
Unicam

Doctoral Thesis

Routing and Reliability Improvements in
WM-Bus protocol for smart cities

Author:
Fabio Pagnotta

Supervisor:
Prof. Leonardo Mostarda

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computer Science

http://www.unicam.com

UNICAM

Abstract
Computer Science

Doctor of Philosophy

Routing and Reliability Improvements in WM-Bus protocol for smart
cities

by Fabio Pagnotta

In a smart city, accounting information such as gas and electricity usage is gathered by
meter nodes and sent to the collector node. A trade-off between the location of meters
and the best quality communication signal is often needed and difficult to achieve for
urban constraints and other communication signals. Meters can have limited resources
such as memories and CPU. The thesis presents two routing extensions of the WM-
Bus which is an open standard protocol for smart metering systems for improved
performance and routing in a dense mesh utility network.

The former extension is called NARUN: Noise Adaptive Routing in Utility Net-
works. In NARUN, the collector calculates the path with the least noise to reach the
destination meter. A weighted network graph that shows the connections among me-
ters is used, where an edge weight defines the link failure index. No control messages
are used to keep the weights updated. Meters report link failure index back to the
collector by means of ordinary reading messages.

The latter extension is NARUN-PC: NARUN with path cache. NARUN-PC ex-
tends NARUN by introducing a caching strategy in the collector node.

This thesis presents models and simulations of these two extensions. Performances
have been evaluated in a real-life topology where a subset of the edges is affected by
different levels of noise.

Results show that NARUN has the lowest failure rate and traffic compared to the
DSR protocol when the noise power is higher than -73 dBm. NARUN-PC decreases
the traffic load and failure rate with respect to NARUN when the noise power is higher
than -73 dBm.

HTTP://WWW.UNICAM.COM
https://computerscience.unicam.it

Contents

Abstract ii

1 Introduction 2
1.1 Introduction . 2
1.2 Motivation . 3
1.3 Thesis statement and research questions 3
1.4 Methodology . 3
1.5 Thesis organization . 4
1.6 Contribution . 5

2 Literature Review 6

3 NARUN 11
3.1 The NARUN protocol . 11

3.1.1 Communication primitives and message format 13
3.1.2 NARUN collector behavior . 14
3.1.3 Meter behavior . 16
3.1.4 NARUN connectivity . 18

3.2 DSR model . 19
3.3 Implementation . 21

3.3.1 WM-Bus protocol . 21
3.3.2 NARUN routing protocol . 25

3.4 Simulation Setup . 27
3.4.1 Assumptions and simulation methodology 29

3.5 Simulation results . 31
3.5.1 Simulation with disconnected links 32
3.5.2 Simulation with noisy links . 32

3.6 Conclusion . 37

4 NARUN-PC 38
4.1 NARUN and NARUN-PC protocols 38
4.2 Simulation . 43

4.2.1 Experimental Results . 43
4.3 Conclusion . 50

5 Conclusion 51

6 Appendix 53
6.1 Publication and subscription model . 53
6.2 Architecture . 55
6.3 Evaluation . 55

6.3.1 Memory evaluation . 56
6.3.2 MQTT vs PICO-MP benchmark 59

iii

Bibliography 65

iv

Acknowledgements

I would like to express my gratitude to my primary supervisor, professor Leonardo
Mostarda, who guided and supported me throughout this project.

I would also like to thank professor Orhan Gemikonakli for the support, valuable
knowledge, and experience in the field that helped me in this project.

I would like to offer my special thanks to professor Rosario Culmone for the in-
sightful idea of NARUN, the availability, and the support that he provided me during
my Ph.D. period.

I wish to extend my special thanks to the University of Camerino (UNICAM)
that had been providing me with an international and valuable environment for my
growth.

I would also like to thank professor Diletta Cacciagrano and the other colleague
whom I have been working on during my Ph.D. period.

My appreciation also goes out to my family and friends for their encouragement
and support all through my studies.

1

Chapter 1

Introduction

This chapter provides the introduction, the motivation and the methodology of this
thesis. The section 1.1, covers the introduction while the sections 1.2 and 1.3 provides
the motivation. More precisely, section 1.3 summarises the motivation with a thesis
statement. In the same section, the research questions and the approach used have
been discussed. The section 1.4 provides the methodology of the thesis. Finally, the
section 1.5 guides the navigation of the reader with the thesis structure.

1.1 Introduction

The sheer size of today’s cities makes the manual reading of gas, water, and electricity
meters a significant challenge. Fortunately, the technological advances in communi-
cation networks gave rise to the development of automated meter reading systems.
Network meter systems enable automated, periodic, and real-time readings, reducing
the management costs and enabling real-time data analysis. This technology can also
help in reducing resource consumption by raising the awareness of prosumers. Di-
rective 2009/72/EC of the European Parliament requires the use of smart metering
systems to empower the consumers in the electricity and gas supply markets [1]. A
metering system consists of a set of distributed nodes connected via a communication
network. A collector node gathers data from meter nodes that measure usage. Data is
then sent to the collector node. Repeaters can be used to extend the node transmission
range. The main electronic parts of a meter consist of a simple micro-controller with
sensors. These devices are limited in terms of computation power, memory and can
be battery powered [2]. Hence, the highest cost is not associated with the device itself
but with the subsystem of interconnection and communication. These subsystems
can use optical fiber, WiFi, cellular networks, or other transmission technologies. The
network deployment and technologies used in communication represent the critical
parts of the reading service [3].

Meter Bus (M-Bus) is a European standard for metering systems that includes the
physical layer, the data-link layer [4], and the application layer [5]. The network layer
is presented as an optional one and there is no specification for any standard routing
algorithm. No topology restrictions are stated, except for the token ring which cannot
be used. Wireless Meter Bus (WM-Bus) is the wireless version of the M-Bus protocol.
The EN 13757-4 standard describes its physical and data-link layer [6]. The EN

2

Chapter 1. Introduction 3

13757-5 provides node relaying [7] whereas the EN 13757-7 introduces transport and
security services [8]. The line of sight communication range can be a few hundred
meters (with 868 MHz or 433 MHz frequencies) or more than 5 km (using 169 MHz
frequency). The former is widely used in Europe [9].

1.2 Motivation

In smart cities [10–12], meter installation introduces a trade-off between reliable con-
nectivity and setup cost. Placing meters with the best quality communication signals
is often expensive or it is not feasible because of urban constraints [13–15]. WM-Bus
networks can be installed in dense urban areas where many other communication sig-
nals coexist. This can cause interference and generate poor quality links [16], which
increases communication overhead and reduce the lifetime of the battery-operated me-
ters[17]. Poor quality links also affect the data reading time since a successful reading
message can require several attempts.

1.3 Thesis statement and research questions

The motivations previously mentioned bring us to the following thesis statement:
In a smart city, devices can route messages by extending the coverage area and

improving reliability without introducing extra messages.
The routing task also needs to be computationally simple enough for devices with

limited capabilities in terms of memory and CPU [2]. The following research questions
concern the characterization of this routing protocol.

1. How can routing be performed in a dense smart metering network in order to
reduce failure rate ?

2. How can routing be performed using devices with limited capabilities in a dense
smart metering network?

3. How can routing be performed in a dense smart metering network when the
failure rate is high ?

4. How can routing be performed in a dense smart metering network when the
routing path frequently changes?

1.4 Methodology

This section covers the scientific methodology chosen to approach the research ques-
tions.

First of all, the state of art of routing and simulations has been analyzed to
understand the strength and weaknesses of the already proposed solutions in the
research field. The analysis covers the protocol behavior and how reliability has been

4 Chapter 1. Introduction

achieved and measured. These information were reviewed to check how these protocols
are tailored for dense networks in smart cities (Chapter 2). The authors focus on the
WM-Bus protocol, an european standard protocol for smart metering solutions.

This analysis shows the need of a routing protocol which takes into account the
meter position and the communication interference without introducing overhead mes-
sages compared to the well-known protocols.

A detailed model of Noise Adaptive Routing for Utility Networks (NARUN) has
been proposed in this thesis. The model covers the representation of the network
in NARUN, the communication and considered metrics, and the collector and meter
behavior. NARUN has been compared with a well-known protocol called Dynamic
Source Routing (DSR)[18]. The protocol has been compared through simulations (
chapter 3.4).

Various routing simulations for WM-Bus have been analyzed in the thesis but none
of them were updated or consider the same kind of topology. Therefore, a routing
simulation has been developed and tested against a set of small networks.

Collector reading failure rate, Reading rate and Message received have been con-
sidered in the evaluation of the protocols. The first and second metrics are related
to the failure rate from the collector prospective while the last metric represents the
overhead of the protocol.

Simulations has been performed under different network conditions (by changing
or disconnecting edges) using the Additive White Gaussian Noise (AWGN) model
in a dense urban area. Result has been discussed in section 3.5. Although results
show the advantage of NARUN with respect to the DSR protocol [18], it ‘suffers’
for unstable links, i.e. links frequently broken. As NARUN always selects the best
available path, unstable links might be frequently selected, hence generating failing
paths. This increases the number of messages. NARUN-PC is a protocol improvement
that resolves this issue, described in chapter 4. A detailed model of NARUN-PC has
been proposed in section 4.1 to fix the disadvantage of NARUN protocol. NARUN-PC
had been compared against DSR[18] and NARUN protocols under different network
conditions (by changing or disconnecting edges) using the Additive White Gaussian
Noise (AWGN) model in a dense urban area. The results show an improvement in
terms of number of messages respect to the NARUN protocol.

In the conclusion, future works of this protocol have been proposed to further
analyze the performance of NARUN and NARUN-PC under different scenario and
noise model.

1.5 Thesis organization

The following chapters are organized as follows: Chapter 2 reports the state of the
art, Chapter 3 provides the system model and the benchmark of NARUN protocol, 4
provides the system model and the benchmark of NARUN protocol and the Chapter 5

Chapter 1. Introduction 5

concludes the thesis. The Appendix 6 includes an additional work similar to NARUN,
that has been done during the PhD period.

1.6 Contribution

The dissertation proposes two novel routing protocols namely Noise Adaptive Rout-
ing for Utility Networks (NARUN) and Noise Adaptive Routing for Utility Networks
with Path Cache (NARUN-PC). They aim to reduce the failure rate and traffic load
without introducing overhead messages. An early formalization of NARUN has been
introduced in paper [19]. This includes the routing algorithm and the eavesdrop
behavior of nodes. In NARUN, communication occurs in a mesh topology without
sending extra service messages. The routing path is appended to the read request
message (as advised by the WM-Bus standard). A collector can request and receive
data from networked meters. Meters can relay the request to the destination node and
forward back the response. The collector decides the routing path depending on the
internal representation of the network. This knowledge is represented as a graph where
nodes are vertices and edges are interconnections. The edge weight gives a measure
of the link failure index. More precisely, an infinite weight can denote a broken link,
a weight equal to one denotes a perfect functioning link. Finally, a number greater
than one denotes a noisy link that requires frequent re-transmission or error recovery.
The routing path is calculated by minimising the failure index and path length. Me-
ters eavesdrop on the surrounding environment and efficiently report information on
link failure indexes back to the collector with ordinary reading messages. These are
ordinary response WM-Bus packets. NARUN can run on simple meter devices with
limited CPU and a small amount of memory. Hamming Error Correction Code (ECC)
is used to increase communication reliability and measure the link failure index. A
revised version of this protocol extends the previous one by covering edge cases and
improving the algorithms [20]. The paper introduces the persistence routing behavior
of the collector. Persistence behavior improve reliability by trying alternative paths
to reach a destination node when the algorithm cannot find one. In [20], NARUN
has been evaluated by simulations and compared against the Dynamic source routing
(DSR) protocol under different network conditions in a real-life topology. Results
show an improvement in terms of failure rate and traffic load. However, NARUN
‘suffers’ for unstable links, i.e. links frequently broken. To overcome this problem,
NARUN-PC has been proposed and evaluated [21]. NARUN-PC introduces a path
cache strategy in the collector. The evaluation compares NARUN, NARUN-PC, and
DSR protocols in a real-life topology. Results show a slight improvement of failure
rate and relevant improvement in terms of traffic load when NARUN-PC is compared
against NARUN and the noise power is higher than -73 dBm.

Chapter 2

Literature Review

This chapter analyzes routing protocols and reliable mechanisms in literature to un-
derstand their strength and weaknesses. The context of the study is smart metering
networks which are also referred as Advanced Metering Infrastructure (AMI) networks
[22]. The analysis takes into consideration reliable frameworks and then, WM-Bus and
more generally smart metering routing protocols.

Different frameworks are proposed for measuring and analyzing the failure rate of
the WM-Bus for different cases. A framework for the analytical study of failure rates
is presented as a case study where the suitability of WM-Bus for smart water grids
is considered in [23]. The approach considered Packet Error Rate (PER), bandwidth,
frequency, range, and energy requirements. The simulation framework for failure rate
analyses of WM-Bus is also considered in [24]. The authors discussed the approach
for developing a simulation of the WM-Bus protocol by extending NS-31 simulator.
This work focused mostly on the physical and data-link layers of WM-Bus. The
implementation details for this approach are given in the study [25]. They found out
that their simple simulation model was comparable to the general trend of the hit rate
in a real WM-Bus deployment.

The paper [26] analyses the WM-Bus for home automation systems by using 5G
and M2M technologies. They had been developing a WM-Bus module for NS-32

simulator. They used the interference and packet delivery ratio between meters to
validate their module. Technical details associated with the 868 MHz communication,
such as range and indoor signal transmission efficiency under various interference
levels, are studied in [27]. The frequency is also widely used in Europe and for this
reason, this thesis implements it. Simulations were used to analyze the failure rate by
varying the interference level in a smart city network.

Improvements to the reliability of the WM-Bus protocol are considered in some
studies. In papers [13, 14], authors presented discussions on the inherent reliability
problems related to the deployment of the WM-Bus network and they proposed a
method for reliable data reception. In particular, the authors addressed the trade-off
between reliability and the deployment cost for WM-Bus networks, which is one of
the fundamental and inherent problems of the WM-Bus. The meter nodes are not
mobile and since they are added to existing infrastructures, their optimum deployment

1(https://www.nsnam.org/)
2(https://www.nsnam.org/)

6

https://www.nsnam.org/
https://www.nsnam.org/

Chapter 2. Literature Review 7

becomes difficult. The authors proposed a data recovery scheme exploiting the use of
a deterministic packet transmission interval from the meter nodes to deal with this
issue. The scheme groups erroneous packets coming from the same sender and saves
them in memory. This method can recover packets by using this information. The
drawback is the memory footprint requested by the scheme which depends on the
number of senders. In [28], the authors proposed a method to increase the reliability
and the network lifetime of WM-Bus. The proposed method extends the standard
WM-Bus protocol making it suitable for “home energy management systems” which
require bi-directional real-time communication. The authors added functions such as
asynchronous meter trigger, adaptive slot scheduling, and bitmap-wise re-transmission
request from the collector to WM-Bus to achieve reliable and energy-efficient real-time
communication. They evaluated the success ratio, the node lifetime, and the time
spent reading by changing the size of the network.

These studies analyze the reliability issue in a single-hop communication between
the collector and meters. This thesis tackles this issue in a mesh topology by moni-
toring link failures without introducing extra messages to the WM-Bus protocol.

The mesh topology can extend the coverage area of the entire network however a
routing protocol is needed to forward messages from the source to the receipt node.

In the context of Advanced Metering Infrastructure (AMI), routing protocols can
be divided into geographic, reactive, and proactive [29]. Geographic routing protocols
such as [30] can perform routing by avoiding critical traffic conditions and low-density
networks. Nevertheless, this type of routing requires smart meters with a Global
Positioning System (GPS) which is not always feasible due to the location of meters
and energy consumption of meters. Moreover, this approach does not scale well with
larger networks [31]. The proactive approach implements periodical broadcasts to
update the data structures saved by each node in the network while the latter queries
nodes on-demand without using this mechanism. Proactive protocols can be divided
into link-state or distance vector.

In link-state protocols such as Open Shortest Path First (OSPF) [32] or Optimized
Link State Routing (OSLR) [33], the network topology is stored by nodes and is
maintained through message flooding. Flooding notifies the whole network when the
link costs change or a link failure occurs. In the context of AMI, various optimizations
have been proposed over Optimized Link State Routing (OSLR) protocol [34]. These
extensions improve packet delivery ratio and latency against small networks. However,
their approach are unsuitable for larger networks due to their service overhead when
the number of nodes increases.

In distance-vector protocols, nodes store and maintain their local view of the
network which includes the set of neighbours along with their respective link costs.
This information is used to route messages in the network. Nodes periodically send
messages to update the local view of neighbors. PSA-HD [35] is a proactive protocol
used in Mobile Ad-hoc NETwork (MANET) networks where nodes are mobile and links
are frequently created and broken. This protocol tries to find the shortest stable path

8 Chapter 2. Literature Review

in the network. In detail, the shortest path is computed by minimizing the REfined
Hamming DIStance (REHDIS) metric required to reach the destination node. The
selection of the shortest path is performed amongst multiple paths in which metrics
are shared between nodes with periodical message exchange. PSA-HD decreases the
average end-to-end delay and increases the Packet Delivery Ratio (PDR) with respect
to Proactive Source Routing (PSR) [36] and Predicted Probabilistic Coefficient Link
Stability (PPCLSS) [37] protocols. PSR is a proactive protocol where the network
topology is shared between nodes while PPCLSS is a routing protocol where stability
is evaluated using the weighted sum of energy utilized by a node, link loss, and the
average path size. Like PSA-HD, the NARUN protocol presented in this thesis uses
Hamming distance for shortest path computation but NARUN path updates are done
without exchanging periodic messages.

