0, Gh is a Lie subalgebra of g0.

Proof. (1) The closedness of G−1 was assumed in the definition of a contact

pair. For h ≥ 0 the statement follows by recurrence, because each Gh is

an intersection of the inverse images of the closed subspace Gh−1 by the

continuous linear maps G−1 ∋ X → [X, Y] ∈ g0, for Y varying in G−1.
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For h < −1, the statement is true because all R-linear subspaces V with

L0 ⊆ V ⊆ g0 are closed in g0, since L0 is closed and has finite codimension

in g0. This completes the proof of (1).

(2) and the fact that G0 is a Lie subalgebra of g0 are streighforward con-

sequences of the defintions.

To complete the proof, it suffices to check that (2.1) if a filtration. We

begin by checking the commutators of elements belonging to subspaces

with negative indices. If h < −1, and we assume that [G0,Gh+1] ⊆ Gh+1,

then

[G0,Gh] = [G0,Gh+1 + [Gh+1,G−1]]

⊆ [G0,Gh+1] + [[G0,Gh+1],G−1] + [Gh+1, [G0,G−1]]

⊆ Gh+1 + [Gh+1,G−1] = Gh.

This implies by recurrence that [G0,Gh] ⊆ Gh for all h ≤ 0.

Let now h > 0 and assume that [G0,Gh−1] ⊂ Gh−1. By (2.2) we already

have [Gh,G−1] ⊆ Gh−1. Then

[[G0,Gh],G−1] ⊆ [[G0,G−1],Gh] + [G0, [Gh,G−1]]

⊆ [Gh,G−1] + [G0,Gh−1] ⊆ Gh−1

shows, by recurrence, that [G0,Gh] ⊆ Gh for all h ≥ 0.

By (2.2) we have [Gh,G−1] ⊆ Gh−1 for all integers h and this implies that

[Gh1
,Gh2

] ⊆ Gh1+h2
when either h1 ≤ 0 or h2 ≤ 0.When both h1, h2 > 0, we

can argue by recurrence on h1 + h2. In fact

[[Gh1
,Gh2

],G−1] ⊆ [[Gh1
,G−1],Gh2

] + [Gh1
, [Gh2

,G−1]]

⊆ [Gh1−1,Gh2
]][Gh1

,Gh2−1] ⊆ Gh1+h2−1

if we assumed that [Gh′ ,Gh′′] ⊆ Gh′+h′′ when h′+h′′ < h1+h2. This completes

the proof of the fact that (2.1) is a filtration and hence of the Proposition. �

Lemma 2.2. If h0 is any Lie subalgebra of g0 such that [h0,L0] ⊆ L0, then

(2.4) [h0,Gh] ⊆ Gh, ∀h ∈ Z . �

In particular, if (g0, h0,L0) is a contact triple, then all subspaces Gh of the

canonical filtration (2.1) are h0-modules.

Lemma 2.3. Let (2.1) be the canonical filtration of the contact pair of a

contact triple (g0, h0,L0). Then,

(1) (g0, h0,L0) is strictly nondegenerate if and only if h0 = G0.

(2) (g0, h0,L0) is nondegenerate, if and only if there is a positive integer

k such that Gk ⊆ h0.

Proof. Statement (1) follows immediately from the definitions.

To prove (2), we note that, with c0 =
⋂

h∈ZGh as in (2.3), the nondegen-

eracy condition can be restated by saying that c0 ⊆ h0. This is equivalent

to the fact that the intersection of all subspaces (Gh + h0)/h0 in g0/h0 is {0}.

The statement follows because these subspaces form a descending chain of

vector subspaces of the finite dimensional vector space g0/h0. �
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Definition 2.2. The order of degeneracy of a contact triple (g0, h0,L0) is the

smallest positive integer k for which Gk ⊆ h0.

We observe that 0 is strict nondegeneracy, and degenerate corresponds to

∞-degenerate.

Example 2.4. To a contact pair (g0,L0) we can always associate the triples

(g0, {0},L0) and (g0/ a0,G0/ a0,L0/ a0), where a0 is the largest ideal of g0
which is contained in G0. The first one is a contact triple iff g0 is finite

dimensional. The second one is a contact triple provided g0/G0 is finite

dimensional.

Remark 2.5. In §4 we will explain how a contact triple is canonically as-

sociated to a homogeneous contact manifold, providing in this way a geo-

metrical motivation for Definition 1.1.

It is useful to reformulate the nondegeneracy conditions of §1 in terms of

iterated Lie brackets. We define by recurrence





[X1] = X1,

[X1, X2] = Lie product of X1 and X2 in g,

[X1, . . . , Xk, Xk+1] = [[X1, . . . , Xk], Xk+1], for k ≥ 2,

if X1, . . . , Xk+1 ∈ g,

Proposition 2.6. A necessary and sufficient condition in order that a con-

tact triple (g0, h0,L0) be k-nondegenerate is that

(2.5) ∀X ∈ L0 \ h0, ∃ X0, . . . , Xk ∈ L0 such that [X, X0, . . . , Xk] < L0.

A necessary and sufficient condition in order that a CR algebra (g0, q) be

weakly nondegenerate is that

(2.6) ∀Z ∈ q, ∃Z0, . . . , Zk ∈ q such that [Z̄, Z0, . . . , Zk] < (q + q̄). �

3. Descending chain of a CR algebra

Let (g0, q) be a CR algebra. We already noted that strict nondegeneracy

implies weak nondegeneracy. It is well known that the two conditions are

not equivalent. Set q̃ = (q + q̄) and q̃0 = q̃ ∩ g0. These are not, in general,

subalgebras, but only linear subspaces of g and g0, respectively. To better

understand weak CR nondegeneracy, we construct recursively descending

chains of complex Lie subalgebras and of complex vector subspaces of g :

q̄(0) ⊇ q̄(1) ⊇ · · · ⊇ q̄(h) ⊇ q̄h+1 ⊇ · · ·(3.1)

q̃(0) ⊇ q̃(1) ⊇ · · · ⊇ q̃(h) ⊇ q̃h+1 ⊇ · · ·(3.2)

by setting

(3.3)






q̄(0) = q̄,

q̃(0) = q + q̄,
for h = 0,

q̄(h) = {Z ∈ q̄(h−1) | [Z, q] ⊆ q̃(h−1)},

q̃(h) = q + q̄(h),
for h ≥ 1.
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Lemma 3.1. We have

(3.4)
⋂

h≥0
q̄(h) =

⋂

h≥1
{Z ∈ q̄ | [Z,W1, . . . ,Wh] ∈ q̃, ∀W1, . . . ,Wh ∈ q}.

Proof. Let us denote by A , B the left and right hand side of (3.4), respec-

tively. Since [q̄(h), q] ⊂ q + q̄(h−1) for all h > 0, we obtain that A ⊆ B.

Vice versa, if Z ∈ q̄ does not belong to A , then there is a positive integer h

with Z < q̄(h). This means that there is W1 ∈ q such that [Z,W1] < q + q̄(h−1).

If h = 1, this suffices to show that Z < B. If h > 1, write [Z,W1] = Z1 +W ′
1

with Z1 ∈ q̄ and W1 ∈ q. Since, by assumption, Z1 < q̄
(h−1) we can find

W2 ∈ q such that [Z1,W2], and hence also [Z,W1,W2], does not belong to

q + q̄(h−2). Iterating this argument, we show that there are W1, . . . ,Wh ∈ q

such that [Z,W1, . . . ,Wh] < q+ q̄ and therefore Z does not belong to B. This

completes the proof. �

Lemma 3.2. All q̄(h) are complex Lie algebras and

(3.5) q′ = q +
⋂

h≥0
ḡ(h) =

⋂

h≥0
q̃(h)

is the largest complex Lie subalgebra satisfying

(3.6) q ⊆ q′ ⊆ q + q̄.

Proof. Let us show first that the q̄(h)’s are Lie subalgebras. This holds true

for h = 0, because the conjugate q̄ of q with respect to the real form g0
is a complex Lie subalgebra of g. Assume that we already know that q̄(h)

is a Lie algebra for some h ≥ 0. If Z1, Z2 ∈ q̄
(h+1), we have [Z1, Z2] ∈ q̄(h)

because q̄(h+1) ⊆ q̄(h) and, by our inductive assumption, q̄(h) is a Lie algebra.

Moreover,

[[Z1, Z2], q] ⊆ [Z1, [Z2, q]] + [Z2, [Z1, q]] ⊆ [Z1, q̄
(h) + q] + [Z2, q̄

(h) + q]

⊆ [Z1, q̄
(h)] + [Z1, q] + [Z2, q̄

(h)] + [Z2, q] ⊆ q̄
(h) + q,

shows that [Z1, Z2] ∈ q̄(h+1). Clearly the right hand side of (3.5) is a Lie

subalgebra of g with q ⊆ q′ ⊆ q + q̄. By Lemma 3.1 it is the maximal

complex Lie subalgebra of g containing q and contained in q + q̄. In fact it

contains l ∩ q̄ for all complex Lie subalgebras with q ⊆ l ⊆ q + q̄. �

Proposition 3.3. The following are equivalent

(1) (g0, q) is weakly CR nondegenerate;

(2)
⋂

h≥0q̄
(h) = q ∩ q̄;

(3)
⋂

h≥0 q̃
(h) = q. �

Sequences (3.1) and (3.2) can be used to measure weak nondegeneracy.

Let the lenght of a descending chain of vector spaces

V0 ⊇ V1 ⊇ · · · ⊇ Vh ⊇ Vh+1 ⊇ · · ·

be the smallest integer ν such that Vh = Vν for all h ≥ ν. By Lemma 3.2 we

have the statement:

Proposition 3.4. The sequences (3.1) and (3.2) have the same lenght ν and

all their terms with indices smaller than ν are different. �
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Definition 3.1. We say that (g0, q) is (ν−1)-nondegenerate if the descending

chains (3.1) and (3.2) have finite lenght ν.

Remark 3.5. Strict nondegeneracy is 0-nondegeneracy, while weak nonde-

generacy is ν-nondegeneracy for some ν < +∞.

Example 3.6. For CR algebras, contact is a weaker notion than weak non-

degeneracy. A score of examples can be obtained by considering real orbits

in complex flag manifolds ( see [1, 3]) whose CR algebras are fundamental,

but not weakly nondegenerate. We give here a simple example, consisting

of the minimal orbit M0 of SU(1, 5) in the complex flag manifold M con-

sisting of triples (ℓ2, ℓ3, ℓ4) of complex 2, 3, 4-planes in C6 with ℓ2 ⊂ ℓ3 ⊂ ℓ4.

A point of M0 is a flag in the SU(1, 5)-orthogonal of an isotropic line. Let

us give the explicit matrix representation. We define g0 ≃ su(1, 5) and

q, q′ ⊂ sl6(C) by

g0 =










λ ζ1 ζ2 ζ3 ζ4 iσ

z1 i t1 −w̄1 −w̄2 −w̄3 −ζ̄1

z2 w1 i t2 −w̄4 −w̄5 −ζ̄2

z3 w2 w4 i t3 −w̄6 −ζ̄3

z4 w3 w5 w6 i t4 −ζ̄4

i s −z̄1 −z̄2 −z̄3 −z̄4 −λ̄





∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λ, zi, ζi,wi ∈ C, s, σ, ti ∈ R,

2 Im(λ) +
∑

ti = 0






,

q =










∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗

0 0 0 ∗ ∗ ∗

0 0 0 0 ∗ ∗

0 0 0 0 ∗ ∗










, q′ =










∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗

0 0 0 0 ∗ ∗

0 0 0 0 ∗ ∗










,

q + q̄ = q′ + q̄′ =










∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

0 ∗ 0 0 ∗ ∗










.