The most used and stable proactive routing protocol for low-power and lossy net-
works is called Routing Protocol for Low-Power and Lossy Networks (RPL) [22]. The
network used is a destination-oriented directed acyclic graph (DODAG). The ancestor
is the root node and intermediate nodes are chosen using a specific objective function
(OF) by children. The standard objective functions are objective function zero (OF0),
which minimizes the distance between the parent and the root node, and the mini-
mum rank with hysteresis objective function (MRHOF) which minimizes the link cost
associated with the routes. Although this protocol scales with thousands of nodes,
periodical broadcasting is needed to update metrics, which requires high bandwidth
when node disconnection and topology changes frequently occur.

Generally speaking, proactive protocols are not suitable in smart cities composed
of many battery-operated nodes that have limited processing capabilities. In this case,
the usage of periodic service messages (such as HELLO messages) is unsuitable since
they require high bandwidth and high memory allocation.

Reactive protocols are designed to restrict the bandwidth consumed by service
packets by removing the periodic service messages [38]. Routes are generated on-
demand when a node starts a new communication. Dynamic Source Routing (DSR)
[18] is one of these reactive protocols. In the beginning, a node performs route dis-
covery in order to reach the destination node. The route discovery floods the network
with route request packets. The destination node that receives this type of packet
responds by sending a route reply packet back to the source. The source node stores
the paths used to reach the destination. Link fault is recognized when the node tries
a path that involves it. The maintenance of these paths does not include service
messages to update the routing tables. The major limitation of this protocol is the
absence of a local routing maintenance mechanism for a broken link. Therefore, flood-
ing is also required when the sender has no suitable path to reach a destination node.
Such a process may restrict the bandwidth available in a dense network. The path
found using the discovery process, may also not necessarily be the shortest one in
between the given pair of source and destination nodes. Ad hoc On-Demand Vector

Chapter 2. Literature Review 9

(AODV) [39] is quite similar to the DSR. Both protocols find routes through flood-
ing. However, DSR stores the routes in the source node while AODV distributes and
stores the routing information in the entire network. While AODV scales with a large
population of nodes, the size of routing tables (stored in intermediate nodes) increases
as well. This augmentation makes the protocol unsuitable for networks composed of
devices with a limited amount of memory. In [40], the authors proposed an AODV
extension. The protocol performs route discovery by partially flooding the network.
Topology information is sent back in the response packet after a specific amount of
time. The source node calculates the shortest path to reach a specific destination
by minimizing the packet reception rate and the number of hops. Their simulation
results improve the AODV packet reception rate when harsh channel conditions are
considered. The packet reception rate depends on the distance between nodes and the
nominal transmission range. While the latter is a known value, the former is fixed at
the beginning or computed by exchanging the geographical coordinates. The optimal
reactive routing protocol (ORRP) [41] is a reactive protocol that finds the shortest
path between the source and destination nodes in a distributed fashion. The shortest
path is calculated using the Dijkstra algorithm. The protocol assumes symmetric links
between neighboring nodes and that each node maintains neighboring and costs links.
In [42], authors propose a proactive extension of this protocol by introducing a peri-
odic HELLO message exchange for sensing neighborhood as well as for determination
of cost list. However, this protocol generates a huge overhead when the network is
dense.

Various routing approaches specifically designed for WM-Bus networks have been
proposed. In [43], the study presented a model routing extension for the Wireless
M-Bus Q-mode in TinyOS3. In [44, 45] the authors proposed an energy-aware routing
that is implemented as an extension to the EN13757 Wireless M-Bus Q-mode [7]. A
cost-efficient integrated energy harvesting system powered by the available water flow
was developed to enable operation independent from the main grid. This eliminates
the need for battery replacement with near-zero maintenance costs. A noteworthy
idea for routing in low power-lossy link wireless networks comes from the study pre-
sented in [46]. The proposed routing considers metrics involving the residual energy
and packet reception rate of neighbor nodes in ISA100.11a industrial wireless net-
works. In [47], the authors proposed a routing protocol for Wireless Mesh Networks
by modifying the AODV routing protocol. The proposed protocol considers the load
of nodes and link quality.

These studies show the need for a lightweight reactive routing protocol tailored
for dense smart metering network which improve reliability and does not require any
extra service messages. This thesis presents NARUN and NARUN-PC protocols.
Noise Adaptive Routing for Utility Networks protocol (NARUN) [19, 20] is a routing
protocol for dense mesh utility networks. In NARUN, the collector calculates the path
to reach a destination meter by minimizing the link failure rate and the path length. A

3(http://www.tinyos.net/)

http://www.tinyos.net/

10 Chapter 2. Literature Review

weighted network graph represents the network topology and is stored in the collector
node. No control messages are used to keep the weights updated. Meters reports back
to the collector, link failure index with ordinary reading messages. NARUN-PC [21]
is an extension of NARUN that introduces a path cache in the collector and therefore,
avoids the selection of unstable links. These protocols have been evaluated using a
simulator that has been tested against small test networks. The evaluation takes into
consideration, the failure rate measured at the collector node, the number of sensor
reads and the traffic load in terms of the number of messages successfully received.

Chapter 3

NARUN

This chapter provides a detailed model of Noise Adaptive Routing for Utility Networks
protocol (NARUN), a routing protocol for WM-Bus applications in the context of
smart cities. Section 3.1 covers the structure of a NARUN network, the communication
protocol, and the collector and meter behavior. Section 3.3 describes the WM-Bus
protocol and, subsequently, how the NARUN protocol extends this protocol in detail.
Finally, this chapter provides the simulation setup in section 3.4, and then the chapter
discusses and summarizes the simulation results in section 3.5. The last section 3.6
summarizes the chapter content.

3.1 The NARUN protocol

This section introduces some notation that is needed to describe the network model
and the protocol. The set of all network nodes is denoted as n0, . . . , nz with N , and
the WM-Bus read request frame packet with M . M is composed of three fields: the
header, the payload, and the footer which are denoted with M.h, M.d, and M.o,
respectively. The frame structure is described in section 3.3.1.

G(N,E,w) denotes a network graph where (i)N is the set of nodes; (ii) E ⊆ N×N
is a finite set of links, (ni, nj) ∈ E when ni can directly communicate with nj ; (iii)
w : E −→ R is an edge weight function.

Three weight functions has been defined: (i) constant; (ii) connection-based; and
(iii) Hamming-based. The constant weight function, wc(ni, nj) assigns to each link
(ni, nj) a constant number 1. This can be used to find the path with the least number
of hops from the collector to any meter on the network. The connection-based weight
function, wr(ni, nj) is ∞ when the link (ni, nj) is not working, and 1 otherwise. As
shown in the next section, wr can be used by the collector node to avoid broken links
or faulty nodes.

The Hamming-based weight function, wh(ni, nj) is calculated by using the Ham-
ming code. The header M.h and the payload M.d of a frame M are divided into l
equal parts M1, . . . ,Ml. The sender of the packet M calculates the Hamming code
hmc(Mi) of each part Mi and adds it into the footer Mo. The format of the message
(when the Hamming-based weight function is used) can be summarized as follows 1:

1For the sake of simplicity, the footer only shows the Hamming code part.

11

12 Chapter 3. NARUN

Mt = M1|| . . . ||Ml||hmc(M1)|| . . . ||hmc(Ml). The equation 3.1 define the correction
function R(Mi).

R(Mi) =


0 Mi is received with no error

∞ Mi has a non recoverable error

1 Mi has a recoverable error

(3.1)

The Hamming-based weight function wh(ni, nj) is defined by the equation 3.2.

wh(ni, nj) =

∞ if
∑l

i=0R(Mi) =∞∑l
i=0 R(Mi)

l + 1 otherwise
(3.2)

In other words, wh(ni, nj) is set to ∞ when M has a part Mi with no recoverable
error. Otherwise, wh is equal to one or two. It is one when no error is recovered, while
it is two when each part Mi has a recoverable error. Effectively, wh(ni, nj) measures
the link failure index lfi between ni and nj . In the next section, the weight function
wh can be used by the collector node not only to avoid faulty links or faulty nodes
but also to select the path with the lowest link failure index.

In the rest of the chapter, we denote with Pnk
(G) = {n0, . . . , nk, nk+1, . . . , n0}

(with k > 0) a path that starts from the collector node n0, reaches the node nk and
returns to the node n0. This can be used by the collector to read the node nk. The
cost of the path can be calculated as follows:

W (Pnk
(G)) =

i=k−1∑
i=0

w(ni, ni+1)

Symmetric links are assumed; which means that the path Pnk
will be palindromic

(i.e. the paths from n0 to nk and nk to n0 are the same). In fact, WM-Bus links are
rarely asymmetric.

In the rest of the chapter, Gn0(N0, E0, w0) denotes the network graph of the collec-
tor node. Each meter node ns also defines a meter network graph (from here onward,
referred to as projection graph) which is denoted by Gns(Ns, Es, ws). Ns is the set
of neighbors of ns that is ni ∈ Ns when ni is in the communication range of ns. The
set Es contains communication edges of the type (ns, nj) and (ni, ns) where the node
ns takes the role of sender and receiver, respectively. A projection graph is used by
the meter ns to store its local network view that is all its neighbors and the failure
index of the related links. As we are going to see in the following, NARUN keeps the
collector graph updated by performing an efficient merge of all projection graphs.

This thesis assumes that the collector node keeps a global timestamp t that is
a sequence number. The collector node increases t by one when a meter reading is
attempted. It is assumed that the collector node n0 reads all meter nodes n1, . . . , nz
in turn. A timestamp tq denotes the qth attempt that is made by the collector to
read a meter nk. Two consecutive timestamps tq and tq+1 may be related to the same

Chapter 3. NARUN 13

meter node nk when the routing path selected at time tq fails to reach nk. In this
case, a different path can be tried at time tq+1.

In the rest of the chapter, Gnk,tq(Nk,tq , Ek,tq , wk,tq) denotes a meter graph last
updated at time tq. Each nj ∈ Nk,tq is a neighbor of nk added at time tu with tu ≤ tq.
The link (nk, nj)tu would also be added to Ek,tq at time tu. For the sake of simplicity,
the thesis does not include the algorithms for adding new nodes into the network.
This is done by broadcasting standard hello messages. The weight wk,tu(nk, nj) of the
link (nk, nj) denotes a weight that was updated at some time tu with tu ≤ tq.

3.1.1 Communication primitives and message format

The collector node uses a WM-Bus frame packet to read a meter node at time tq by
Mtq . Then, the three fields; the header, the payload, and the footer are denoted by
Mtq .h, Mtq .d, and Mtq .o, respectively. The frame structure is described in section
3.3.1.

The payload Mtq .d contains a NARUN application layer message d that complies
with a standardized Payload structure. More precisely, the payload d is defined
as Payload d = {Type y, node n, TimeStamp t, GraphList l, Numeric r,

Path p} where: (i) d.Y specifies the types of the message, that is either REQ or
REPLY (the former defines a payload that contains a reading request sent by the
collector to a meter while the latter is the reading returned value); (ii) d.N contains
the meter nk to be read (this is often referred to as the destination node); (iii) d.P

contains the path Pnk
that leads to the destination node and back to the collector

node; (iv) d.T contains the global timestamp tq; (v) d.L contains a list of projection
graphs Gn1,tq , . . . , Gnh,tq , each graph Gns,tq is added by the node ns as the payload
travels along the routing path; (iv)d.R contains the reading of the node d.N (if any).

The list of projection graphs Gn1,tq , . . . , Gnh,tq is used to update the collector
node graph Gn0,tq . This field is the NARUN addition to ordinary WM-Bus packet
to update the collector weights without extra messages. The algorithm 1 sketches
the merge procedure. This considers each link (nj , ni) that is contained inside each
projection graph Gns,tq in the list. The procedure updates the weight of the collector
link (nj , ni) when the one received from the meter has a fresher timestamp.

Algorithm 1 NARUN merge of projection graphs
procedure Merge(GraphList L)

for each Gns,tq (Ns,tq , Es,tq , ws,tq) ∈ L do
for each (nj , ni) ∈ Es,tq do

Let tube the update time of ws,tu (nj , ni) ∈ Gns,tq
Let tvbe the update time of w0,tv (nj , ni) ∈ Gn0,tq
if tv < tu then . true if the collector receives a fresher weight

w0,tv (nj , ni)← ws,tu (nj , ni)
end if

end for
end for

end procedure

NARUN uses send and receive primitives. The send(n,m) primitive can be used
to send a message m from a node to its neighbor n. Acknowledgements are used

14 Chapter 3. NARUN

in order to provide reliable one hop communication. An error is returned when the
destination node cannot be reached after a pre-set number of communication attempts.
The receive(n,m) primitive can be used by a node to receive a message m from
its neighbor n. This blocks the node execution until the message is received or a
timeout is generated. The send(n,m) communication primitive is used to define a
more abstract NARUN send primitive that is sendN (see Algorithm 2). This can
be used by the node ns to send the message m to its neighbor nd. The link weight
between ns and nd is updated according to the weight function that has been selected.
More precisely, when ns fails to send m to nd the weight ws,tq(ns, nd) is updated to
infinity. This means that at current time tq the link ns, nd is broken. Otherwise the
function UpdateFailureIndex is executed which updates the weight ws,tq(ns, nd)

by considering the selected weight function that is constant; connection-based; or
Hamming-based.

Algorithm 2 NARUN Send primitive primitive
1: procedure SendN(node ns,node nd,Graph Gns,tq ,Payload d)
2: M← generateFrame(d)
3: Result← send(nd,M)
4: if Result=Error then
5: ws,tq (ns, nd)←∞ . weight of link updated at time tq
6: return Failure
7: else
8: UpdateFailureIndex(ws,tq (ns, nd)) . weight of link updated at time tq
9: return Success
10: end if
11: end procedure

3.1.2 NARUN collector behavior

The collector node uses its network graph in order to read each sensor node. While
the least cost path is obtained by using a simple Dijkstra algorithm, NARUN uses a
novel routing protocol strategy to update the collector network graph weights. More
precisely, unlike most of the protocols, NARUN does not use any keep-alive or any
control messages to update variation in the link failure index. In NARUN, each node
locally collects link failure index information in the form of projection graphs. This
is performed by using meter nodes that continuously eavesdropped on surrounding
communications and update their local projection graphs. When the collector node
selects a routing path to read a sensor node, all nodes in the routing path will add
their local projections to the reply message. The projections will be merged and used
by the collector to update its network graph. This strategy avoids the use of keep-alive
or any other control messages.

Algorithms of Figure 3 describe the collector behavior. This discards all messages
that have an old timestamp. An external procedure that connects new nodes and
disconnects leaving ones is assumed. WM-Bus uses hello and disconnect messages.
The variable Gn0,t is assumed to be a global one that contains the collector network
graph. Without loss of generality, It is assumed that the collector reads the data of
all sensor nodes in turn. The procedure CollectorLoop(int m) performs a for

Chapter 3. NARUN 15

Algorithm 3 Collector n0 behavior
Require: discard any received message with less than timestamp t
Require: update global variable Gn0,t(N0,t, E0,t, w0,t) with new connected/disconnected nodes
1: procedure CollectorLoop(int m)
2: t← 0
3: for each node nk inside cluster N0,t do
4: Result← readOperation(nk,max) . try at most max times to read the same sensor nk

5: end for
6: end procedure
7: procedure readOperation(node nk, int m)
8: i← 0 . counter for making sure that no more than max attempts are done
9: toBeMerged← false . true when a unary graph must be merged with Gn0,t

10: G1n0,t ← Gn0,t . A reference to collector graph Gn0,t is put into G1n0,t

11: res← null
12: do
13: Pnk ← Dijkstra(G1n0,t,nk) . best path Pnk = {n0, . . . , nk, . . . , n0}
14: if Pnk is not empty then . A path leads to nk

15: t← t+ 1 . timestamp incremented when a read is attempted
16: i← i+ 1
17: res ← ReadMeter(nk,G1n0,t,Pnk)
18: if res 6= Failure then . a value was read
19: Break
20: end if
21: else
22: G1n0,t ← Clone(Gn0,t,1) . a unary graph
23: toBeMerged← true
24: end if
25: while i ≤ m . Try all possible paths to nk

26: if toBeMerged then . read a value
27: Merge(G1n0,t)
28: end if
29: return res
30: end procedure

loop (lines 3-5) that reads all sensor nodes in turn. This is performed by using the
procedure readOperation(node nk, int m) that tries to read each sensor nk at
most max times. More precisely, when a reading attempt fails, readOperation will
try again until a read is performed or the max number of attempts max has been
reached. The result of line 4 can be either the value read or the error Failure. The
lines 7-30 of Figure 3 describes the code of readOperation. The do-while cycle of
lines 12-25 will try at most m routing paths to read the meter nk. More precisely, the
shortest path Pnk

is selected by considering the current network graph G1n0,t (line 13).
When a path is found, the procedure ReadMeter is called (line 17). This procedure
tries to reach the node nk by using the selected path. In case nk is successfully read,
the do-while cycle terminates (line 19), otherwise another path is tried. The variable
Pnk

is empty when each path that leads to nk has a link with infinity weight. In this
case, lines 22-23 are executed. These set the pointer of the temporary variable G1n0,t

to a unary clone of the global network graph Gn0,t. G1n0,t is a copy of Gn0,t that
has the same edges, nodes, and timestamps but all the weights set to one. The unary
graph G1n0,t allows the collector to retry paths that have an infinity link weight in
the global network graph Gn0,t. When the unary graph is used, the merge algorithm
1 is used to update the weights of the network graph Gn0,t with the new discovery
weights from the unary graph (line 27). The procedures terminate by providing the
result that is either the sensor reading (line 19 was executed), or the error Failure

(max paths were tried but none of them reached the sensor), or null (no path exists).

16 Chapter 3. NARUN

This last option should never happen since it is assumed that each node connects and
disconnects correctly from the collector.

Algorithm 4 Reading procedure of the collector node n0
1: procedure ReadMeter(node nk,Graph Gn0,t(N0,t, E0,t, w0,t),Path Pnk)
2: Payload d . {Type y,node d,TimeStamp t,GraphList l,Numeric r,Path p}
3: d.y← req . WM-Bus request of reading
4: d.n← nk

5: d.p← Pnk

6: d.t← t . sequence number of attempted reading
7: d.l← ∅ . local-graph set l = {Gn1 , . . . , Gnh}
8: Result ← SendN(n0, n1, Gn0,t,D)
9: if Result = Failure then
10: return Failure . Collector cannot contact next hop n1

11: end if
12: if TimeOut receive(n1,M) then . Reply message not received
13: w0,t(n1, n0)←∞ . Message was not successfully sent
14: return Failure . No path leads to the node
15: end if
16: Merge(Gn0,t,m.L) . Update graph G with received local-graphs
17: if Contains(nk,M.L) then . Data value received from nk

18: return M
19: else
20: return Failure
21: end if
22: end procedure

Algorithm 4 outlines the collector node’s reading procedure. The collector node
reads the sensor value of a node nk by taking into account the collector network graph
Gn0 . The procedure starts by defining the payload. This contains the type of message
(in this case, a request REQ of reading), the destination node, the routing path, the
timestamp, and the list of projection graphs to empty. A local projection graph Gni

is added to the reply list by any node in the path in order to keep the weight of the
collector node graph updated. The collector uses the sendN communication primitive
in order to forward the request to the node n1. This is the next node in the routing
path. When the sending fails, the collector node returns an error (in this case, sendN
updates the weight of the link between n0 and n1 to infinity); otherwise, the collector
waits for the reply message (line 12 of the algorithm). When no reply is received the
collector node assumes its communication link to the first node of the path (i.e., n1)
is not working; thus the collector sets the weight of the link w0,t(n1, n0) to infinity
and returns an Failure error. When a reply value is returned, the collector calls
the Merge function in order to update its local network graph Gn0 with the list of
projection graphs M.L = {Gn1,t, . . . , Gnh,t}. The list of projection graphs is further
analyzed. More precisely, when the projection graph Gnk

of the node to be read (i.e.,
nk) is in the list, it means the data was successfully read and the reply message M

is returned. When the projection graph Gnk
is not in the list, it means the data was

not successfully read, and an Failure error is returned.

3.1.3 Meter behavior

A meter ns uses an eavesdrop procedure to sniff each message that is exchanged
between neighbors (see Algorithm 5 for details). More precisely, this is a message that

Chapter 3. NARUN 17

is sent from nj to ni with ni 6= nj 6= ns. This indirect observation allows ns to update
the link failure index of its projection graph.

Algorithm 5 Narun eavesdrop routine
1: procedure eavesdrop(node ns,Graph Gns (t)(Ns, Es, ws))
2: Message m
3: while true do
4: sniff(m) . sent from nj to ni with ni 6= nj 6= ns and nj ∈ Es

5: if message from nj to ni is Readable then
6: UpdateFailureIndex(ws,m.T (nj , ns))
7: end if
8: if ack from ni to nj is Readable then
9: UpdateFailureIndex(ws,m.T (ni, ns))
10: end if
11: end while
12: end procedure

The Algorithm 6 shows the reading behavior of a meter ns. This loops forever
waiting for incoming payloads (line 3 of the algorithm). When a payload D is received
from a node ns−1 the timestamp of the local graph Gns,t is updated with the received
one (i.e., D.t.) and the failure index of the link ns−1, ns is also updated. When the
meter is the destination one (i.e., the one to be read), a read is performed and the type
of the message is changed to reply (lines 9-10 of the algorithm). The local projection
graph is added to the received payload (this is needed to update the collector node).
Finally, the payload is forwarded to the next hop (line 14). When the next hop cannot
be reached, the payload is updated with the new projection graph since the procedure
sendN would set the weight of the link (ns, ns+1) to infinity. The Reply message is
sent back to the previous node in the path. In this case, no reception of the message
is checked.

Algorithm 6 Meter ns reception behavior after bootstrap
Require: discard any message with less than t
Require: update Gns,t(Ns, Es, ws) with new connected/disconnected nodes
1: procedure meterReceive
2: Payload d . {Type y,node d,TimeStamp t,GraphList l,Path p}
3: while true do
4: WaitReceive(ns−1,D) . sent by the previous node in the routing path
5: Gns,t(t← d.T)
6: UpdateFailureIndex(ws,d.T (ns−1, ns))
7: if d.y=REQ then . A request from collector
8: if d.n = ns then . destination reached
9: d.r← read() . fill the reply with my reading
10: d.y← reply . set message type to reply
11: end if
12: end if
13: d.L← d.L

⋃
Gns,t . add local graph

14: ns+1 ← getNextHop(D.p) . get the next hop
15: if SendN(ns, ns+1,d)6= Success then . when the next hop is unreachable
16: d.y← REP . a reply is sent back
17: d.L← d.L

⋃
Gns,t . add local graph

18: SendN(ns, ns−1,d)
19: end if
20: end while
21: end procedure

18 Chapter 3. NARUN

Figure 3.1: Updating a broken link

Figure 3.2: Indirect update of s by eavesdropping s+1 communica-
tion

3.1.4 NARUN connectivity

As we are going to see in the simulation Section, NARUN is suitable for dense networks
that are composed of many links between meter nodes. This setting can be found in
many applications, such as smart metering in smart cities. Dense networks ensure
connectivity and fast reading since the collector network graph always has updated
links. Figure 3.1 shows the detection of a broken link by the collector node. The
collector node tries to read a node nd at time t by using a message Mt. The first
broken link in the path (the link (s, s+1) in Figure 3.1) will cause a timeout and the
sending of a reply back to the collector. This is used to update the collector graph
with the broken link (i.e., ws,t(s, s + 1) = ∞ in the example of Figure 3.1). The
collector will retry to read nd by using an alternative path at time t+ 1 (see message
M2 of Figure 3.1). NARUN can update the weight of the link (s, s + 1) without the
need of any extra service messages. This is performed in two steps that are (i) indirect
observations, and (ii) local projection updates.

Indirect observations will eventually allow the detection of a link that starts func-
tioning again. For instance, in the example of Figure 3.1, the collector node will
eventually try to route a message via the nodes s and s + 1. This must necessarily
happen when the collector tries to read these nodes. For instance, the meter s can
update the link failure index of (s + 1, s) when the routing path includes s + 1 (see
Figure 3.2). In this case, s can eavesdrop on the messages/ACK sent by s+ 1 to an-
other node and update its local projection graph. This update can be sent back to the
collector node when s is part of a routing path. This allows the collector to correctly
update the link (s, s + 1). Symmetrically, s + 1 can update the link failure index of
(s, s + 1) when the routing path includes s. Similar observations can be done for a
node ns that is not working. In these cases, all links that have ns as destination node
will be detected as not working. NARUN will be able to detect that ns is functioning

Chapter 3. NARUN 19

again when a path that goes via ns will be tried.
We can easily prove that if a path leading to a node exists, the collector node will

eventually find it. When the collector network graph is updated (through indirect
observations), the collector node will eventually try the path (see the do-while cycle,
lines 12-25 of Algorithm 3). When the collector network graph is not updated and all
of the paths leading to the node appears to have been broken, the use of the unary
graph of lines 22-23 of Algorithm 3 will force the collector to retry all possible paths
until one is found working. While this behavior also updates link qualities, it can
cause additional communication. As we are going to see in the simulation section,
when the network is dense and the error is low, indirect observations always keep the
collector network graph updated and the unary graph is rarely used. This can be
proved by showing a low percentage of failing paths. These are paths the collector
node believes lead to the destination node but they do not.

3.2 DSR model

NARUN has been simulated against the Dynamic Source Routing (DSR)[18] and
WMBUS protocols. In this section, we present the DSR implementation compared to
the NARUN protocol. The DSR nodes manage the same data structures previously
described in section 3.1. The difference lies in the behavior of the collector and meter
nodes. The algorithm 7 shows the collector behavior. The collector only updates the
weights of the network graph when a routing path is discovered or fails. The weight
of the edges in path p, are set to infinity when a reading that uses the path p fails (see
lines 24-26 in the algorithm 7). The discovery starts when no paths have been found to
reach the destination node (see lines 14-15 in the algorithm 7). The discovery process
is implemented by broadcasting HELLO messages in the network (see the algorithm
8). The HELLO message D includes the final destination node D.N and a path D.P
that contains the node identifiers crossed by the packet (see lines 3-6 in the algorithm
8). The packet also includes a sequence number D.T used to avoid loop and multiple
retransmissions. The message is sent to all neighborn through the method SendB.
The packet is then broadcast by them until it reaches the destination node. If a node
receives an HELLO message that was previously received (can be checked using the
timestamp D.T and t), the packet is discarded. The collector waits for the reception
of multiple HELLORESP messages by meters (see line 8 in the algorithm 8). Each
RESPHELLO message is processed by setting the weight edges related to the path
(embedded in the RESPHELLO message) with the value one (see lines 12-14 in
the algorithm 8). Once at least one path is found, the collector retries to look at
the shortest path (see line 16 in the algorithm 7). The algorithm tries to read the
meter if a path is found (see lines 19-28 in the algorithm 7). A new RESPHELLO is
forwarded back to the collector when the destination meter D.N receives the HELLO
packet. Each RESPHELLO includes the path M.p which is the path that leads to
the destination node. The RESPHELLO and REQ messages do not include the

20 Chapter 3. NARUN

local graph or any type of update (see algorithm 9) which means that meters simply
forward response messages and does not eavesdrop on messages around (see lines 15
and 16 of algorithm 9).

Algorithm 7 Collector n0 behavior with DSR routing protocol
Require: discard any received message with less than timestamp t
Require: update global variable Gn0,t(N0,t, E0,t, w0,t) with new connected/disconnected nodes
1: procedure CollectorLoop(int m)
2: t← 0
3: for each node nk inside cluster N0,t do
4: Result← readOperation(nk,max) . try at most max times to read the same sensor nk

5: end for
6: end procedure
7: procedure readOperation(node nk, int m)
8: i← 0 . counter for making sure that no more than max attempts are done
9: res← null
10: do
11: Pnk ← Dijkstra(Gn0,t,nk) . best path Pnk = {n0, . . . , nk, . . . , n0}
12: t← t+ 1 . timestamp incremented when a read is attempted
13: i← i+ 1
14: if Pnk is empty then . No paths that leads to nk are found
15: if discoveryPaths(nk,Gn0,t) is not empty then . New paths found
16: Pnk ← Dijkstra(Gn0,t,nk)
17: end if
18: end if
19: if Pnk is not empty then . A path leads to nk

20: res ← ReadMeter(nk,Gn0,t,Pnk)
21: if res 6= Failure then . a value was read
22: Break
23: else . the path is invalid
24: for each (nj , ni) ∈ Pnk do
25: G0,tv (nj , ni)← inf
26: end for
27: end if
28: end if
29: while i ≤ m . Try all possible paths to nk

30: return res
31: end procedure

Algorithm 8 Discovery procedure of the collector node n0
1: procedure DiscoveryPaths(Numeric nk,Graph Gn0,t(N0,t, E0,t, w0,t))
2: Payload d . {Type y,node d,TimeStamp t,GraphList l,Numeric r,Path p}
3: d.y← HELLO . DSR discovery
4: d.n← nk

5: d.p← [0]
6: d.t← t . sequence number of attempted discovery
7: Result ← SendB(n0,D)
8: if TimeOut multiReceive(H) ∧ H = ∅ then . Wait reply messages
9: return Failure . No path found that leads to the destination
10: end if
11: for each M ∈ H do . Adds discovered paths
12: for each (nj , ni) ∈ M.p do
13: G0,tv (nj , ni)← 1
14: end for
15: end for
16: return H
17: end procedure

Chapter 3. NARUN 21

Algorithm 9 Meter ns reception behavior after bootstrap in the DSR protocol
Require: discard any message with less than t
Require: update Gns,t(Ns, Es, ws) with new connected/disconnected nodes
1: procedure meterReceive
2: Payload d . {Type y,node d,TimeStamp t,GraphList l,Path p}
3: while true do
4: WaitReceive(ns−1,D) . sent by the previous node in the routing path
5: Gns,t(t← d.T)
6: if d.y=REQ then . A request from collector
7: if d.n = ns then . I am the destination
8: d.r← read() . fill the reply with my reading
9: d.y← reply . set message type to reply
10: end if
11: end if
12: if d.y=HELLO then . Send broadcast message
13: Result ← SendB(ns,D)
14: else . HELLORESP, REQ, RESP messages are sent to the next hop
15: ns+1 ← getNextHop(D.p) . get the next hop
16: if SendN(ns, ns+1,d)6= Success ∧ d.y=REQ then . fault detection
17: d.y← REP . a reply is sent back
18: SendN(ns, ns−1,d)
19: end if
20: end if
21: end while
22: end procedure

3.3 Implementation

This section describes the standard link layer of the WM-Bus. More precisely, the
section illustrates the node discovery process and the communication behavior of
WM-Bus nodes. Afterward, this section presents NARUN extensions, which include
hamming encoding, an updated node discovery algorithm, and other protocol details.

3.3.1 WM-Bus protocol

The WM-Bus protocol is a European standard for smart metering sensor networks.
The protocol uses some of the layers of the OSI 7 Layer Model. Figure 3.3 shows
the comparison between the OSI layers and the WM-Bus protocol. The application
layer describes the data transmitted by meters [5]. The CI-field describes the format
and type of data field included in the payload, as we can see in Figure 3.6. A data
header can also be included to encrypt and describe the data field. For the sake of
simplicity, the thesis does not include this header in simulations. The EN 13757-7
standard covers the wireless M-BUS transport and service layer [8]. However, this
standard is rarely used. WM-Bus supports star, tree, or mesh topologies [7]. In star
topology, meters communicate with the collector, whereas in a tree topology, meters
are grouped by a gateway node. Each gateway forms its network. The mesh topology
provides routing capability to meters. Communication can be achieved by including
the routing path in the payload or using the internal knowledge of the node (like
the RIP protocol [48]). The standard does not specify any routing protocol. In this
context, the proposed NARUN provides routing functionalities by using the mesh type
of communication.

The WM-Bus data link and physical layers are specified by EN 13757-4 standard
[6]. The physical layer specifies the physical parameters such as frequencies, preamble,

22 Chapter 3. NARUN

Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data-link layer

Physical layer Physical layer
EN 13 757-4 standard

Data-link layer
EN 13 757-4 standard

Network layer
EN 13 757-5 standard

(optional)

Application layer
EN 13 757-3 standard

WM-bus modelOSI model

Presentation layer
EN 13 757-7 standard

(optional)

Transport layer
EN 13 757-7 standard

(optional)

Figure 3.3: The OSI Layered Model and the WM-Bus model

and postamble length, hardware connections, and cable types, the maximum transmit
power, the node sensitivity, and other details. The addressing, the communication
protocol, and the reliability are managed by the data-link layer.

A primary or secondary address identifies WM-Bus Nodes. The former is a byte
long, and the addresses from 1 to 250 may be assigned to meters. The broadcast
packet uses the addresses 255 and 254. 251 and 252 are reserved and should not be
used. When the former address has a value equal to 0 or 253, the secondary address
is used. The secondary address is a unique address assigned by the manufacturer,
composed of the Manufacture id (M-field, 2 bytes) and the address field (A-field).

Messages are encoded using two packet formats, namely, A and B. Both have
a preamble and a postamble section. A single frame is divided into blocks. The
former block is the header. Figures 3.4 and 3.5 show the header for format A and B
both contain (i) the frame length byte (L-field), i.e., the frame size; (ii) the control
information (C-field), i.e., a byte defining the message type (listed in tables 3.2 and
3.3); and (iii) the secondary address of the sender (M-field and A-field). In addition,
format A includes the CRC field. The payload can be encoded with one or more
sequential blocks. Figure 3.6 defines the block structure. The payload is composed of
the following fields: (i) CI byte field, which specifies the data encryption (i.e., whether
or not the data is encrypted) and the type of payload; (ii) the CRC-field that is related
to the entire block; (iii) the data field, i.e., the payload sent by the application layer.
The maximum size of a block is 15 bytes for the A frame type and 115 bytes for the
B frame type. The type of payload described by CI-field are defined in tables 3.2,
3.3. These tables contain a list of packets that can be sent by the collector and meter
nodes, respectively.

Chapter 3. NARUN 23

WM-Bus sum up this information using modes. In detail, each specifies uplink and
downlink data rates, whether unidirectional or bidirectional, the supported frequency
(which can be 169 MHz, 433 MHz, and 868.3 MHz), the encoding method (Manchester,
3 out of 6 encodings and NRZ), and the meter behavior. Table 3.1 shows the mode
supported by WM-Bus.

These modes are designed for different scenarios. The mode S or Stationary mode
(S1, S1-m, and S2) limits the number of readings per day. Frequent communication
can be done in the T mode; meters periodically send data to the collector node.
The interval can be set at as small as a few seconds to various minutes. Similar
to the T mode, the Compact mode or C mode allows periodical transmission with
NRZ encoding scheme and higher up-link bit rate. In T, S, and C modes are always
the meter that starts the communication. The collector node is passive and reacts
to the meter node messages. In the R2, F, P, and Q modes, the communication is
bidirectional, and the collector node can request data from the meter nodes. In detail,
messages can be relayed using modes P or Q. The Q mode allows retransmissions in
a tree topology. The P mode implements routing also in a mesh topology.