Then (g0, q) is not weakly nondegenerate, because q $ q′ ⊂ q + q̄, while

(g0, q̆0, q̃0) is a contact triple which is nondegenerate because su(1, 5) is sim-

ple and therefore does not contain nontrivial ideals.

4. Homogeneous contact structures

Let G0 be a Lie group, acting transitively on a smooth manifold M0. Fix

a point p0 of M0. The injective quotient of

π : G0 ∋ x→ x · p0 ∈ M0

yields the idenfication M0 ≈ G0 /H0 of M0 with the quotient of G0 by the

stabilizer H0 of p0. A G0-equivariant contact structure on M0 is the datum
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of a constant rank distribution L ∗ on M0, which is invariant for the left

translations by elements of G0 :

x ·L ∗ = L
∗, ∀x ∈ G0 .

The pullback L = π∗(L ∗) is a left-invariant distribution on G0 generated

by a subspace L0 of left-invariant vector fields on G0, containing the Lie

algebra h0 of H0.Moreover, the vector subspace

Lp0
= {Θp0

| Θ ∈ L
∗} ⊆ Tp0

M0

must be invariant for the differential at p0 of the translations by elements of

H0. This yields

Ad(x)(L0) = L0, ∀x ∈ H0,

which also implies that [h0,L0] ⊆ L0 for the Lie algebra h0 of H0.

Vice versa, il L0 is an Ad(H0)-invariant linear subspace of the Lie al-

gebra g0 of G0, then the push-forward on M0 of the distribution on G0

generated by the left-invariant vector fields corresponding to the elements

of L0 is a smooth distribution L ∗ = L∗0 on M0, which is invariant by the

G0-translations on M0.

Assume now that we do not know a priori that M0 is a homogeneous

space, but we are given a constant rank distribution L ∗ on M0 and a Lie

algebra g∗0 of smooth vector fields on M0 which leave L ∗ invariant: this

means that [g∗
0
,L ∗] ⊆ L ∗.

We say that g∗
0

is transitive at p0 if

{X∗p0
∈ Tp0

M0 | X
∗ ∈ g∗0} = Tp0

M0.

Let g0 = g
∗
0

opp, where the superscript “opp” means that, if we denote by

X the element of g0 corresponding to the vector field X∗ of g∗0, then

[X, Y]∗ = −[X∗, Y∗], ∀X, Y ∈ g0.

With Lp0
= {Θp0

| Θ ∈ L
∗}, let us set

h0 = {X ∈ g0 | X
∗
p0
= 0}, L0 = {X ∈ g0 | X

∗
p0
∈ Lp0

}.

Proposition 4.1. If g∗
0

is transitive, then (g0, h0,L0) is a transitive contact

triple.

Proof. The quotient g0/h0 maps injectively into Tp0
M0 and therefore is finite

dimensional. Let X ∈ L0 and Y ∈ h0. Then we can find a vector field Θ,

vanishing at p0, such that X∗ + Θ ∈ L∗0 . Then

[Y∗, X∗ + Θ] = [X, Y]∗ + [Y∗,Θ] ∈ L∗0 .

Since [Y∗,Θ] vanishes at p0, this means that [X, Y]∗p0
∈ Lp0

, showing that

[Y, X] ∈ L0. �
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5. Z-graded Lie algebras and a Tanaka’s theorem

We will use the following criterion ([24, §11]):

Proposition 5.1 (N.Tanaka). Let

(5.1) G =
⊕

h≥−µ
Gh

be a Z-graded real Lie algebra, with dimR(Gh) < +∞ for all h ∈ Z, having

finitely many summands with negative index. Assume that G is transitive:

this means that

{η ∈ Gh | [η,G−1] = {0}} = {0}, if h ≥ 0.

Then a necessary and sufficient condition for G to be finite dimensional is

that

(5.2) G′ = {η ∈ G | [η,Gh] = {0} for h ≤ −2}

be finite dimensional. �

Let us comment on this criterion. In the following, we assume that G is

transitive.

Clearly, G′ is a Z-graded Lie subalgebra of G and

(5.3) [G′h,G−1] ⊆ G′h−1, ∀h ∈ Z .

Given real vector spaces V,W, let M h(V,W) denote the space of W-valued

h-multilinear forms on V and Symmh(V,W) the subspace consisting of those

which are symmetric.

We define a map η → ηh of G into M h(G−1,G) by associating to each

η ∈ G the multilinear form

ηh(ξ1, . . . , ξh) = [η, ξ1, . . . , ξh], for ξ1, . . . , ξh ∈ G−1.

We also consider the alternate G−2-valued bilinear form on G−1 :

(5.4) ω(ξ1, ξ2) = [ξ1, ξ2], for ξ1, ξ2 ∈ G−1

and set

(5.5) sp(ω) = {T ∈ glR(G−1) | ω(T (ξ1), ξ2) + ω(ξ1, T (ξ2)) = 0}.

Lemma 5.2. For each h ≥ 0, the maps

(5.6)






G0 ∋ η −→ η1 ∈ glR(G−1), for h = 0,

Gh ∋ η −→ ηh ∈ M h(G−1,G0), for h > 0,

are injective.