Table 3.1: WM-Bus trasmission modes

Mode name Frequencies Direction Encoding Uplink Downlink
S1 868.3,433 MHz Unidirectional Manchester 32.70 kbps 32.70 kbps

S1-m 868.3,433 MHz Unidirectional Manchester 32.70 kbps 32.70 kbps

S2 868.3,433 MHz Bidirectional Manchester 32.70 kbps 32.70 kbps

T1 868.3,433 MHz Unidirectional 3 out of 6 100 kbps 32.70 kbps

T2 868.3,43 3MHz Bidirectional 3 out of 6 100 kbps 32.70 kbps

C1 868.3,433 MHz Unidirectional NRZ 100 kbps 50 kbps

C2 868.3,433 MHz Bidirectional NRZ 100 kbps 50 kbps

R1 868.3 MHz Unidirectional Manchester 4.80 kbps 4.80 kbps

R2 868.3 MHz Bidirectional Manchester 4.80 kbps 4.80 kbps

F 433 MHz Bidirectional NRZ 2.40 kbps 2.40 kbps

N1 169 MHz Unidirectional NRZ 2.40/4.80 kbps 2.40/4.80 kbps

N2 169 MHz Bidirectional NRZ 2.40/4.80 kbps 2.40/4.80 kbps

N1g 169 MHz Unidirectional NRZ 19.20 kbps 19.20 kbps

N2g 169 MHz Bidirectional NRZ 19.20 kbps 19.20 kbps

P 868 MHz Bidirectional NRZ 4.80 kbps 4.80 kbps

Q 868 MHz Bidirectional NRZ 4.80 kbps 4.80 kbps

In the aforementioned modes, nodes have a transmission range of hundreds of
meters. The N mode was introduced in order to overcome this limitation. In this
case, meters use narrow-band communication in the 169 MHz frequency band. The
communication range can reach 10 km.

In a WM-Bus network, network initialization occurs by broadcasting the SND-IR
packet. Subsequently, the collector node can acknowledge (using SND-NKE packet)
or refuse the new node (CNF-IR packet). Data communications can start after the
collector node acknowledges.

24 Chapter 3. NARUN

Table 3.2: WM-Bus collector packet

Alias Explanation Response from collector
SND-NKE Complete communication (No ACK re-

quired)
-

SND-UD2 Send packet with subsequent previous re-
quest (REQ-UD2)

RSP-UD, NACK

SND-UD Send packet to the meter ACK, NACK
REQ-UD Request alarm data RSP-UD
REQ-UD2 Request data RSP-UD

ACK Acknowledge the delivery of a packet -
CNF-IR Confirms the successful installation of me-

ter/actuator into this gateway
-

Table 3.3: WM-Bus meter packet

Alias Explanation Response from collector
SND-NR Send spontaneous/periodical application

data without request
-

SND-IR Install a new meter in the network CNF-IR, SND-NKE
ACC-NR Access demand to collector in order to re-

quest new data, without reply.
-

ACC-DMD Access demand to collector in order to
request new important application data
(alerts)

ACK

ACK Acknowledge the delivery of a packet -
NACK Notify the collector that the meter recep-

tion leads to a buffer overflow or invalid CI
field

-

RSP-UD Responds with a message containing user
data.

-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L-field C-field

M-field

A-field

CRC-field

Figure 3.4: WM-Bus Header block format A

Chapter 3. NARUN 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L-field C-field

M-field

A-field

Figure 3.5: WM-Bus Header block format B
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CI-field

Data field
hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

CRC-field

Figure 3.6: WM-Bus Data block format A/B

3.3.2 NARUN routing protocol

NARUN is a routing protocol that extends and modifies the standard WM-Bus pro-
tocol by providing the network layer in the OSI model.

NARUN modifies addressing and implements payload reliability using hamming
instead of CRC code.

With Hamming, every seven bits have four data and three parity bits. This method
can check the packet readability and recover one bit whether a bit changes in the
transmission. For the sake of simplicity, simulations consider 1 byte for addressing
nodes. Nodes are identified using the primary addressing index (PAI). Its size is 1
byte and can range between 0 to 255. These addresses are unique and fixed at the
beginning.

The collector can spontaneously request accounting information using the meter
identifier. These messages are relayed in a mesh topology to reach the destination
node.

The packet format of NARUN is composed of the following fields: (i) the source
primary address (SPA-field), which represents the source hop address, destination
primary address (DPA-field), the transmit field (T-field), which specifies the commu-
nication type (unicast, broadcast, and multicast) and the data field as we can see in
Figure 3.7.

In the beginning, meters need to be discovered by the collector node. To do this,
meters spread a broadcast packet called HELLO packet to discover the neighbors.
Recipients answer this packet with a HELLORSP packet. This packet has an empty
payload. In this phase, meters initialize their local graph. Meters broadcast their

26 Chapter 3. NARUN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SPA-field DPA-field

T-field

Data field
hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

Figure 3.7: NARUN Packet format

identifier and neighbor list with the SND-IR packet. Subsequently, recipients append
their identifier in the list of hops, (ii) increases the hop size, and (iii) broadcasts the
new packet. The same procedure can also be used for meter joining.

Figure 3.8 shows the payload structure of SND-IR packet. The SND-IR packet is
composed of: (i) the meter identifier, (ii) the list of hops that reply to the packet, (iii)
the size of the hop list (Hop count field), (iv) the list of neighbors and (v) the size
of the neighbors list. The hop list can contain up to 255 nodes and cannot contain
duplicates. This avoids long and cycle paths.

The collector receives SND-IR packets and initializes the network topology G. The
graph G is stored in the form of an adjacency matrix, which associates source and
destination indexes to the link failure index. The weight used is the discretized version
of equation 3.2 (where the upper bound is 255).

After the discovery phase, the collector can request accounting information by
using algorithm 4. The request timeout is 2 · c · |Pk| where c is the latency of the
channel used. Figure 3.9 shows the request (REQ-UD2) packet implementation. The
request contains the path used to reach the destination nk. Response message (RSP-
UD) is sent back to the collector node using the same routing path. Figure 3.10 shows
the response (RSP-UD) structure. This packet contains the set of local graph M.L

along with theM.R (D−field) accounting information (whether it is provided). This
graph contains new information about the failure index of the links. This structure is
encoded as multiple lists. Each list refers to a source node. Each source has a set of
destinations coupled with the link failure index.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Node ID Hop count

Hop 0 Hop 1
.. Hop N

Neighbor count Neighbor 0

Neighbor 1 ..

Neighbor N

Figure 3.8: NARUN SND-IR payload

Chapter 3. NARUN 27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Path size n0

n1 ..

nk

Figure 3.9: NARUN REQ-UD2 payload

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DE-field

D-field (Optional)

Sources count(n) Source 0

Dest. count(m) Destination 0

lfi 0 Destination 1

lfi 1 Destination m

lfi m Source n

Dest. count(s) Destination 0

lfi 0 Destination 1

lfi 1 Destination s

lfi s

Figure 3.10: NARUN RSP-UD payload

3.4 Simulation Setup

NARUN has been simulated in the San Paolo district, Camerino City (MC, Italy)
where various performance measures have been evaluated. Figure 3.11 shows the con-
sidered smart meter network where the red and white markers represent the collector
and meter nodes, respectively. The white lines represent connections between nodes.
Simulations use a free space propagation model. The WM-Bus collector node is po-
sitioned in order to reach all meters by using a few hops. The characteristics of this
topology are summarized in Table 3.4. Wider random topology have been tested in
the paper [19]. The following input parameters are used for the simulations: (i) Noise
power: The noise level in the network; (ii) ECC: A boolean parameter that defines
the error correction code used by the simulation (i.e., ECC=true when Hamming is
used and ECC=false for CRC); (iii) Routing: A boolean parameter that determines
whether the meter includes the link failure index lfi in a response packet.

Simulations consider a specific configuration for the physical model. WM-Bus sup-
ports frequencies of 169MHz (Narrowband), 433 MHz, and 868 MHz. The frequency
of 169 MHz is a novel frequency that allows distance up to 10 km. The frequency of

28 Chapter 3. NARUN

Figure 3.11: Camerino topology.

433 MHz instead is widely used in Europe [9] and reaches up to a few hundred meters
of distance. The frequency of 433 MHz is intended for sectors where 868MHz is not
allowed. Each frequency has different modes that specify the communication baud
rate and transmitter capabilities. Simulations consider the widely used frequency of
868 MHz. For channel modeling, Additive white Gaussian noise and the free space
model have been chosen. Furthermore, the transmitter is assumed to use Frequency
Shift Keying (FSK) modulation, 10 dBm for transmission, and an antenna with 0 dB
gain. Equation 3.3 shows the path loss computation formula, which depends on the
frequency f (expressed in megahertz or MHz), the distance between the source and
the destination d (expressed in meters), and the gain of antenna g (expressed in
dBi).

PathlossdB = 20× log10(d) + 20× log10(f)− 27.55− g (3.3)

With the path loss value, we can compute the signal to noise ratio at the receiving
end and the bit error rate as we can see in equation 3.4.

BER =
1

2
× erfc(

√
(
SNRrec

2
)) (3.4)

The bit error rate value determines the success of communication. Equations 3.5, 3.6,
and 3.7 show respectively the probability of a success, a recoverable, or unrecoverable
packet by assuming a binary symmetric channel [49]. In these equations, n represents
the size of the packet, whereas r is the bit error rate.

P (successful packet) = (1− r)n (3.5)

P (recoverable packet) = n× r × (1− r)n−1 (3.6)

Chapter 3. NARUN 29

P (fail packet) = 1− (1− r)n − n× r × (1− r)n−1 (3.7)

3.4.1 Assumptions and simulation methodology

This section summarises the simulation methodology and all assumptions. The basic
unit of our experiments is a collector reading attempt. This is done by using the
ReadMeter procedure of Figure 4. A reading attempt that is related to the sensor i
is denoted with ai. The attempt ai is a random variable that is equal to Failure (in
the following denoted with 0) when the collector fails to read the sensor i, Success (in
the following denoted with 1) otherwise. The DSR attempt may include the discovery
of new paths (this is done via broadcasting). These additional messages are sent when
no path is known or all available paths failed.

A collector reading operation is a finite sequence of reading attempts ri = ai1a
i
2 . . . a

i
k

(0 < k < max) where max is the maximum number of consecutive attempts the col-
lector performs on the same sensor. The details of the readOperation are described
in the algorithm 3. These models that when a collector reading attempt fails, the col-
lector will try again until a read is performed or a max number of attempts has been
reached. The maximum number of attempts in simulations is ten which is near the
number of retries managed by uIP TCP, an extremely small implementation of the
TCP/IP protocol suite [50]. Hence, a reading operation failure is a sequence that
contains all zeros. A successfully reading operation is any sequence of zeros (also
an empty one) that ends with a one (the length cannot exceed max). Equation 3.8
formally defines the reading operation failure rate when reading the sensor i.

F (ri) =

∑max
k=0 (1− aij)
max

(3.8)

F (ri) measures the number of failed attempts during the reading operation of the
sensor i. As we are going to see, in the following a higher failure rate corresponds to
a higher number of network messages. Equation 3.9 formally defines the successful
reading operation rate when reading the sensor i.

O(ri) =

∑max
k=0 a

i
k

max
(3.9)

This can be either zero or one. It is worth mentioning that a 100% reading rate
does not imply a 0% failure rate. For instance, in the sequence of attempts 0000000001
we have 90% failure rate and 100% reading rate.

We can now formally define a collector round. Suppose that our system is com-
posed of z sensors. We denote with N = {n1, . . . , nz} the set of sensors. In a round,
a collector tries to read all sensors in turns by producing a sequence of z reading op-
erations. The notation R = {r1, . . . , rz} denotes a round where each ri is the reading

30 Chapter 3. NARUN

operation on the sensor i. Equations 3.10 and 3.11 formally define the failure round
rate and the reading round rate.

F (R) =

∑z
i=0 F (r

i)

z
(3.10)

O(R) =

∑z
i=0O(ri)

z
(3.11)

We can define a simulation run that is a sequence of h rounds. This is denoted
with U = {R1, . . . , Rh}. Equations 3.12 and 3.13 formally define the failure run rate
and the reading run rate.

F (U) =

∑h
i=0 F (Ri)

h
(3.12)

O(U) =

∑h
i=0O(Ri)

h
(3.13)

An experiment is a sequence of q runs. This is denoted with E = {U1, . . . , Uq}.
Equations 3.14 and 3.15 formally define the failure experiment rate F (E) and the
reading experiment rate O(E).

F (E) =

∑q
i=0 F (Ui)

q
(3.14)

O(E) =

∑q
i=0O(Ui)

q
(3.15)

We can finally define a simulation that is a sequence of p experiments. This is
denoted with S = {E1, . . . , Ep}. Equations 3.16 and 3.17 formally define the failure
rate F (S) and the reading rate O(S).

F (S) =

∑p
i=0 F (Ei)

p
(3.16)

O(S) =

∑q
i=0O(Ei)

p
(3.17)

The experiments S = {E1, . . . , Ep} are a sequence of independent and identically dis-
tributed random variables. The criteria used to stop a simulation have been presented
in [51]. At each run t, all the t experiments are considered, that have been performed
so far (i.e, St = {E1, . . . , Et}) and we calculate F (St) and O(St). The simulation
stops when for a sequence of k consecutive experiments (i.e., Et, Et+1 . . . Et+k) the
following conditions hold: (i) |F (Ei)−F (Ei+1)| < ε; (ii) |O(Ei)−O(Ei+1)| < ε (with
t < i <t+k). This stop criteria makes sure that the sample average converge within
a threshold ε.

The following protocols have been compared: (i) WMBUS; (ii) ECC-WMBUS; (iii)
NARUN; (iv) ECC-NARUN; (v) DSR. These are briefly described in the following.

Chapter 3. NARUN 31

Table 3.4: Network characteristics

Network characteristic Value
Collector latitude 43.146 509 423 809

Collector longitude 13.061 599 661 224

Number of meter nodes 254 nodes

Node to node minimum distance 8.86m

Node to node maximum distance 249.99m

Node to node average distance 151.14m

Node to node median distance 156.33m

Node to node variance distance 3915.86m2

Collector to meter minimum path length* 1 hop

Collector to meter maximum path length* 4 hops

Collector to meter average path length* 2 hops

Collector to meter median path length* 2 hops

Collector to meter variance path length* 0.82 hops2

Meter to meter average path length* 2.63 hops

Red circle radius 778.10m

Node density in the red circle 134.28 nodes/km2

Network density ** 21.15%

* Path lengths computed by finding the shortest path with the
lowest number of hops.
** Network density is the percentage of the ratio between the ac-
tual and possible connections in between meters.

WMBUS routing method allows node forwarding by including the path in the
request. The weight function is constant-based (see Section 3.1 for details). The path
chosen by the collector minimizes the number of hops. Hop to hop communication
uses the send described in the Algorithm of Figure 2. This uses CRC to detect
erroneous data frames and tries re-transmission 4 times. ECC-WMBUS is similar
to WMBUS one except for the ECC use. Hop to hop communications use Hamming
forward correction code to validate and recover messages. This is emphasized for both
WMBUS and ECC-WMBUS routing, the weights are never updated but are always
set to 1.

NARUN uses a connection-based weight function (see Section 3.1 for details) while
ECC-NARUN uses a hamming-based one. The algorithms are described in section
3.1. DSR algorithm had been implemented as described in [18].

3.5 Simulation results

This section provides the chosen simulation methodology along with the simulation
results under different network conditions. Two kinds of simulations are described:
(i) with disconnected links, a random subset of links is disconnected and (ii) with
noisy links, a random subset of the links are affected by noise. The subsets selection
is uniformly distributed.

32 Chapter 3. NARUN

Table 3.5: Failure rate F(S), reading rate O(S) and average number
of read sensors with disconnected links

failing links protocol F(S) O(S)
30% WMBUS 90.0373% 51.66%

NARUN 29.9265% 94.35%
15% WMBUS 77.6022% 72.93%

NARUN 2.1864% 99.79%
5% WMBUS 48.4440% 90.22%

NARUN 0.1245% 99,99%

3.5.1 Simulation with disconnected links

This section compares the protocols when some of the links are temporarily not work-
ing. More precisely, it considers the case where a subset of the links is disconnected.
Each simulation is a sequence of experiments S = {E1, E2, . . . , Ek}. Each experiment
Ei is composed of a sequence of runs (i.e., Ei = {U1, U2, . . . , Uq} with q = 50) . At
each run Ui, a random subset of the links is treated as disconnected ones (any com-
munication via those links fails). All the remaining links always deliver messages. For
each run Ui, h rounds are performed {R1, . . . , Rh} (h = 50). When the run Ui is
completed, a new one Ui+1 is performed where the same is repeated (a subset of the
edges are randomly picked and disconnected). When moving to a run Ui+1 from the
previous one (i.e., Ui), the protocol is not restarted (i.e., its state is kept). This allows
us to test the ability of NARUN to update correctly all links and converge to the new
network state. Simulation has been performed for 30%, 15%, and 5% of disconnected
links. Each simulation has been executed for the WMBUS protocol and the NARUN
protocol. Table 3.5 shows the results of our simulations. The increase in the percent-
age of failing links results in a higher failure rate F (S) and lower reading one O(S).
WMBUS has always had a higher failure rate and lower sensor reading with respect
to NARUN. In fact, NARUN marks failing links and always tries alternative routes
(if any). NARUN improves the WMBUS reading rate by 42.67% and 26.86% when
30% and 15% of the links are not usable. NARUN improves the WMBUS reading
rate by 9.77% when 5% of the links are not working. We can conclude that NARUN
eavesdropping capabilities allow the update of the collector network graph with the
right link information. This allows NARUN to find an alternative path and to have a
higher reading rate.

3.5.2 Simulation with noisy links

This section compares protocols when some of the links are noisy. More precisely, it
considers the case where a certain percentage of the links are affected by an increasing
amount of noise (i.e., from -70 dBm to -80 dBm). Each simulation is a sequence of
experiments S = {E1, E2, . . . , Ek}. Each experiment Ei is composed of a sequence of
runs (i.e., Ei = {U1, U2, . . . , Uq} with q = 50). At each run Ui, a random subset of the
links is selected. These have a noise power value equal to Y (with −69 < Y < −81)

Chapter 3. NARUN 33

while all the rest of the links always deliver messages. For each run Ui we perform
h rounds {R1, . . . , Rh} (h = 50). When the run Ui is completed, a new one Ui+1

is performed where the same is repeated (a subset of the edges are randomly picked
which have the noise power equal to Y). When moving to a run Ui+1 from the previous
one (i.e., Ui), the protocol is not restarted (i.e., its state is kept). This allows us to
test the ability of the protocols (e.g., NARUN and DSR) to learn the new network
conditions. Simulations have been performed for 30%, 15%, and 5% of noisy links
with noise power values between -70 dBm and -80 dBm. The following protocols have
been considered: (i) WMBUS; (ii) ECC-WMBUS; (iii) NARUN; (iv) ECC-NARUN;
(v) DSR.

−80 −78 −76 −74 −72 −70
70

80

90

100

Noise power, dBm

R
ea
di
ng

ra
te
O

DSR
WMBUS

ECC-WMBUS
NARUN

ECC-NARUN

Figure 3.12: Reading rate O with 30% noisy links

−80 −78 −76 −74 −72 −70

0

20

40

60

80

Noise power, dBm

C
ol
le
ct
or

re
ad

in
g
fa
ilu

re
ra
te DSR

WMBUS
ECC-WMBUS

NARUN
ECC-NARUN

Figure 3.13: Collector reading failure rate with 30% of noisy links

Figure 3.12 shows the reading rate (we recall that the total number of sensors is
254) when 30% of links have noise. When the noise power is lower than -73 dBm,
all protocols are able to read all the 254 sensors (i.e., 100% of sensor reading rate).

34 Chapter 3. NARUN

−82 −80 −78 −76 −74 −72 −70

800

1,000

1,200

1,400

Noise power, dBm

M
es
sa
ge
s
re
ce
iv
ed

by
no

de
s WMBUS

ECC-WMBUS
NARUN

ECC-NARUN

Figure 3.14: Average messages received by the sensors with 30% of
noisy links

−80 −78 −76 −74 −72 −70

1,000
5,000

10,000

20,000

30,000

Noise power, dBm

M
es
sa
ge
s
re
ce
iv
ed

by
no

de
s DSR

Figure 3.15: Average messages received by the sensors with 30% of
noisy links using DSR protocol

When the noise power is -70 dBm the reading performance of the WMBUS drasti-
cally decreases to 180 sensors out of 254 (i.e., 71.29%). The use of hamming code
(i.e., WMBUS-ECC) improves the reading rate of WMBUS. WMBUS-ECC reads 210
sensors out of 254 (i.e., 83.1% reading rate). NARUN reads 96% of the sensors while
ECC-NARUN and DSR read 99% of the sensors. These protocols perform better since
they are able to discover a path with no noisy links, unlike the WMBUS which always
tries the shortest path. Figure 3.13 show the failure rate with 30% of noisy links.
When the noise power is lower than -75 dBm, all protocols have a reading failure rate
close to 0%. When the noise power is between -70 dBm and -74 dBm, WMBUS has a
high failure rate since it always tries the shortest path without considering alternative
paths with less noise. The introduction of the Hamming code (i.e., ECC-WMBUS)
reduces the failure rate by 14%. The DSR and NARUN protocols reduce the failure

Chapter 3. NARUN 35

rate of the WMBUS by 30% and 78%, respectively. In fact, both DSR and NARUN
will eventually find the least noisy path. We recall that NARUN and DSR mark
a noisy link with infinity when it fails to deliver a message. The caching strategy
of DSR will make paths with less noisy links become a stable choice while NARUN
indirect observations can update noisy links and make them a possible choice. This
explains the slightly higher failure rate of NARUN (it retries a shorter path with
noisy links). When all paths that lead to a node are noisy, both NARUN and DSR
can keep discovering new paths. In this case, the flooding discovery strategy of DSR
will cause a higher amount of messages when compared with the indirect observations
and retrial collector strategy (see Algorithm 3) of NARUN. This behavior has been
validated by checking the total amount of messages received by the sensors in a round
(see Figure 3.14 and Figure 3.19). DSR generates the highest traffic load in order to
perform various flooding discoveries. Although WMBUS has a very low reading rate,
its traffic load is not high. In fact, although it performs several attempts to read the
same sensors, no flooding is involved and the shortest path is always used.

The addition of weights that are based on hamming (i.e.,ECC-NARUN) results in
the lowest failure rate. ECC-NARUN reduces the failure rate by 70% and 32% when
compared to WMBUS and DSR. ECC-NARUN has a low traffic load since it has the
least failure rate and no overhead messages are used (i.e., link weights are updated
via indirect observations).

−80 −78 −76 −74 −72 −70

0

20

40

60

Noise power, dBm

C
ol
le
ct
or

re
ad

in
g
fa
ilu

re
ra
te DSR

WMBUS
ECC-WMBUS

NARUN
ECC-NARUN

Figure 3.16: Collector reading failure rate w.r.t. the noise power
with 15% block percentage

Figure 3.17 and 3.16 shows the reading rate and the failure when 15% of the links
are noisy. Figure 3.18 and Figure 3.19 show the traffic load. The trend of the protocols
is the same as the 30% noisy links case that we have already discussed.

We can conclude the following: (i) DSR and NARUN are able to read the highest
number of sensors since they eventually select paths with less noise ; (ii) WMBUS
reads the lowest number of sensors since always selects the shortest path without
considering the link noise; (iii) ECC-NARUN has the lowest failure rate and a low

36 Chapter 3. NARUN

−80 −78 −76 −74 −72 −70

85

90

95

100

Noise power, dBm

R
ea
di
ng

ra
te
O

DSR
WMBUS

ECC-WMBUS
NARUN

ECC-NARUN

Figure 3.17: Reading rate O with 15% noisy links

−80 −78 −76 −74 −72 −70

800

900

1,000

1,100

Noise power, dBm

M
es
sa
ge
s
re
ce
iv
ed

by
no

de
s WMBUS

ECC-WMBUS
NARUN

ECC-NARUN

Figure 3.18: Messages received by nodes variation w.r.t. the noise
power with 15% block percentage

traffic load. In fact, indirect link observations allow a quick update of the collector
network graph without the need for overhead messages; (iv) DSR has the highest
traffic load since various floodings may be needed to converge to the paths with the
lowest noise. The use of the Hamming code seems effective for improving the reading
rate and reducing failure.

Chapter 3. NARUN 37

−80 −78 −76 −74 −72 −70

1,000

5,000

10,000

20,000

30,000

Noise power, dBm

M
es
sa
ge
s
re
ce
iv
ed

by
no

de
s DSR

Figure 3.19: Average messages received by the sensors with 15% of
noisy links using DSR protocol

3.6 Conclusion

The WM-Bus is a widely used meter protocol in utility networks. However, in a noisy
environment, faults become a serious issue resulting in excess volumes of transmissions.
The increased energy consumption due to this activity is also problematic for battery-
operated nodes.

This chapter proposes NARUN which aims at reducing reading failure through
the use of the Hamming ECC combined with a noise adaptive routing protocol. The
employed Hamming ECC reduces re-transmissions by correcting the single-bit errors.
The proposed methods are benchmarked in simulations by changing the noise power
value between -80 dBm and -70 dBm. The simulations have been executed when with
links that are temporary not working and noisy links. In presence of disconnected
links, NARUN eavesdropping capabilities allow the update of the collector network
graph with the right link information. This allows NARUN to find an alternative
path and to have a higher reading rate. When link are noisy, results show that DSR
and NARUN are able to read the highest number of sensors since they eventually
select paths with low noise while WMBUS reads the lowest number of sensors since
always select the shortest path without considering the link noise. ECC-NARUN
has the lowest failure rate and a low traffic load. In fact, meters eavesdrop on the
surrounding environment and efficiently report information on the link failure index
back to the collector with ordinary reading messages. DSR has the highest traffic load
since various floodings may be needed to converge to the paths with the lowest noise.

Chapter 4

NARUN-PC

This chapter presents a routing protocol called Noise Adaptive Routing for Utility
Networks with Path Cache NARUN-PC [21]. NARUN-PC is an improvement of
NARUN protocol with the usage of a path cache in the collector node. Section 4.1
provides a detailed model of NARUN-PC by comparing it to the NARUN protocol
while section 4.2 presents the simulation setup and discusses related results.

4.1 NARUN and NARUN-PC protocols

In what follows, N = {n0, . . . , nz} denotes the set z nodes (meters); by M a WM-Bus
message. A message is composed by three fields: the header M.h, the payload M.d,
and the footer M.o. A network graph is denoted with G(N,E,w) where E ⊆ N ×N
defines the communication links. w : E −→ R is the edge weight function. NARUN
defines a connection-based weight function wr where wr(ni, nj) = ∞ when the link
(ni, nj) is broken while wr(ni, nj) = 1 when the link is working. NARUN defines
also a Hamming-based weight function wh where wh(ni, nj) is calculated by using the
Hamming code. In particular, the header M.h and the payload M.d of a frame M
are divided into l equal parts M1, . . . ,Ml. The sender of M calculates the Hamming
code hmc(Mi) of each part Mi and adds it into the footer M.o. The format of the
message can be summarised as follow: M = M1|| . . . ||Ml||hmc(M1)|| . . . ||hmc(Ml).
The correction function R(Mi) is defined by the equation 4.1.

R(Mi) =


0 Mi is received with no error

∞ Mi has a non-recoverable error

1 Mi has a recoverable error

(4.1)

The Hamming-based weight function wh(ni, nj) by the equation 4.2.

wh(ni, nj) =

∞ if
∑l

i=0R(Mi) =∞∑l
i=0 R(Mi)

l + 1 otherwise
(4.2)

wh(ni, nj) is equal to ∞ when M has a non-recoverable error, wh = 1 when no
error is recovered, wh = 2 when each part Mi has a recoverable error. Effectively,
wh(ni, nj) measures the link failure index lfi between ni and nj .

38

Chapter 4. NARUN-PC 39

Pnk
(G) = {n0, . . . , nk, nk+1, . . . , n0} (with k > 0) denotes a path that starts from

the collector node n0, reaches the node to be read nk and returns to the node n0. The
path cost of Pnk

is defined by the equation 4.3.

W (Pnk
(G)) =

i=k−1∑
i=0

w(ni, ni+1) (4.3)

Symmetric links are assumed; which means thus the path Pnk
is palindrome (i.e.

the paths from n0 to nk and nk to n0 are the same). Gn0(N0, E0, w0) denotes the
collector node network graph. Each meter node ns also defines a local meter network
graph (referred to as projection graph) which is denoted by Gns(Ns, Es, ws). Ns is
the set of neighbours of ns; Es contains communication edges of the type (ns, nj)

and (ni, ns), where the node ns takes the role of sender and receiver, respectively.
A projection graph is used by the meter ns to store the failure indexes of its local
communication links. These are sent back to the collector with ordinary reading
messages and can be used to update the collector network graph. A collector keeps a
timestamp t that is increased by one when a meter reading is attempted. The collector
node n0 reads all meter nodes n1, . . . , nz in turn (this is called round). A timestamp
tq denotes the q-th attempt made by the collector to read a meter. Two consecutive
timestamps tq and tq+1 may refer to the same meter node nk when the routing path
selected at time tq fails to reach nk. In this case, a different path can be tried at
time tq+1. In the rest of the chapter, Gnk,tq(Nk,tq , Ek,tq , wk,tq) denotes a meter graph
last updated at time tq. Each nj ∈ Nk,tq is a neighbour of nk added at time tu with
tu ≤ tq. The link (nk, nj)tu would also be added to Ek,tq at time tu with the related
weight wk,tu(nk, nj).

Fig. 4.1 sketches a collector round. The round starts by setting the id of the
meter to be read to zero. This is stored inside the variable k. A clone of the collector
network graph Gn0,t is put inside the variable G1n0,t. The collector will proceed by
increasing the variable k by one so that the first meter (k = 1) will be read. A
reading operation is described inside the pink square of Fig. 4.1 and is composed of
various read meter attempts. A meter attempt is performed by using the procedure
READMETER. The variable i stores the number of reading meter attempts the
collector performed on the same meter. The i-th attempts on the meter k is denoted
as aki . The reading attempt aki is equal to 1 when the meter nk is successfully read,
zero otherwise. Effectively, a collector reading operation can be formally defined as
a finite sequence of reading attempts rk = ak1a

k
2 . . . a

k
i (0 < i < max) where max is

the maximum number of consecutive attempts the collector can perform on the same
meter. A reading operation rk fails to read nk when is composed of a sequence of max
consecutive zeros. A reading operation rk successfully reads nk when is composed of
a sequence of zeros (also an empty one) that ends with 1 (the length cannot exceed
max). The system follows the MSB first approach, a sequence of attempts can not
have any number after an attempt with value 1 (for instance, 1000000000 is not
allowed) . Eq. 4.4 formally defines the reading operation failure rate. F (ri) measures

40 Chapter 4. NARUN-PC

k=0

G1n0,t = CLONE(Gn0,t)

k=k+1

i=0

toBeMerged=false

Pnk=DIJKSTRA_SCACHE(G1n0,t,nk)

Pnk !=

empty

t=t+1

i=i+1

aki=READMETER(G1n0,t,nk,Pnk)

aki==1

YES

G1n0,t=UNARY(Gn0,t)

toBeMerged=true

YES

NO

NO

i==MAX
NO

toBeMerged=true

END

ROUND

NO

MERGE(Gn0,t,G1n0,t)

G1n0,t = Gn0,t

ROUND

START

NO

k

==

meters

Number

YES
k=k+1

Reading operation rk

H_s(nk,t)=empty

 Gn0,t = G1n0,t

YES

YES

Figure 4.1: NARUN collector behaviour

the number of failed attempts during the reading operation. Eq. 4.5 formally defines
the successful reading operation rate when reading meter i.

F (ri) =

∑max
k=0 (1− aik)
max

(4.4)

O(ri) =

∑max
k=0 a

i
k

max
(4.5)

A 100% reading rate does not mean a 0% failure rate. For instance, in the sequence
of attempts 0000000001 there are 90% failure rate and 100% reading rate. During a
reading attempt, the collector uses its network graph to find a path that leads to nk
(that is the meter to be read). When no path is found, the collector creates a unary
clone of its network graph. This is a graph that has all edges equal to one. The use of
the unary graph is twofold: on the one hand, it allows the collector to retry edges that
have their weights set to∞; on the other hand, ensures connectivity. When the unary
graph is generated, the variable toBeMerged is set to true. This allows the collector
to note down that the unary graph needs to be merged with the network graph Gn0,t.
In fact, the unary graph will contain fresh weights discovered by the collector that
needs to be stored in the network graph Gn0,t.

Fig. 4.2 shows a successful READMETER execution where a meter nk is read
by the collector n0. This generates a REQ WM-Bus standard packet which contains
the path Pnk

to reach nk. Each node in the path receives the REQ message and
forwards it to the next-hop by using the path Pnk

. The destination node receives the

Chapter 4. NARUN-PC 41

n0 n1 nk-1 nk

Pnk,t REQ

RESP

REQ

[Gnk,t,...,Gn1,t]

Pnk,t

[Gnk,t]RESP

nh

Pnk,t REQ Pnk,t REQ

[Gnk,t,...,Gnh+1,t]RESP[Gnk,t,...,Gnh,t]RESP

Figure 4.2: READMETER procedure successful execution

n0 n1 nk-1 nk

Pnk,t REQ

[Gnh,t,...,Gn1,t]RESP

nh

Pnk,t REQ

[Gnk,t,...,Gnh,t]RESP

nh+1

Figure 4.3: READMETER procedure unsuccessful execution

request and builds a response message RESP . This contains the reading and its local
network graph Gnk,t with the quality of all links nk was able to eavesdrop from the
neighbour communications. The response packet is sent back to the collector node
and at each hop, each meter adds its local network graph. Effectively, the collector
READMETER procedure receives the list of all network graphs and updates its
local graph Gn0,t with all newer link failure indexes. Fig. 4.3 shows an unsuccessful
READMETER operation. In this case, a timeout will be triggered at the node that
does not receive a response packet RESP . This node will send back to the collector
node the reading failure information and its local network graph.

NARUN-PC is a simple but effective improvement of NARUN. It substitutes the
DIJKSTRA procedure of Fig. 4.1 with a DIJKSTRA_SCACHE(G1n0,t, nk) proce-
dure (see Fig. 4.4). This includes a simple hashmap function Hs(nk, t) that stores a
meter/path value. The function Hs(nk, t) can store the following values: (i) a path
Pnk,q that was successfully used to reach the node at time q with q < t; (ii) a path Pnk,q

that is return by the DIJKSTRA procedure; (iii) empty when a the DIJKSTRA
procedure finds no path. Fig. 4.4 shows the modification to the round reading op-
eration of Fig. 4.1 in order to add cache management. The cache path Hs(nk, t) is
updated with empty when the procedure READMETER has a result which is not
ok.