(5.7)






G′0 ⊆ {η ∈ G0 | η1 ∈ sp(ω)}, for h = 0,

G′
h
⊆ {η ∈ Gh | ηk ∈ Symmk(G−1,Gh−k)}, for h, k > 0.
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Proof. The fact that the maps in (5.6) are injective is a straightforward con-

sequence of transitivity.

If η ∈ G0 and [η,G−2] = 0, then

0 = [η, [ξ1, ξ2]] = [[η, ξ1], ξ2] + [ξ1, [η, ξ2]] = ω(η1(ξ1), η2) + ω(ξ1, η1(ξ2))

shows that η1 ∈ sp(ω). In the same way, if η ∈ G and [η,G−2] = 0, we

obtain that

[η, ξ1, ξ2] = [[η, ξ1], ξ2] = [[η, ξ2], ξ1] = [η, ξ2, ξ1], ∀η ∈ G′, ∀ξ1, ξ2 ∈ G−1.

This gives at once that [η, ξ1, ξ2, ξ3] = [η, ξ2, ξ1, ξ3] for η ∈ G′ and ξ1, ξ2, ξ3 ∈

G−1, while

0 = [η, [ξ1, ξ2, ξ3]] = [η, [[ξ1, ξ2], ξ3]] = [[η, [ξ1, ξ2]], ξ3] + [[ξ1, ξ2], [η, ξ3]]

= [[ξ1, [η, ξ3]], ξ2] + [ξ1, [ξ2, [η, ξ3]]] = −[η, ξ3, ξ1, ξ2] + [η, ξ3, ξ2, ξ1]

shows that also [η, ξ1, ξ2, ξ3] = [η, ξ1, ξ3, ξ2] for η ∈ G′ and ξ1, ξ2, ξ3 ∈ G−1.

This yields symmetry on the triples. Arguing recursively on k, we obtain,

for all k > 3,

0 = [[η, ξ1, . . . , ξk−2], [ξk−1, ξk]]

= [η, ξ1, . . . , ξk−1, ξk] − [η, ξ1, . . . , ξk, ξk−1].

This shows that [η, ξ1, . . . , ξk−1, ξk] = [η, ξ1, . . . , ξk, ξk−1]. Thus ηk stays in-

variant under the transposition (k − 1, k). By the recursive assumption, it is

also invariant under the transpositions ( j − 1, j) for 2 ≤ j < k and thus is

invariant under the full permutation group of {1, . . . , k}. �

Example 5.3. Let V be a real vector space of finite dimension n, viewed as a

degree (−1)-homogeneous Abelian real Lie algebra. Then its maximal Levi-

Tanaka extension is isomorphic to the Z-graded Lie algebra P of vector

fields with polynomial coefficients in Rn, the grading being defined by

(5.8) Ph =

{
∑n

i=1
pi(x)

∂

∂xi

∣
∣
∣
∣
∣
pi ∈ Rh+1[x1, . . . , xn]

}

, h ≥ −1.

HereRh+1[x1, . . . , xn] denotes the vector space of homogeneous polynomials

of degree (h + 1) in the x1, . . . , xn variables.

If n = 2m and V has a complex structure, then the Levi-Tanaka extension

of V ⊕ glC(V) is isomorphic to the Z-graded complex Lie algebraPC, of ho-

molorphic complex vector fields with holomorphic polynomial coefficients,

with the gradation defined by

(5.9) PCh =

{
∑m

i=1
pi(z)

∂

∂zi

∣
∣
∣
∣
∣
pi ∈ Ch+1[z1, . . . , zn]

}

, h ≥ −1.

HereCh+1[z1, . . . , zn] denotes the vector space of homogeneous holomorphic

polynomials of degree (h + 1) in the z1, . . . , zn variables.

Proof. The fact that P is a maximal transitive extension of P−1 ≃ V is a

consequence of the fact that [Ph,P−1] = Ph−1 for h ≥ 0.
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Analogously, when V has a complex structure,PC is a maximal transitive

extensions of V ⊕ glC(V) ≃ PC
−1
⊕ PC

0
because [PC

h
,PC
−1

] = PC
h−1

for all

h ≥ 0. �

6. A finitness criterion for CR algebras

We recall that the contact triple associated to a fundamental CR algebra

(g0, q) is

(g0, q̆0, q̃0) = (g0, q ∩ q̄ ∩ g0, (q + q̄) ∩ g0).

We consider the canonical filtration (2.1) of the contact pair (g0, q̃0) and the

corresponding Z-graded Lie algebra

(6.1) G =
⊕

h∈Z
Gh, with Gh = Gh/Gh+1.

Denote by πh : Gh → Gh = Gh/Gh+1 the projections onto the quotients.

Lemma 6.1 (Partial complex structure). There is a unique complex struc-

ture J on G−1, defined by

(6.2) J(π−1(X)) = π−1(Y) iff X + iY ∈ q.

The operator J ∈ glR(G−1) satisfies

(6.3) [J(ξ1), J(ξ2)] = [ξ1, ξ2], [J(ξ1), ξ2] + [ξ1, J(ξ2)] = 0, ∀ξ1, ξ2 ∈ G−1.

Proof. To show that J is well defined, we need to verify that, if X, Y ∈ g0,

X ∈ G0 and X + iY ∈ q, then Y ∈ G0. If X′ ∈ G−1, then we can find Y ′ ∈ G−1

such that X′ + iY ′ ∈ q. Then

[X + iY, X′ + iY ′] = [X, X′] − [Y, Y ′] + i ([X, Y ′] + [Y, X′]) ∈ q.(6.4)

Since by assumption both [X, X′] and [X, Y ′] belong to G−1, then also [Y, X′]

and [Y, Y ′] belong to G−1. This shows that [Y,G−1] ⊂ G−1, and then Y ∈ G0.

Formula (6.4) holds in general for X + iY, X′ + iY ′ ∈ q, yielding (6.3). �

Lemma 6.2. The G−2-valued form (5.4) is nondegenerate, i.e.

ξ ∈ G−1, ω(ξ, ξ′) = 0, ∀ξ′ ∈ G−1 ⇐⇒ ξ = 0. �

Lemma 6.3. Let (g0, q) be a CR algebra and (2.1) the associatedZ-filtration.

assume that there is a nonnegative integer k such that Gk ⊂ h0 = q ∩ q̄ ∩ g0.
Then G′

2k+1
= {0}.

Proof. By the assumption, any Y of Gk belongs to q and therefore

[Y, Z1, . . . , Zk+2] ∈ q, ∀Z1, . . . , Zk+2 ∈ q.

In the complexification of G, this yelds the equation

[θ, ξ1 + iJ(ξ1), . . . , ξk+2 + iJ(ξk+2)] = 0, ∀θ ∈ Gk, ∀ξ1, . . . , ξk+2 ∈ G−1,

as π−2(q) = {0}, because q is contained in the complexification of G−1.

Let now η ∈ G2k+1. Fix ξ ∈ G−1 and consider, for 0 ≤ h ≤ 2k + 3, the

(2k + 4) vectors of G−2 :

vh = [η, ξ1, . . . , ξ2k+3], with ξi = J(ξ) for i ≤ h and ξi = ξ for h < i ≤ 2k + 3.
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For each choice of ξ1, . . . , ξk+1 inG−1, the multi-commutator [η, ξ1, . . . , ξk+1]

belongs toGk. Thus, setting, for each integer h with 0 ≤ h ≤ k + 1, ξh
i
= J(ξ)

if 1 ≤ i ≤ h and ξh
i
= ξ if h < i ≤ k + 1, the real and imaginary parts of

[η, ξh
0, . . . , ξ

h
k, Z1, . . . , Zk+2] = 0, with Z1 = · · · = Zk+2 = ξ + iJ(ξ),

yield (2k+ 4) linear combinations of v0, . . . , v2k+3 which sum to zero. These

can be written in the form

(6.5) (v0, v1, . . . , v2k+3) · Mk = 0,

where Mk is a real (2k + 4) × (2k + 4) matrix Mk whose columns are the

coefficients of the real and imaginary parts of the polynomials th(t − i)k+2,

for 0 ≤ t ≤ (k + 1).

It is easy to check that these polynomials form a basis of the (2k + 4)-

dimensional C-vector space C2k+3[t] of polynomials of degree less or equal

to (2k + 3).

In fact their C-linear span contains the (2k + 4) polynomials (t − i)k+h+2 and

(t + i)k+h+2, for 0 ≤ h ≤ k + 1. These are linearly independent and hence form a

basis of C2k+3[t]. Indeed, let ah, bh be complex coefficients for which

f (t) =
∑k+1

h=0
(ah(t − i)k+h+2 + bh(t + i)k+h+2) = 0.

Let r ≤ k + 1 and assume that we already know that ah = 0 and bh = 0 if h > r, this

being obviously the case when r = (k + 1). Then

0 =
i

2 · (2k + r)!

d2k+r−1 f (−i)

dt2k+r−1
= ar, 0 =

−i

2 · (2k + r)!

d2k+r−1 f (i)

dt2k+r−1
= br

shows that also ar = 0 and br = 0. By recurrence, this proves that all coefficients

ah, bh must be zero and thus the claimed linear independence of the polynomials

(t − i)k+h+2, (t + i)k+h+2.

Hence Mk is nondegenerate and (6.5) tells us that all vectors v0, . . . , v2k+3

are zero. In particular v0 = 0 and therefore we proved that

[η, ξ, . . . . . . , ξ
︸       ︷︷       ︸

(2k + 3) times

] = 0, ∀ξ ∈ G−1.

Since, by Lemma 5.2, the multilinear G−2-valued form η2k+3 is symmetric

in its arguments, it follows by polarization (see e.g. [25, p.5]) that

[η, ξ1, . . . , ξ2k+3] = 0 for all ξ1, . . . , ξ2k+3 ∈ G−1.

Since ω is nondegenerate, this yields

[η, ξ1, . . . , ξ2k+2] = 0 for all ξ1, . . . , ξ2k+2 ∈ G−1

and hence, by transitivity, η = 0. �

Thus we obtain, using also [14, Theorem 10.2],

Theorem 6.4. A CR algebra (g0, q) for which the associated contact triple

(g0, q̆0, q̃0) = (g0, q∩q̄∩g0, (q+q̄)∩g0) is nondegenerate is finite dimensional.

�
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We will prove in §8 that, under the assumptions of Theorem 6.4, (g0, q)
has a maximal extension and that this is finite dimensional. To this aim we

will generalise, in §7, the construction of §4, by a procedure similar to that

of [7, 11].

7. Transitive pairs and generalised contact distributions

7.1. Vector fields with formal power series coefficients. Let V be a finite

dimensional vector space. The space F of formal power series associated

to V is the infinite direct sum

(7.1) F =
∑

h≥0
Symmh(V) =

{∑∞

h=0
αh

∣
∣
∣
∣αh ∈ Symmh(V) ∀h

}

,

where Symmh(V) = Symmh(V,R) are the real-valued homogeneous multilin-

ear symmetric forms of degree h (cf. § 5). The coefficient α0 is the value at

0 of
∑∞

h=0αh.With the standard operations, F is a local ring, whose maximal

ideal F0 consists of formal power series vanishing at 0.