42 Chapter 4. NARUN-PC

Figure 4.4: Cache addition into the collector round reading operation

Algorithm 10 NARUN-PC
procedure DIJKSTRA_SCACHE(G1n0,t, nk)

Path Pnk,q ← Hs(nk, t)

if Pnk,q ! = empty then
Return Pnk,q

end if
Hs(nk, t) ← DIJKSTRA(G1n0,t, nk)
Return Hs(nk, t)

end procedure
procedure DIJKSTRA_ACACHE(G1n0,t, nk)

Path Pnk,q ← Hs(nk, t)

if Pnk,q ! = empty then
res ← check(G1n0,t, Pnk,q)
if res! = empty then

Return Pnk,q

end if
end if
Hs(nk, t) ← DIJKSTRA(G1n0,t, nk)
Return Hs(nk, t)

end procedure

This simple cache strategy has been proved to be not effective since can try paths
without checking their current state. A path can currently contain some broken links,
thus extra overhead messages can be generated. Our solution is a slightly more sophis-
ticated caching strategy that checks the validity of the current stored path. The algo-
rithm 10 compares the two strategies. Procedure DIJKSTRA_CACHE shows the
implementation of the NARUN strategy while procedure DIJKSTRA_SCACHE
is the implementation used by the cache mechanism. Function CHECK is used to
verify when the stored path contains a broken link (i.e., a link with weight set to
infinity). In this case, a new path is stored inside the hashmap.

Chapter 4. NARUN-PC 43

4.2 Simulation

This section presents the experiments performed by comparing NARUN-PC with
NARUN and DSR. The simulations have been tested in the same simulation setup
described in Section 3.4.

The following protocols have been compared: (i) NARUN which uses a connection-
based weight function; (ii) ECC-NARUN which uses a Hamming-based function and
the Hamming code can be used to detect and recover errors; (iii) DSR [18] which is
an efficient protocol suitable for wireless sensor networks [52, 53]. NARUN-PC-ECC
denotes the addition of advanced caching into ECC-NARUN while NARUN-PC is the
addition of caching into NARUN.

4.2.1 Experimental Results

Protocols have been compared in the case where a certain percentage of the links is
affected by an increasing amount of noise (i.e., from -70 dBm to -80 dBm). At each
run Ui, a random subset of the links is selected. These have a noise power equal to
Y (with −69 < Y < −81) while all the rest of the links can always deliver messages.
Simulations has been performed for 30% of noisy links.

Fig. 4.5 shows the failure rate with 30% of noisy links. When the noise power is
lower than -78 dBm, all protocols have a reading failure rate close to 0%. When the
noise power is between -70 dBm and -74 dBm, NARUN and DSR have always the
highest failure rate. At -70dbm the failure rate of DSR becomes stable around 35%
while for NARUN increases to 42%. NARUN indirect observations cause NARUN to
retry paths that have noisy links but they also produce very low overhead. Results also
show that at -70dBm noise, power when 30% of noisy links are considered NARUN-
PC-ECC decreases the failure rate of ECC-NARUN by 2.29% and generates 31%
traffic less.

Fig. 4.6 shows the reading rate (the total number of meters is 254) when 30% of
links have noise. When the noise power is lower than -72 dBm, all protocols can read
all the 254 meters. When the noise power is -70 dBm the reading rate of the NARUN
drops by 2.5%. All protocols have a good reading performance since they can discover
paths with no noisy links.

Contrary to NARUN, DSR floods the network to discover less noisy paths. After
various message flooding phases, DSR eventually converges to the least noisy paths.
This behaviour has been validated by checking the total number of messages received
by the meters in a round (see Fig. 4.7). At -70 dBm, DSR generates 14825 messages
(that is an average of 58.3 messages per reading operation) while NARUN 1387 (that
is an average of 5.4 messages per reading operation). The use of Hamming and caching
seem to be effective in terms of failure rate and traffic overhead. At -70dbm, ECC-
NARUN has a failure rate of 5.29% with 1335 messages. NARUN-PC and NARUN-
PC-ECC have a failure rate of 10.93% and 3% with 1100 and 1014 messages (see
Fig.

44 Chapter 4. NARUN-PC

−80 −78 −76 −74 −72 −70

0

10

20

30

40

Noise power, dBm

C
ol
le
ct
or

re
ad

in
g
fa
ilu

re
ra
te NARUN-PC

NARUN-PC-ECC
NARUN

NARUN-ECC
DSR

Figure 4.5: Collector reading failure rate with 30% of noisy

−80 −78 −76 −74 −72 −70
94

96

98

100

Noise power, dBm

R
ea
di
ng

ra
te
O

NARUN-PC
NARUN-PC-ECC

NARUN
NARUN-ECC

DSR

Figure 4.6: Reading rate O with 30% noisy links

−80 −78 −76 −74 −72 −70

1,000
5,000

10,000

20,000

30,000

Noise power, dBm

M
es
sa
ge
s
re
ce
iv
ed

by
no

de
s DSR

Figure 4.7: Average messages received by the meters with 30% of
noisy links using DSR protocol

Chapter 4. NARUN-PC 45

−82 −80 −78 −76 −74 −72 −70

800

1,000

1,200

1,400

Noise power, dBm

M
es
sa
ge
s
re
ce
iv
ed

by
no

de
s NARUN-PC-ECC

NARUN-PC
NARUN

ECC-NARUN

Figure 4.8: Average messages received by the meters with 30% of
noisy links

4.8). We can conclude that NARUN-PC-ECC has the lowest failure rate and
the lowest traffic. The caching strategy generates the least traffic while the use of
Hamming seems to be very effective for decreasing the failure rate and traffic overhead.
Similar trends can be observed for the case with the 15% of noisy links(for the sake
of presentation 15% results are not presented).

Protocols have been compared when links are unstable. At the beginning of an
experiment,a random subset of the links has been selected and therefore alternate a
run where the selected links are broken and the next run where all such links are
working. Fig.s 4.9 and 4.10 show the reading rate and the failure, respectively, when
30% of the links are unstable. We can see that the failure rate is greatly reduced
compared to the version without noise alternation. Fig.s 4.12 and 4.11 show the
traffic load. The number of messages exchanged are also lower than the figure 4.8. It
is worth mentioning that The distance between NARUN-PC and ECC-NARUN at 70
dBm of noise power is 236 messages in Fig. 4.8 while the same distance is 69 messages
in Fig. 4.12. Path cache simulations try stable path instead of frequently changing
links. This trend confirms that NARUN-PC and NARUN-PC-ECC are suitable for
networks where links are unstable. In detail, it can be seen that NARUN-PC-ECC
decreases the failure rate of ECC-NARUN by 2.1% and generates 13% of traffic less.
Similar trends can be observed for the case with the 15% of noisy links. NARUN
and DSR have a significant reduction in terms of failure rate (9.4 % and 6.84% at
70 dBm, respectively). Path cache simulations are resilient in terms of the number
of links affected by noise power. These improvements can be seen by comparing Fig.
4.13 and Fig. 4.9. NARUN improvements in terms of reading rate, can be seen by
comparing Fig. 4.14 and Fig. 4.10. NARUN has 3% of improvement in terms of
reading rate because it greatly depends on noisy links. Received messages are also
reduced by around 200 messages at 70 dBm of noise power. This can be seen in Fig.
4.15. DSR received messages are also reduced by nearly 50% as we can see from Fig.

46 Chapter 4. NARUN-PC

−80 −78 −76 −74 −72 −70

0

5

10

15

20

Noise power, dBm

C
ol
le
ct
or

re
ad

in
g
fa
ilu

re
ra
te NARUN-PC

NARUN-PC-ECC
NARUN

ECC-NARUN
DSR

Figure 4.9: Collector reading failure rate with 30% of noisy links in
ON/OFF simulations

−80 −78 −76 −74 −72 −70

98

99

100

Noise power, dBm

R
ea
di
ng

ra
te
O

NARUN-PC
NARUN-PC-ECC

NARUN
ECC-NARUN

DSR

Figure 4.10: Reading rate O with 30% noisy links in ON/OFF sim-
ulations

4.16.
We can conclude the following: (i) NARUN-PC-ECC has the lowest failure rate,

traffic load and highest reading rate in when the noise power is higher than -74 dBm;
(ii) NARUN indirect observations cause NARUN to retry paths that have noisy links
but they also produce very low overhead (iii) NARUN-PC and NARUN-PC-ECC are
suitable for networks where links are unstable due to the lower failure rate and traffic
load observed when the noise power is -70dBm.

Chapter 4. NARUN-PC 47

−80 −78 −76 −74 −72 −70

1,000

5,000

10,000

Noise power, dBm

M
es
sa
ge
s
re
ce
iv
ed

by
no

de
s DSR

Figure 4.11: Average messages received by the meters with 30% of
noisy links using DSR in ON/OFF simulations protocol

−80 −78 −76 −74 −72 −70

800

1,000

Noise power, dBm

M
es
sa
ge
s
re
ce
iv
ed

by
no

de
s NARUN-PC-ECC

NARUN-PC
NARUN

ECC-NARUN

Figure 4.12: Average messages received by the meters with 30% of
noisy links in ON/OFF simulations

48 Chapter 4. NARUN-PC

−80 −78 −76 −74 −72 −70

0

2

4

6

8

10

Noise power, dBm

C
ol
le
ct
or

re
ad

in
g
fa
ilu

re
ra
te NARUN-PC

NARUN-PC-ECC
NARUN

ECC-NARUN
DSR

Figure 4.13: Collector reading failure rate with 15% of noisy links
in ON/OFF simulations

−80 −78 −76 −74 −72 −70
99

99.2

99.4

99.6

99.8

100

Noise power, dBm

R
ea
di
ng

ra
te
O

NARUN-PC
NARUN-PC-ECC

NARUN
ECC-NARUN

Figure 4.14: Reading rate O with 15% noisy links in ON/OFF sim-
ulations

Chapter 4. NARUN-PC 49

−80 −78 −76 −74 −72 −70

800

850

900

Noise power, dBm

M
es
sa
ge
s
re
ce
iv
ed

by
no

de
s NARUN-PC-ECC

NARUN-PC
NARUN

ECC-NARUN

Figure 4.15: Average messages received by the sensors with 15% of
noisy links in ON/OFF simulations

−80 −78 −76 −74 −72 −70

1,000

5,000

Noise power, dBm

M
es
sa
ge
s
re
ce
iv
ed

by
no

de
s DSR

Figure 4.16: Average messages received by the sensors with 15% of
noisy links using DSR protocol in ON/OFF simulations

50 Chapter 4. NARUN-PC

4.3 Conclusion

This chapter presented NARUN-PC, an improvement of the NARUN protocol. The
model has been detailed and compared against NARUN. NARUN-PC introduces a
path cache strategy in the collector. The evaluation section simulates and compare
NARUN, NARUN-PC and DSR protocols in a real life topology. The evaluation
analyzes the failure rate, the number of readings and the message received by meters.
For each simulation, experiments have been launched until the final value converges.
Results show that at -70dBm noise, power when 30% of noisy links are considered
NARUN-PC-ECC decreases the failure rate of ECC-NARUN by 2.29% and generates
31% traffic less. When unstable links are considered, NARUN-PC-ECC decreases the
failure rate of ECC-NARUN by 2.1% and generates 13% of traffic less.

Chapter 5

Conclusion

The WM-Bus is a widely used meter protocol in utility networks. However, in a noisy
environment, faults become a serious issue resulting in excess volumes of transmissions.
The increased energy consumption due to this activity is also problematic for battery-
operated nodes.

This thesis has been presenting NARUN and NARUN-PC routing protocols as an
extension of the WM-Bus protocol.

NARUN aims at reducing reading failure through the use of the Hamming ECC
combined with a noise adaptive routing protocol. The employed Hamming ECC
reduces re-transmissions by correcting the single-bit errors. NARUN has been eval-
uated through simulations by changing the noise power value between -80 dBm and
-70 dBm. The evaluation considers the following metrics: failure rate, number of
sensor readings and messages received by meters. NARUN has been benchmarked
against DSR, NARUN (without Hamming), WMBUS (a multi-hop version of WM-
Bus that chooses the shortest path) and WMBUS-ECC (WMBUS with the usage of
Hamming). Our results show that DSR and NARUN read the highest number of
sensors since they eventually select paths with low noise while WMBUS reads the
lowest number of sensors since always selects the shortest path without considering
the link noise. ECC-NARUN has the lowest failure rate and a low traffic load. In fact,
meters eavesdrop on the surrounding environment and efficiently report information
on link failure index back to the collector with ordinary reading messages. DSR has
the highest traffic load since various floodings may be needed to converge to paths
with the lowest noise.

NARUN-PC has been proposed, an improvement of NARUN with the addition of
a caching strategy. While NARUN always selects the best available path, NARUN-
PC adopts a caching strategy that converges to stable paths avoiding the selection of
unstable links. Likewise NARUN, NARUN-PC has been validated on a real topology.
NARUN-PC-ECC decreases the failure rate of ECC-NARUN by 2.29% and generates
31% traffic less at -70 dBm noise power and when 30% of noisy links are considered.
When unstable links are considered, NARUN-PC-ECC decreases the failure rate of
ECC-NARUN by 2.1% and generates 13% of traffic less when the noise power is at
-70 dBm. As future works, NARUN and NARUN-PC protocols can be simulated
using different noise models (e.g. fading channels) and networks with different levels
of network density. A test bed can be also used to verify the hardware capabilities

51

52 Chapter 5. Conclusion

usage, similarly to PICO-MP. The hardware implementation can be done by using
custom firmware and reasonably priced hardware, similarly to the one implemented
in paper [44]. Improvements can be also introduced in protocols to increase reading
reliability (e.g. add alternative paths in the REQ message) without adding extra
service messages.

Chapter 6

Appendix

This thesis also presents PICO-MP[54], a type-based pub/sub middleware for Hetero-
geneous Wireless Sensor and Actuator Network (HWSAN). HWSAN are composed of
devices with different and limited hardware hardware capabilities. This work has been
done along with my college Andrea Piermarteri and my supervisor Prof. Leonardo
Mostarda. Likewise NARUN, PICO-MP routes messages in a network where devices
are constrained in terms of memory and CPU. Both protocols aim to reduce the num-
ber of messages exchanged. NARUN improves reliability by choosing a stable path
while PICO-MP filters messages to monitor the network using subscriptions. This
chapter provides a detailed model of PICO-MP. The section 6.1 covers the composi-
tion of publication and subscription structures, the section 6.2 provides the network
structure by giving an overview of the system and the section 6.3 presents a tested
implementation written in C++ to evaluate the feasibility and the advantages of this
middleware.

6.1 Publication and subscription model

PICO-MP is a type-based pub/sub middleware which means that publications are
coupled with information called type. Multiple nodes can provide publication using
the same type. A node can provide multiple publications, as we can see in the listing
6.1. A publication structure is composed of a type and a map object (a key-value data
structure), as we can see in the listing 6.1. The key is used to describe the value,
whereas the value is the content provided by the publisher. For instance, A GPS
measurement can be structured as follow: type "G" and a key-value object composed
of latitude, longitude, and latitude. These three are the keys, whereas contents are
the measured values of the object. The values can be numeric (byte, short, int, long,
float), byte array, and ASCII string. We denote the type of these values as PicoType,
as we can see in the listing

Listing 6.1: PICO-MP Publication model

1 Publication = {
2 type: string,
3 obj: Hashmap<key: string ,value: PicoType>;
4 }

53

54 Chapter 6. Appendix

T(Temperature)

t 10

H(Humidity)

v 10

G(Gps Location)

m (Latitude) 41,9109

n (Longitude) 12,4818

o (Altitude) 377

P1

P2

P3

Figure 6.1: PICO-MP publication structure

These publications are queried using a PICO-MP subscription. Subscription are
variant of the first order logic formula, as we can see in the listing 6.3. The listing
6.2 shows the data structures involved in a formula. The formula is composed of
quantifiers Qf and predicates P f (line 1 of Listing 6.3). Each quantifier has a type
of the quantifier q (existence or universal quantifier), a variable v and a type t (lines
2 and 3 of Listing 6.3). The set of predicate P f are joined by conjunctions. Each
predicate pi in Pf where i = 0..|Pf |, has a name n and a set of parameters X (lines
8 and 9 of Listing 6.3). Each parameter x in X, can be a constant or a variable
(previously defined in the quantifier part) (line 11 of Listing 6.3). These constant can
be number, float or ASCII string whereas the variable is an instance of a publication
provided by PICO-MP nodes (line 12 of Listing 6.3). For the sake of simplicity, we
denote tx as the publication type of x. If x is constant, then the tx is ∅. We denote
also T f

pi as the set of tx for each x in p.X and T f as the set of T f
pi for each p in P f . We

define predicate variety vfpi as |T
f
pi | and the formula variety as vf as the max∀pi∈P f v

f
pi .

Checking formula with vf = 0 does not require any publication since variables are not
present in the formula f . The subscriber node itself can evaluate these formulae. The
implementation considers a formula f with vf = 1 to simplify the deployment and the
distribution of these formulae.

Listing 6.2: PICO-MP Subscription model

1

2 PicoVariable = { name: char;}
3

4 Formula = {
5 Q^f: Set<{q: char, v_1: char, t_1: char}>
6 P^f: Set<{n: string, X: Set<PicoType | PicoVariable> }>
7 }

Listing 6.3: PICO-MP Subscription language

1 Prenex_formula := Prefix Predicates

Chapter 6. Appendix 55

2 Prefix := Prefix Q, | Q
3 Q:= Quantifier Variable : Channel
4 Channel:=[A−Z]
5 Variable:= [a−z]
6 Quantifier:= ’∀’ | ’∃’
7 Predicates:= Predicates Predicate | Predicate
8 Predicate:= PredicateName (Parameters)
9 PredicateName:= [a−z|A−Z]+

10 Parameters:= Parameter, | Parameter
11 Parameter:= Variable | Constant
12 Constant:= Number | Float | String

6.2 Architecture

In PICO-MP, nodes are deployed in a hierarchical topology. Figure 6.2 shows the
structure of a PICO-MP instance. Each circle represents a node, and black links are
their interconnections. Each node is connected to a father one except for the R node.
This has the root role, which means it is at the first level of the hierarchy. Brokers
are intermediate node which mainly routes messages and performs fog verification of
formulae that they receive. The root node can decide whether a formula is true or
not globally. Publisher and Pubsmart nodes provide publications to their father node.
The Publisher stores the last publication. The Pubsmart is an advanced publisher that
can also stores formulae. The Pubsmart node can verify formulae and send publication
only when is needed. The subscriber keeps a list of formulae sent to parent node.

B1

R

P1

S1

B2

P2

B4B3
P+

4

Legend:
R: Root node
B1,B2,,B3,B4: Broker nodes
S1: Subscriber node
P1 ,P2: Publisher nodes
P+

4: Pubsmart node

Figure 6.2: a PICO-MP network instance

6.3 Evaluation

The evaluation has been done using a tailored c++ implementation of PICO-MP for
sensor devices. The tool is divided into application and framework code. The frame-
work code provides an asynchronous and platform-independent application program
interface (API) to implement the aforementioned behavior. The application code

56 Chapter 6. Appendix

mainly initializes and uses the network connection, sensors module (whether the node
reads environmental data), and the framework.

The framework statically allocates data structures in memory. This allocation
avoids issues such as heap fragmentation [55]. The size of these structures is fixed
once the code is compiled. These values are stored in the configuration file. In the
same file, constants also describe the node behavior.

The following sections evaluate the feasibility of PICO-MP in a constrained proto-
col and device. MQTT and PICO-MP have been simulated and compared to evaluate
the energy consumption of protocols.

6.3.1 Memory evaluation

This section evaluates the feasibility of PICO-MP middleware in a constrained device
such as Arduino Uno. PICO-MP can filter messages at the price of an higher memory
footprint with respect to the NARUN protocol. In NARUN, a meter node only save
their local graph which associates the link to the link failure rate. This size of this
graph depends on the network coverage area and can be limited to avoid buffer overflow
attacks. PICO-MP nodes store multiple data structures depending on the node type.
This section evaluates the memory footprint of nodes by limiting the number of entries
in data structures and functionalities of PICO-MP.

This device has 32 kilobytes of Flash, 2 kilobytes of static random access mem-
ory (SRAM), and 1 kilobyte of electrically erasable programmable read-only memory
(EEPROM). The flash memory is used to store the program and bootstrap code. Ar-
duino Uno uses 5 kilobytes for the bootloader code, which means that 28 kilobytes
are used for instructions. The SRAM memory is used for storing global variables,
virtual methods, heap, and stack space. The EEPROM is used for storing permanent
information. This type of storage has not been considered since the implementation
is not specific for the Arduino Uno device.

The implementation previously mentioned uses the flash memory for code instruc-
tions and the SRAM memory to store data structures. In detail, these data are
preserved and stored in the global variables section. In this subsection, the run-time
stack allocation in SRAM is not covered for the sake of simplicity. However, the
results show that the maximum allocation of the global variables is 53% using the
configuration, which means that half of the memory can be used for stack variables
and virtual methods (since run-time heap allocation is not used).

Measurements were performed using two minimal configurations, namely full and
basic. Table 6.1 shows the two setups which define the size of data structures used
and the behavior of PICO-MP nodes. The main difference between the full and
basic configuration is the supported types. The former supports all data types in a
publication structure, whereas the latter allows only numeric type (without float).

The measurement was done without connectivity and with User Datagram Proto-
col (UDP) and Ethernet libraries. The first type of measurement evaluates the impact
of framework code and data structures in Flash and SRAM memory. In contrast, the

Chapter 6. Appendix 57

Name Full Basic
Predicate count in a formula 2 predicates 2 predicates

Formula length 40 characters 40 characters
Quantifier count in a formula 2 quantifiers 2 quantifiers

Predicate name length 1 character 1 character
Predicate parameters length 5 characters 5 characters
Predicate parameters count 2 parameters 2 parameters

Number of entries in the publication object field 2 parameters 2 parameters
Number of projection in the pubsmart node 2 parameters 2 parameters

Number of publication that the a node can be publish 2 publications 2 publications
Number of publisher and pubsmart 2 nodes 2 nodes

Number of brokers children 2 nodes 2 nodes
Number of equivalent subscription 2 subscriptions 2 subscriptions

Number of subscription in the root/broker nodes 1 subscription 1 subscription
Number of projection in the root/broker nodes 1 subscription 1 subscription

Number of predicates in the pubsmart/root/broker nodes 2 predicates 2 predicates
Number of subscriber 2 subscribers 2 subscribers

Number of subscription for subscriber node 2 subscribers 2 subscribers
Number of bytes in a packet 60 bytes 60 bytes

Content based formula support true false
byte support true true

Short support (2 bytes) true true
Int support (4 bytes) true true
Long support (8 bytes) true true
Float support (4 bytes) true false
Data array support true false
Data array length 20 -
String support true false
String length 20 characters -

Broadcast support true false

Table 6.1: Configuration full and basic. Reported values refer to the
maximum availability in the node

latter is used to evaluate the feasibility in a specific scenario. The first scenario is also
used to identify the best-case scenario in terms of memory. The difference between the
former and the latter is the memory cost of the network connection. Such cost can be
reduced by plugging a hardware shield, such as the one provided by ZigBee or Blue-
tooth protocol. The communication between the board and the shield occurs through
a serial module that occupies less memory than any WiFi and Ethernet modules.

The tables 6.3, 6.2, 6.5, 6.4 shows the performed measurements. These results
shows that publisher, pubsmart and subscriber nodes can be deployed without con-
cerning the flash size. The root and broker nodes can be deployed depending on the
configuration and loaded modules. The usage of UDP and Ethernet connectivity with
a full configuration does not allow their deployment due to their code size (118% and
125% respectively), as we can see from table 6.2. The root can be deployed in other
cases. The root includes most of the features provided by the broker but is not con-
nected to anyone, which means that the root is lighter than the broker in terms of
flash memory usage. The broker can not be deployed with Ethernet and UDP shield
as we can see from tables 6.4 and 6.5. In the tables 6.2 and 6.3, the code size of the
broker is 73% and 100% respectively, which means that the broker can be deployed,
but the addition of new code (such as the one provided by the new module) requires
configuration tuning.

58 Chapter 6. Appendix

Device Code size Global variable size
Pubsmart 25% 25%

Pub 19% 17%
Root 83% 30%
Broker 100% 32%
Sub 39% 18%

Table 6.2: Memory allocation at compile time using a full configu-
ration with PICO-MP bare bone

Device Code size Global variable size
Pubsmart 20% 18%

Pub 15% 14%
Root 62% 22%
Broker 78% 24%
Sub 30% 14%

Table 6.3: Memory allocation at compile time using a minimal con-
figuration with PICO-MP bare bone

Device Code size Global variable size
Pubsmart 68% 45%

Pub 52% 41%
Root 97% 44%
Broker 104% 45%
Sub 71% 41%

Table 6.4: Memory allocation at compile time using a minimal con-
figuration with Ethernet and UDP protocols

Device Code size Global variables size
Pubsmart 78% 52%

Pub 56% 44%
Root 118% 52%
Broker 125% 53%
Sub 83% 46%

Table 6.5: Memory allocation at compile time using a full configu-
ration with Ethernet and UDP protocols

Chapter 6. Appendix 59

6.3.2 MQTT vs PICO-MP benchmark

This section compares PICO-MP and MQTT-SN in terms of energy efficiency. MQTT-
SN is the most popular protocol for WSAN applications.

The evaluation is modeled under a set of assumptions. The experiments were
performed in a single machine. Nodes are implemented as a separate process, and
communication occurs through UNIX sockets. This model avoids any hardware dis-
crepancy and network interference between nodes. The experiments use a star topol-
ogy where 15 publishers and 15 subscribers are directly connected to the root node.
Each publisher and subscriber has only one sensor and actuator, respectively. We
considered two cases of studies in these scenarios: distributed heating control and
automatic light switch systems. These require the deployment of WSANs. Sensors
and actuators are embedded in separated nodes, namely sensor and actuator nodes.
Sensor nodes are also called publisher nodes for their behavior. They measure and
publish data to their root node. Actuator nodes are also called subscriber nodes
since they act only when a certain condition is met. These nodes are deployed in
a building. More specifically, each room has only one actuator and sensor node. In
the former case of the study, publishers measure the temperature in the room. In
contrast, subscribers switch on radiators when the measured temperature of rooms is
under a certain threshold, off otherwise. More precisely, the condition is specified by
the subscription (which is requested by actuator nodes): ∀t ∈ T |F (t) where T is the
temperature topic and F (t) = t.value > 23. F (t) is a predicate that checks tempera-
ture value t.value contained in the publication t. Experiments consider publications
fetched from a real-life data-set [56]. This data-set gathers a day of measurements in
the Architecture Faculty in San Sebastian (Spain) during a typical spring week. For
the sake of simplicity, these measurements are repeated over time during the entire
simulation. The automatic presence-based light switch system is also deployed in a
wireless sensor and actuator network. In this network, publisher nodes detect at least
one person in their room, whereas the actuator can switch on or off the light depend-
ing on a certain condition. All lights are turned on only when at least a person is
present in an arbitrary room. More precisely, the policy is equivalent to the following
formula ∃p ∈ P |G(p) where P is the presence topic and G(p) = p.value > 0. G(p)
is a predicate that checks the number of people in a room (namely p.value), which
is contained in the publication p. Experiments consider publication that frequently
changes. In particular, we assume that a person enters the room after 30 seconds,
stays there for the same amount of time, and then goes out. The case of studies has
been evaluated using PICO-MP and MQTT-SN protocols. In MQTT-SN, formulae
are evaluated in the subscriber nodes, whereas, in PICO-MP, formulae are verified
in a distributed and efficient manner. More precisely, in PICO-MP, the publishers
are pubsmart nodes which means that projections are also verified locally. The same
verification is also applied in the root node by considering the publication provided by
children. In these experiments, the root listens and processes the incoming messages
from children. In the beginning, the subscriber sends the aforementioned formula (

60 Chapter 6. Appendix

that depends on the case study) and waits for notification messages. Subsequently,
the publisher node receives these subscriptions in the case of PICO-MP. The publisher
then starts a recurrent behavior: wakes up, measures environmental data, sends the
publication (whether needed), and goes to sleep. The time spent in sleep mode is
denoted as sleep interval. This parameter varies this parameter between 28.8 and 192
seconds. For technical reasons, experiments were sped up to reduce their duration
by 1:960. This reduction means that a day of simulation corresponds to 90 seconds
of experiments. The same is applied to sensors. Their sleep interval varies between
30 and 200 milliseconds. The evaluation considers the energy consumption of pub-
lisher, pubsmart, and subscribers nodes. We assume that the root node is connected
to the power supply. Each child is equipped with a battery that is fully charged at
the beginning. The maximum energy stored is 2 J. This is a common settings for
simulation in WSAN [57] [58] [59]. Their energy cost of a child node is made up of (i)
measuring activity, (ii) processing activity, and (ii) messaging (radio) activity. Our
approach aims at reducing the number of message exchanges. For this reason, we take
into consideration only the messaging activity. More precisely, for each application
layer message, we save the received time, the content, along with its size (measured
in bits). These are aggregated per node, obtaining the total amount of bits each node
sent/received during the experiment. These are necessary to calculate the energy
consumption of the node. The MIT energy model is commonly used to calculate the
energy consumption under certain network assumptions [17]. Communications are
done by considering a free space and multi-path channel radio model. In experiments,
we compute the energy consumption of each node. This consumption includes the
reception and transmission of packets. The reception consumption ERx(k) is the mul-
tiplication between the number of bits received k and the energy Eelec,Rx consumed
by the circuits when the node is receiving one bit, as we can see from the equation
6.3. The transmission consumption ETx(d, k) is a function that takes in input the
distance d between the source and destination node and the number of bits sent k as
we can see from the equation 6.2. The formula uses (i) Eelec,Tx which is the energy
consumed by the circuits when the sender is transmitting one bit, and (ii) the ampli-
fier energy Ea(d) used to reach a destination at a certain distance d. The amplifier
energy Ea,Tx(d) is the multiplication between the transmit amplifier Eamp,Tx, which
is 0.10 nJ/bit/m2 [17], and the square of the distance as we can see from the equation
6.1. In experiments, the distance d (which refers to the distance between the children
and the root node) is 20m which also means that Ea,Tx(d) =4 nJ/m2. We also assume
that the Eelec,Tx is 50 nJ/bit and is also equal to the energy Eelec,Rx consumed by the
circuits when the node is receiving one bit [17].

Ea,Tx(d) = Eamp,Tx · d2 (6.1)

ETx(d, k) = k · (Eelec,Tx + Ea,Tx(d)) (6.2)

Chapter 6. Appendix 61

ERx(k) = k · Eelec,Rx (6.3)

We used energy consumption to detect when the first node dies in the network.
Experiments are executed until one node dies. The result obtained is the average
duration of the simulation among 20 network runs. We refer to it as "First node Die
Time". We show the trend of this value by varying the sleep interval of sensor nodes
using PICO-MP and MQTT-SN protocols in the aforementioned case studies. We
also highlight the consumption trend of these two protocols by using a percentage,
as we can see in figures 6.7 and 6.8. In the distributed heating control system case
study, the measured temperature gradually changes over time. This variation implies
that the PICO-MP packets sent are less than the MQTT-SN one (since the formula
truth changes rarely). More precisely, results show that PICO-MP reduces the energy
consumption by some orders of magnitude compared to MQTT-SN, as we can see
from figures 6.3 and 6.4. We can also see the trend difference in terms of percentage
in the figure 6.7. MQTT-SN drops linearly, while PICO-MP tends to remain stable
and drops faster with shorter sleep intervals. The presence frequently changes in the
automatic light switch system since a person enters or leaves a room every 30 seconds.
Likewise, in the first case study, PICO-MP can reduce the energy consumption of some
orders of magnitude, as we can see in Figures 6.5 and 6.6. Figure 6.8 shows that both
approaches tend to drop linearly. This difference is due to the pace of environmental
data fluctuation. While the temperature threshold is exceeded a couple of times a day,
data in the automatic light switch system varies every 30 seconds. Therefore, in the
second case study, the root node notifies the subscribers more than in the distributed
heating control system. PICO-MP scales better in systems where the expected period
of environmental data fluctuation is dramatically longer than the sleep interval of
sensors.

62 Chapter 6. Appendix

28.80 48.80 68.80 88.80 108.80 128.80 148.80 168.80 188.80
0.00

200,000.00

400,000.00

600,000.00

800,000.00

1,000,000.00

1,200,000.00

1,400,000.00

1,600,000.00

1,800,000.00

Sleep interval (seconds)

Fi
rs

t
no

de
 d

ie
 �

m
e

(h
ou

rs
)

Figure 6.3: Distributed heating control system - PICO-MP imple-
mentation performances

28.80 48.80 68.80 88.80 108.80 128.80 148.80 168.80 188.80
0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

Sleep interval (seconds)

Fi
rs

t
no

de
 d

ie
 �

m
e

(h
ou

rs
)

Figure 6.4: Distributed heating control system - MQTT-SN imple-
mentation performances

Chapter 6. Appendix 63

28.80 48.80 68.80 88.80 108.80 128.80 148.80 168.80 188.80
0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

Sleep interval (seconds)

Fi
rs

t
no

de
 d

ie
 �

m
e

(h
ou

rs
)

Figure 6.5: Automatic light switch system - MQTT-SN implemen-
tation performances

28.80 48.80 68.80 88.80 108.80 128.80 148.80 168.80 188.80
0.00

10,000.00

20,000.00

30,000.00

40,000.00

50,000.00

60,000.00

70,000.00

80,000.00

Sleep interval (seconds)

Fi
rs

t
no

de
 d

ie
 �

m
e

(h
ou

rs
)

Figure 6.6: Automatic light switch system - PICO-MP implementa-
tion performances

64 Chapter 6. Appendix

1517.52022.52527.53032.53537.54042.54547.55052.55557.56062.56567.57072.57577.58082.58587.59092.59597.5100
0

20

40

60

80

100

120
PICO-MP

MQTT-SN

Sleep interval (%)

Fi
rs

t
no

de
 d

ie
 ti

m
e

(%
)

Figure 6.7: Distributed heating control system - Percentage compar-
ison

First node die time (%)
120.00

100.00

80.00

60.00

40.00

20.00

0.00

10.0020.0030.0040.0050.0060.0070.0080.0090.00100.00110.00

Sleep
interval

(%)

PICO-MP

MQTT-SN

Figure 6.8: Automatic light switch system - Percentage comparison

Bibliography

[1] European Parliament and Council of European Union. “DIRECTIVE 2009/72/EC
OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 13 July
2009 concerning common rules for the internal market in electricity and repeal-
ing Directive 2003/54/EC”. In: Official Journal of the European Union L 211
(2009), pp. 55–93.

[2] Susanna Spinsante et al. “Wireless m-bus sensor networks for smart water grids:
analysis and results”. In: International Journal of Distributed Sensor Networks
10.6 (2014), p. 579271.

[3] Nico Saputro, Kemal Akkaya, and Suleyman Uludag. “A survey of routing pro-
tocols for smart grid communications”. In: Computer Networks 56.11 (2012),
pp. 2742–2771. issn: 1389-1286.

[4] European Committee for Standardization. Communication systems for and re-
mote reading of meters, Part 2: Physical and link layer. Standard EN 13757-2.
European Committee for Standardization, 2005.

[5] European Committee for Standardization. Communication systems for and re-
mote reading of meters, Part 3: Dedicated application layer. Standard EN 13757-
3. European Committee for Standardization, 2013.