Each vector v of V defines a derivation Dv on F , whose action on each

summand Symmh(V) is described by

(7.2)






Dvα = 0 if α ∈ Symm0(V) ≃ R,

Dvα = h · v⌋α ∈ Symmh−1(V), if α ∈ Symmh(V), for h > 0,

i.e. (Dvα)(v1, . . . , vh−1) = h · α(v1, . . . , vh−1, v), ∀v1, . . . , vh−1 ∈ V.

The set Der (F ) of derivations of F is the left F -module F ⊗R V generated

by V. Thus any derivation X∗ is a formal series

(7.3) X∗ =
∑∞

h=0
X∗h , with X∗h ∈ Symmh(V,V) = Symmh(V) ⊗R V.

Denote by Der 0(F ) the Lie subalgebra F0 ⊗ V of derivations vanishing at 0.

7.2. The case of Lie groups. Let G0 be a real Lie group. We recall that

the left and right invariant vector fields on G0 coincide with the infinitesimal

generators LX and RX of the one-parameter groups

R×G0 ∋ (t, x)→ x · exp(tX) ∈ G0, R×G0 ∋ (t, x)→ exp(tX) · x ∈ G0,

of diffeomorphisms of G0, respectively. We have the commutation rules

(7.4)






[LX(v), LY (v)] = L[X,Y](v),

[RX(v),RY(v)] = −R[X,Y](v),

[LX(v),RY(v)] = 0,

∀X, Y ∈ g0.

The exponential map is a diffeomorphism of an open neighbourhood of

0 in its Lie algebra g0 onto an open neighborhood of the identity, defining a

local chart. In order to determine the Taylor series expansions of LX, RX in

in these coordinates, it is convenient to consider the identities

exp(tX) · exp(v) = exp(v + t · RX(v) + 0(t2)),

exp(v) · exp(tX) = exp(v + t · LX(v) + 0(t2)),
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for v , X ∈ g0. Since the maps X → LX and X → RX are linear, we obtain

exp(tX) · exp(v) =
(
exp(−v) · exp(−tX)

)−1
=
(

exp(−v − t · LX(−v) + 0(t2)
)−1

= exp(v + t · LX(−v) + 0(t2))

showing that

RX(v) = LX(−v).

We can obtain the Taylor series expansions of LX and RX in the g0-coordinates

from the Baker-Campbell-Hausdorff formula (see e.g. [8]):

(7.5)






LX(v) =
∑∞

h=0
bh(ad(v))h(X),

RX(v) =
∑∞

h=0
(−1)hbh(ad(v))h(X),

where the coefficients bh are defined by

∑∞

h=0
bhth =

t

1 − exp(−t)
= 1 +

t

2
+

t2

12
+

t3

48
+ · · ·

7.3. Homogeneous spaces. Let M = G0 /H0 be a homogeneous space,

with base point p0 = [H0]. Fix a linear complement V of h0 in g0. The map

(7.6) V ×H0 ∋ (v , x) −→ exp(v) · x ∈ G0

restricts to a diffeomorphism of the product of a neighborhood of {0} × H0

onto an open neighbourhood of the identity in G0 . We use the projection

on M of exp(v) to define coordinates near p0. In fact, if ̟ : G0 → M is the

natural projection, with ̟(x) = x · p0, then v → ̟(exp(v)) is a diffeomor-

phism of an open neighbourhood of 0 in V onto an open neighbourhood of

p0 in M. Let F be as in §7.1.
In analogy with the definitions of LX and RX in §7.2, we may introduce

a couple of vector fields L∗X and R∗X on M, as infinitesimal generators of the
one-parameter groups of diffeomorphisms of M, locally defined by

(7.7)






exp(v) · exp(tX) = exp(v + t · L∗
X

(v) + 0(t2)) · exp(t · H(v) + 0(t2)),

exp(tX) · exp(v) = exp(v + t · R∗
X

(v) + 0(t2)) · exp(t · H′(v) + 0(t2)),

with L∗
X
,R∗

X
∈ F ⊗ V, H,H′ ∈ F ⊗ h0.

Let us find their formal power series expansions. Set

(7.8)






R∗X(v) =
∑∞

h=0
xh(v), H′(v) =

∑∞

h=0
h ′h(v),

with xh ∈ Symmh(V,V), h ′h ∈ Symmh(V, h0).

Using (7.5), we obtain
∑∞

h=0
(−1)hbh(ad(v))h(X) =

∑∞

h=0
xh(v) +

∑∞

h=0

∑

r+s=h
br(ad(v))r(h ′s(v)),

yielding by recurrence

(7.9)






X = x0 + h ′
0
,

xh+1(v) + h ′h+1(v) = (−1)h+1bh+1(ad(v))h+1(X)

−
∑h

r=0
br+1(ad(v))r+1(h ′h−r(v)),

(h ≥ 0).
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Let π : g0 → V be the projection along h0. Equations (7.9) can be used to

obtain explicit formulae for xh and h ′
h
:

(7.10)






x0 = π(X),

h ′
0
= X − π(X),

xh+1(v) = (−1)h+1bh+1π((ad(v))h+1(X))

−
∑h

r=0
br+1π((ad(v))r+1(h ′h−r(v))),

h ′h+1(v) = (−1)h+1bh+1(ad(v))h+1(X)

−
∑h

r=0
br+1(ad(v))r+1(h ′h−r(v)) − xh+1(v).

Since the projection G0 ∋ x→ x · p0 ∈ M relates R∗X with the right invariant

vector field on G0 corresponding to X, we obtain:

Lemma 7.1. We have

(7.11) [X∗(v), Y∗(v)] = −[X, Y]∗(v), ∀X, Y ∈ g0. �

Analogously, let us set

(7.12)






L∗X(v) =
∑∞

h=0
yh(v), H(v) =

∑∞

h=0
hh(v),

with yh ∈ Symmh(V,V), hh ∈ Symmh(V, h0).

From the equation
∑∞

h=0
bh(ad(v))h(X) =

∑∞

h=0
yh(v) +

∑∞

h=0

∑

r+s=h
br(ad(v))r(hs(v)),

we obtain

(7.13)






X = y0 + h0,

yh+1(v) + hh+1(v) = bh+1(ad(v))h+1(X)

−
∑h

r=0
br+1(ad(v))r+1(hh−r(v)),

(h ≥ 0).

Equations (7.13) can be used to obtain recursive formulae for yh and hh:

(7.14)






y0 = π(X),

h0 = X − π(X),

yh+1(v) = bh+1π((ad(v))h+1(X))

−
∑h

r=0
br+1π((ad(v))r+1(hh−r(v))),

hh+1(v) = bh+1(ad(v))h+1(X)

−
∑h

r=0
br+1(ad(v))r+1(hh−r(v)) − yh+1(v),

Note that L∗
Y
= 0 when Y ∈ h0.

To compute the commutator of R∗
X

and L∗
Y

for a pair X, Y ∈ g0, we use the

infinitesimal description of their flows, which can be obtained from (7.7).
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Set ΦX for the flow of R∗X and ΨY for the flow of L∗Y . Then

exp(v + t2[R∗X, L
∗
Y ](v) + 0(t3)) = exp(ΦX(−t) ◦ ΨY(−t) ◦ ΦX(t) ◦ΨY(t))(v)).

By lifting the action to G0, we have





exp(ΦX(t)(v)) = exp(tX) exp(v) exp(−tH′(v) + 0(t2)),

exp(ΨY(t)(v)) = exp(v) exp(tY) exp(−tH(v) + 0(t2)).

Then we obtain the composition

exp(−tX) exp(tX) exp(v) exp(tY) exp(−tH(v) + 0(t2)) exp(−tH′(v) + 0(t2))

· exp(−tY) exp(tH(v)) exp(tH′(v))

= exp(v) exp(tY) exp(−tH(v)) exp(−tH′(v)) exp(−tY) exp(tH(v)) exp(tH′(v)) + 0(t3)

= exp(v) exp(−t2[Y, (H(v) + H′(v))]) exp(t2[H(v),H′(v)]) + 0(t3).

This yields

Lemma 7.2. For X, Y ∈ g0, we have

(7.15) [R∗X, L
∗
Y ](v) = L∗[H+H′,Y](v),

where H(v) and H′(v) are described by (7.14) and (7.10), and the right

hand side is a composition of formal power series. �

This lemma tells us that the infinitesimal translations of L∗w , for a w ∈ V,

can be expressed as formal power series whose coefficients are L∗
Y
’s for Y

in the h0-module generated by w . In a similar way we also obtain

Lemma 7.3. For Y1, Y2 ∈ g0, we have

(7.16) [L∗Y1
, L∗Y2

] = L∗[Y1 ,Y2]+[H1(v)−H2(v),Y1−Y2],

where Hi ∈ F ⊗ h0 is defined by the first line of (7.7), with X = Yi, for

i = 1, 2. �

7.4. General transitive pairs. Let us fix a transitive pair. We recall from

Definition 1.1 that it is a couple (g0, h0) consisting of a linearly compact

topological Lie algebra g0 and of a finite codimensional closed subalgebra

h0 that does not contain any nontrivial ideal of g0.
Let us fix a finite dimensional complement V of h0 in g0. We define

R∗
X
(v), L∗

X
(v), H(v), H′(v) by (7.8), (7.9), (7.12), (7.13), after noticing that

to write these formulae it is not needed that g0 be finite dimensional, because

the homogeneous summands in the V-coordinates of their Taylor series only

involve finite powers of ad(v), finite linear combinations, and the projection

π : g0 → V along h0. Set

(7.17) g∗0 = {R
∗
X | X ∈ g0}.

Theorem 7.4. If (g0, h0) is a transitive pair and V a linear complement of

h0 in g0, then the map

(7.18) g0 ∋ X −→ R∗X ∈ Der (F )



CR ALGEBRAS 19

is injective and defines an anti-isomorphism of Lie algebras between g0 and

g∗
0
, with

(7.19) h0 = {X ∈ g0 | R
∗
X ∈ Der 0(F )}.

The correspondence

(7.20) L0 −→ L∗0 = F ⊗ 〈L∗w | w ∈ V ∩ L0〉

is a bijection between the set of h0-submodules of g0 containing h0 and g∗0-

invariant left F -modules of Der (F ). Its inverse is given by

(7.21) L∗0 −→ L0 = {Y ∈ g0 | π(Y) = Θ(0) for some Θ ∈ L∗0}.

Proof. Let X ∈ g0 and assume that R∗
X
= 0.We use (7.10). From x0 = 0 se

obtain that X ∈ h0. Since b1 =
1
2
, 0, the condition that x1 = 0 means that

[v , X] ∈ h0 for all v ∈ V, and hence [Y, X] ∈ h0 for all Y ∈ g0. In general,

we find that hh(v), for each h ≥ 0, is a multiple of (ad(v)h(X) and, arguing

by recurrence we obtain that (ad(Y)h(X) ∈ h0 for all h ≥ 0 and Y ∈ g0. This

yields that actually ad(Y1)◦ · · · ◦ad(Yh)(X) ∈ h0 for all h and Y1, . . . , Yh ∈ g0.
To show this fact, we argue again by recurrence on h, as the cases of h = 0, 1

are already settled. For h > 1, we note that, for t1, . . . , th ∈ R,

t1 · · · th · ad(Y1) ◦ · · · ◦ ad(Yh)(X) =
1

h!
[ad(t1Y1 + · · · + thYh)]h(X) +

∑

i
0(t2

i )

+ terms of the form ad(Y ′1) ◦ · · · ad(Y ′r )(X) with r < h.