[6] European Committee for Standardization. EN 13757-4 Communication systems
for meters and remote reading of meters - Part 4: Wireless meter readout (Radio
meter reading for operation in SRD bands). Standard EN 13757-4. European
Committee for Standardization, 2013.

[7] European Committee for Standardization. EN 13757-5 Communication systems
for meters - Part 5: Wireless M-Bus relaying. Standard EN 13757-5. European
Committee for Standardization, 2015.

[8] European Committee for Standardization. EN 13757-7 Communication systems
for meters - Part 7: Transport and security services. Standard EN 13757-7.
European Committee for Standardization, 2018.

[9] P. Masek et al. “Communication Capabilities of Wireless M-BUS: Remote Me-
tering Within SmartGrid Infrastructure”. In: Distributed Computer and Com-
munication Networks. Ed. by V. M. Vishnevskiy and D. V. Kozyrev. Springer
International Publishing, 2018, 31–42.

65

66 Bibliography

[10] Zaib Ullah et al. “Applications of Artificial Intelligence and Machine learning
in smart cities”. In: Computer Communications 154 (2020), pp. 313–323. issn:
0140-3664. doi: https://doi.org/10.1016/j.comcom.2020.02.069. url:
https://www.sciencedirect.com/science/article/pii/S0140366419320821.

[11] Fadi Al-Turjman et al. “Network Experience Scheduling and Routing Approach
for Big Data Transmission in the Internet of Things”. In: IEEE Access 7 (2019),
pp. 14501–14512. doi: 10.1109/ACCESS.2019.2893501.

[12] Fadi Al-Turjman, B. D. Deebak, and Leonardo Mostarda. “Energy Aware Re-
source Allocation in Multi-Hop Multimedia Routing via the Smart Edge De-
vice”. In: IEEE Access 7 (2019), pp. 151203–151214. doi: 10.1109/access.
2019.2945797. url: https://doi.org/10.1109/access.2019.2945797.

[13] R. M. Jacobsen and P. Popovski. “Data recovery using side information from the
wireless M-Bus protocol”. In: IEEE Global Conference on Signal and Information
Processing. Dec. 2013, 511–514.

[14] R. M. Jacobsen and P. Popovski. Reliable Reception of Wireless Metering Data
with Protocol Coding. 2013.

[15] Daniele Buonocore et al. “Mesh Overlay for wM-Bus Network”. In: 2022 IEEE
International Symposium on Measurements & Networking (M&N). 2022, pp. 1–
6. doi: 10.1109/MN55117.2022.9887687.

[16] F. Abate et al. “A low cost smart power meter for IoT”. In: Measurement 136
(2019), pp. 59–66. issn: 0263-2241.

[17] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan.
“Energy-Efficient Communication Protocol for Wireless Microsensor Networks”.
In: Proceedings of the 33rd Hawaii International Conference on System Sciences-
Volume 8 - Volume 8. HICSS ’00. Washington, DC, USA: IEEE Computer Soci-
ety, 2000, pp. 8020–. isbn: 0-7695-0493-0. url: http://dl.acm.org/citation.
cfm?id=820264.820485.

[18] David B Johnson, David A Maltz, Josh Broch, et al. “DSR: The dynamic source
routing protocol for multi-hop wireless ad hoc networks”. In: Ad hoc networking
5.1 (2001), pp. 139–172.

[19] Rosario Culmone and Fabio Pagnotta. “Energy Efficient Light Routing in Utility
Network”. In:Web, Artificial Intelligence and Network Applications - Proceedings
of the Workshops of the 33rd International Conference on Advanced Information
Networking and Applications, AINA. Ed. by Leonard Barolli et al. Vol. 927.
Advances in Intelligent Systems and Computing. Springer, 2019, pp. 745–754.

[20] Fabio Pagnotta et al. “NARUN: noise adaptive routing for utility networks”. In:
International Journal of Web and Grid Services 18.4 (2022), pp. 384–410. doi:
10.1504/IJWGS.2022.126118. eprint: https://www.inderscienceonline.
com/doi/pdf/10.1504/IJWGS.2022.126118. url: https://www.inderscienceonline.
com/doi/abs/10.1504/IJWGS.2022.126118.

https://doi.org/https://doi.org/10.1016/j.comcom.2020.02.069
https://www.sciencedirect.com/science/article/pii/S0140366419320821
https://doi.org/10.1109/ACCESS.2019.2893501
https://doi.org/10.1109/access.2019.2945797
https://doi.org/10.1109/access.2019.2945797
https://doi.org/10.1109/access.2019.2945797
https://doi.org/10.1109/MN55117.2022.9887687
http://dl.acm.org/citation.cfm?id=820264.820485
http://dl.acm.org/citation.cfm?id=820264.820485
https://doi.org/10.1504/IJWGS.2022.126118
https://www.inderscienceonline.com/doi/pdf/10.1504/IJWGS.2022.126118
https://www.inderscienceonline.com/doi/pdf/10.1504/IJWGS.2022.126118
https://www.inderscienceonline.com/doi/abs/10.1504/IJWGS.2022.126118
https://www.inderscienceonline.com/doi/abs/10.1504/IJWGS.2022.126118

Bibliography 67

[21] Fabio Pagnotta, Leonardo Mostarda, and Alfredo Navarra. “NARUN-PC: Caching
Strategy for Noise Adaptive Routing in Utility Networks”. In: Advanced Infor-
mation Networking and Applications. Ed. by Leonard Barolli, Farookh Hussain,
and Tomoya Enokido. Cham: Springer International Publishing, 2022, pp. 31–
42. isbn: 978-3-030-99587-4.

[22] Rehmat Ullah, Yasir Faheem, and Byung-Seo Kim. “Energy and congestion-
aware routing metric for smart grid AMI networks in smart city”. In: IEEE
access 5 (2017), pp. 13799–13810.

[23] S. Spinsante et al. “Evaluation of the Wireless M-Bus standard for future smart
water grids”. In: 2013 9th International Wireless Communications and Mobile
Computing Conference (IWCMC). July 2013, 1382–1387.

[24] Z. Kuder and R. M. Jacobsen. “Feasibility of Wireless M-Bus Protocol Simula-
tion”. In: Elektrorevue 3.3 (2012), 1–5.

[25] Z. Kuder. “Routing Protocols For Lossy Wireless Networks”. MA thesis. Czech
Republic: Faculty Of Electrical Engineering And Communication Department
Of Radio Electronics, Brno University Of Technology, 2012.

[26] P. Masek et al. “Wireless M-BUS: An Attractive M2M Technology for 5G-Grade
Home Automation”. In: Internet of Things. IoT Infrastructures. Ed. by B. Man-
dler et al. Springer International Publishing, 2016, 144–156.

[27] P. Masek et al. “Communication Capabilities of Wireless M-BUS: Remote Me-
tering Within SmartGrid Infrastructure”. In: Distributed Computer and Com-
munication Networks. Ed. by Vishnevskiy, V. M. and Kozyrev, D. V. Springer
International Publishing, 2018, 31–42.

[28] K.-I. Hwang and S.-W. Nam. “Bitmap-wise wireless M-Bus coordination for
sustainable real time energy management”. In: Sustainability 6.7 (2014), 4326–
4338.

[29] Joydeep Tripathi, Jaudelice C. de Oliveira, and J.P. Vasseur. “Proactive versus
reactive routing in low power and lossy networks: Performance analysis and scal-
ability improvements”. In: Ad Hoc Networks 23 (2014), pp. 121–144. issn: 1570-
8705. doi: https://doi.org/10.1016/j.adhoc.2014.06.007. url: https:
//www.sciencedirect.com/science/article/pii/S1570870514001243.

[30] Chiara Petrioli et al. “ALBA-R: Load-Balancing Geographic Routing Around
Connectivity Holes in Wireless Sensor Networks”. In: Parallel and Distributed
Systems, IEEE Transactions on 25 (Mar. 2014), pp. 529–539. doi: 10.1109/
TPDS.2013.60.

[31] Gopalakrishnan Iyer et al. “Performance analysis of wireless mesh routing pro-
tocols for smart utility networks”. In: 2011 IEEE International Conference on
Smart Grid Communications (SmartGridComm). 2011, pp. 114–119. doi: 10.
1109/SmartGridComm.2011.6102301.

[32] John Moy. OSPF version 2. Tech. rep. 1997.

https://doi.org/https://doi.org/10.1016/j.adhoc.2014.06.007
https://www.sciencedirect.com/science/article/pii/S1570870514001243
https://www.sciencedirect.com/science/article/pii/S1570870514001243
https://doi.org/10.1109/TPDS.2013.60
https://doi.org/10.1109/TPDS.2013.60
https://doi.org/10.1109/SmartGridComm.2011.6102301
https://doi.org/10.1109/SmartGridComm.2011.6102301

68 Bibliography

[33] Thomas Clausen and Philippe Jacquet. Optimized link state routing protocol
(OLSR). Tech. rep. 2003.

[34] Yakubu Tsado et al. “Multiple metrics-OLSR in NAN for Advanced Metering
Infrastructures”. In: 2016 IEEE International Smart Cities Conference (ISC2).
2016, pp. 1–6. doi: 10.1109/ISC2.2016.7580740.

[35] Government Arts College et al. “PSA-HD: Path Selection Algorithm based on
Hamming Distance to Enhance the Link Stability in Mobile Ad-hoc Networks”.
en. In: International Journal of Intelligent Engineering and Systems 11.1 (Feb.
2018), pp. 259–266. issn: 21853118. (Visited on 10/03/2021).

[36] Zehua Wang, Cheng Li, and Yuanzhu Chen. “PSR: Proactive Source Routing in
Mobile Ad Hoc Networks”. In: 2011 IEEE Global Telecommunications Confer-
ence - GLOBECOM 2011. 2011, pp. 1–6. doi: 10.1109/GLOCOM.2011.6133636.

[37] M Deva Priya and P Priyanka. “PPCLSS: probabilistic prediction coefficient
link stability scheme based routing in MANETs”. In: Int J Comput Sci Eng
Technol 6.4 (2015), pp. 246–256.

[38] Harjeet Kaur, Varsha Sahni, and Manju Bala. “A survey of reactive, proactive
and hybrid routing protocols in MANET: a review”. In: network 4.3 (2013),
pp. 498–500.

[39] Charles Perkins, Elizabeth Belding-Royer, and Samir Das. RFC3561: Ad hoc
on-demand distance vector (AODV) routing. 2003.

[40] Chenxi Liu et al. “An Improved Multi-Channel AODV Routing Protocol Based
on Dijkstra Algorithm”. In: 2019 14th IEEE Conference on Industrial Electronics
and Applications (ICIEA). June 2019, pp. 547–551. doi: 10.1109/ICIEA.2019.
8833838.

[41] Sagnik Dutta, Rituparna Chaki, and Nabendu Chaki. “Optimal Reactive Rout-
ing Protocol (ORRP): A New Reactive Routing Protocol for the Shortest Path
in Ad Hoc Networks”. In: 2006 Annual IEEE India Conference. 2006, pp. 1–4.
doi: 10.1109/INDCON.2006.302850.

[42] Soma Saha and Tamojay Deb. “Study and Improvement on Optimal Reactive
Routing Protocol (ORRP) for Mobile Ad-Hoc Networks”. In: International
Journal of Computer Science & Emerging Technologies (IJCSET). Vol. 1. 2010,
pp. 134–138.

[43] P. Digeser et al. “Management of Routed Wireless M-Bus Networks for Sparsely
Populated Large-Scale Smart-Metering Installations”. In: Recent Trends in Com-
puter Networks and Distributed Systems Security. Ed. by Thampi, S. M. and
Zomaya, A. Y. and Strufe, T. and Alcaraz Calero, J. M. and Thomas, T. Springer
Berlin Heidelberg, 2012, 385–395.

https://doi.org/10.1109/ISC2.2016.7580740
https://doi.org/10.1109/GLOCOM.2011.6133636
https://doi.org/10.1109/ICIEA.2019.8833838
https://doi.org/10.1109/ICIEA.2019.8833838
https://doi.org/10.1109/INDCON.2006.302850

Bibliography 69

[44] A. Sikora, R. Werner, and J. O. Grafmüller. “Design and implementation of an
energy aware routing extension for energy autarkic Wireless M-Bus networks”.
In: 2013 International Conference on Advances in Computing, Communications
and Informatics (ICACCI). 2013, 1446–1451.

[45] A. Sikora et al. “Design, Implementation, and Verification of an Energy Au-
tarkic, RF-based Water Meter with Energy Aware Routing”. In: Energy self-
sufficient Sensors; 7th GMM-Workshop. Feb. 2014, 1–5.

[46] Tung-Linh Pham and Dong-Seong Kim. “Lossy link-aware routing algorithm for
ISA100.11a wireless networks”. In: 2013 11th IEEE International Conference on
Industrial Informatics (INDIN). July 2013, pp. 624–629. doi: 10.1109/INDIN.
2013.6622956.

[47] Y.-M. Xie et al. “An EAODV routing approach based on DARED and integrated
metric”. In: Wireless Networks 20.8 (2014), 2455–2467.

[48] M. Jayakumar, N. Ramya Shanthi Rekha, and B. Bharathi. “A comparative
study on RIP and OSPF protocols”. In: 2015 International Conference on In-
novations in Information, Embedded and Communication Systems (ICIIECS).
2015, pp. 1–5. doi: 10.1109/ICIIECS.2015.7193275.

[49] Y. Bazlov. Coding Theory, Part2: Hamming Distance - 2010. Lecture from The
University of Manchester, School of Mathematics, Manchester. 2010.

[50] Chansook Lim. “Improving Congestion Control of TCP for Constrained IoT
Networks”. In: Sensors 20.17 (2020). issn: 1424-8220. doi: 10.3390/s20174774.
url: https://www.mdpi.com/1424-8220/20/17/4774.

[51] Adam Brentnall. “Discrete-Event System Simulation (International Edition)”.
In: Journal of Simulation 1.3 (Aug. 2007), pp. 223–223. doi: 10.1057/palgrave.
jos.4250022.

[52] Diletta Cacciagrano et al. “Energy-Efficient Clustering for Wireless Sensor De-
vices in Internet of Things”. In: Performability in Internet of Things. Cham:
Springer International Publishing, 2019, pp. 59–80. isbn: 978-3-319-93557-7.
doi: 10.1007/978-3-319-93557-7_5. url: https://doi.org/10.1007/978-
3-319-93557-7_5.

[53] Leonardo Mostarda and Alfredo Navarra. “Distributed Intrusion Detection Sys-
tems for Enhancing Security in Mobile Wireless Sensor Networks”. In: Interna-
tional Journal of Distributed Sensor Networks 4 (Apr. 2008). doi: 10.1080/
15501320802001119.

[54] Naranker Dulay et al. “PICO-MP: de-centralised macro-programming for wire-
less sensor and actuator networks”. In: 2018 IEEE 32nd International Con-
ference on Advanced Information Networking and Applications (AINA). IEEE.
2018, pp. 289–296.

[55] Oliver Hahm et al. “Operating systems for low-end devices in the internet of
things: a survey”. In: IEEE Internet of Things Journal 3.5 (2015), pp. 720–734.

https://doi.org/10.1109/INDIN.2013.6622956
https://doi.org/10.1109/INDIN.2013.6622956
https://doi.org/10.1109/ICIIECS.2015.7193275
https://doi.org/10.3390/s20174774
https://www.mdpi.com/1424-8220/20/17/4774
https://doi.org/10.1057/palgrave.jos.4250022
https://doi.org/10.1057/palgrave.jos.4250022
https://doi.org/10.1007/978-3-319-93557-7_5
https://doi.org/10.1007/978-3-319-93557-7_5
https://doi.org/10.1007/978-3-319-93557-7_5
https://doi.org/10.1080/15501320802001119
https://doi.org/10.1080/15501320802001119

70 Bibliography

[56] O Irulegi, A Serra, and R Hernández. “Data on records of indoor temperature
and relative humidity in a University building”. In: Data in brief 13 (2017),
pp. 248–252.

[57] Dr. Uthman Baroudi, Ahmad Shawahna, and Md. Enamul Haque. Efficient
Energy Harvesting in Wireless Sensor Networks of Smart Grid. 2019. arXiv:
1911.07621 [cs.NI].

[58] R. U. Anitha and P. Kamalakkannan. “Enhanced cluster based routing protocol
for mobile nodes in wireless sensor network”. In: 2013 International Conference
on Pattern Recognition, Informatics and Mobile Engineering. 2013, pp. 187–193.
doi: 10.1109/ICPRIME.2013.6496470.

[59] R. U. Anitha and P. Kamalakkannan. “Energy efficient cluster head selection
algorithm in mobile wireless sensor networks”. In: 2013 International Conference
on Computer Communication and Informatics. 2013, pp. 1–5. doi: 10.1109/
ICCCI.2013.6466154.

https://arxiv.org/abs/1911.07621
https://doi.org/10.1109/ICPRIME.2013.6496470
https://doi.org/10.1109/ICCCI.2013.6466154
https://doi.org/10.1109/ICCCI.2013.6466154

	Abstract
	Introduction
	Introduction
	Motivation
	Thesis statement and research questions
	Methodology
	Thesis organization
	Contribution

	Literature Review
	NARUN
	The NARUN protocol
	Communication primitives and message format
	NARUN collector behavior
	Meter behavior
	NARUN connectivity

	DSR model
	Implementation
	WM-Bus protocol
	NARUN routing protocol

	Simulation Setup
	Assumptions and simulation methodology

	Simulation results
	Simulation with disconnected links
	Simulation with noisy links

	Conclusion

	NARUN-PC
	NARUN and NARUN-PC protocols
	Simulation
	Experimental Results

	Conclusion

	Conclusion
	Appendix
	Publication and subscription model
	Architecture
	Evaluation
	Memory evaluation
	MQTT vs PICO-MP benchmark

	Bibliography