By the recursive assumption, the coefficient of the monomial t1 · · · th in the

right hand side is an element of h0 and hence ad(Y1) ◦ · · · ◦ ad(Yh)(X) ∈ h0.
We proved that the kernel of the map X → R∗

X
is an ideal of g0 contained in

h0. Therefore it is {0} if (g0, h0) is a transitive pair.

The conclusion of Lemma 7.1 only depends on the formal definition of

R∗X in (7.8) and (7.9) and therefore is still valid, yielding (7.18).

Also the validity of Lemma 7.2 depends only on the formal definitions of

R∗
X

and L∗
Y

and therefore shows that, when L0 contains h0 and [h0,L0] ⊆ L0,

then the left F -module L∗0 generated by {L∗w | w ∈ V∩L0} satisfies [g∗0,L
∗
0] ⊆

L∗0 . Vice versa, if L∗0 is a left F submodule of Der (F ) with [g∗0,L
∗
0] ⊆ L∗0 ,

then the set L0 of Y ∈ g0 such that π(Y) is the value in 0 of a vector field

in L∗
0

is a subspace of g0 containing h0 and satisfying [h0,L0] ⊆ h0. Indeed

[X,w ] is the value at 0 of [R∗X, L
∗
w ]. This yields the correspondence (7.20),

completing the proof of the theorem. �

We already noted that the map Y → L∗
Y

is linear. In particular, it can be

extended by C-linearity to the case where Y belongs to the complexification

g of g0. Then the second part of the statement of Theorem 7.4 extends to

the case of complex vector distributions. We denote by h ⊆ g the complexi-

fication of h0.

Theorem 7.5. The correspondence

(7.22) L −→ L∗ = F ⊗ 〈L∗w | w ∈ V ∩ L〉
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is a bijection between the set of h-submodules of g containing h and g∗0-

invariant left C⊗F -modules of C⊗Der (F ). Its inverse is given by

(7.23) L∗ −→ L = {Y ∈ g | π(Y) = Θ(0) for some Θ ∈ L∗}. �

8. Extensions

Definition 8.1. We say that a contact triple (g′
0
, h′

0
,L ′

0
) extends the contact

triple (g0, h0,L0) if there is an injective homomorphism of real Lie algebras

φ : g0 → g
′
0 such that φ(L0) ⊆ L ′0, φ(h0) ⊆ h′0 and the quotient maps

(g0/L0) → (g′
0
/L ′

0
) and (g0/h0) → (g′

0
/h′

0
) induced by φ are linear isomor-

phisms.

We say that a CR algebra (g′0, q
′) extends the CR algebra (g0, q) if there is

an injective Lie algebras homomorphism φ : g0 → g
′
0, whose complexifica-

tion we still denote by φ, such that φ(q) ⊆ q′ and the induced map on the

quotients g0/(q ∩ q̄ ∩ g0) → g′
0
/(q′ ∩ q̄′ ∩ g′

0
) and (g/q) → (g′/q′) are linear

isomorphisms.

To deal with extensions, it is convenient to introduce a common Lie al-

gebra in which we can embed both a given Lie algebra and its extension.

Proposition 8.1. Let (g0, h0,L0) be a contact triple. Then there is a maxi-

mal contact triple (g′0, h
′
0,L

′
0) extending (g0, h0,L0), which is unique modulo

isomorphisms.

Let (g0, q) be a CR algebra. Then there is a maximal CR algebra (g′
0
, q′)

extending (g0, q), which is unique modulo isomorphisms.

Proof. The statement follows from Theorems 7.4 and 7.5. If L∗0 is the F -

module corresponding to L0, we define g′
0
∗ as the Lie algebra of formal

vector fields stabilising L∗
0

and g′
0

equals to its opposite Lie algebra.

Likewise, in the case of a CR algebra, we take g′0
∗ to be the stabiliser of

q̃∗ in Der (F ) and define g′0 to be its opposite Lie algebra. �

The finiteness result of §6 applies to give informations about the global

and local CR automorphisms on homogeneous and locally homogeneous

CR manifolds.

The analytic Lie subgroup of a Lie group G0 generated by a Lie subal-

gebra h0 of its Lie algebra g0 may fail to be closed. In this case the pair

(g0, h0) is associated to a locally G0-homogeneous manifold, i.e. a smooth

open manifold M0 having the property that the elements of a small open

neighborhood of the origin of G0 act as a transitive group of local diffeo-

morphisms on an open neighborhood of a base point p0 of M0, and h0 is the

Lie algebra of the stabilizer of p0 for this action (see e.g. [17, 22]). We can

give in an obvious way a notion of locally G0-homogeneous CR manifold,

that we employ in the formulation of the following result.

Theorem 8.2. Every contact nondegenerate CR algebra (g0, q) admits an

essentially unique maximal extension (g′
0
, q′), which is finite dimensional

and is therefore a CR algebra of a locally homogeneous CR manifold whose

CR automorphisms form a Lie group of transformations. �
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Theorem 8.3. Let G0 be a Lie group and M0 a locally G0-homogeneous CR

manifold, with associated CR algebra (g0, q). If (g0, q) is fundamental and

contact nondegenerate, then the local CR automorphisms of M0 generate a

finite dimensional Lie group. �
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