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Abstract: We calculate the parameters of the Ginzburg–Landau (GL) equation of a three-dimensional
attractive Fermi gas around the superfluid critical temperature. We compare different levels of
approximation throughout the Bardeen–Cooper–Schrieffer (BCS) to the Bose–Einstein Condensate
(BEC) regime. We show that the inclusion of Gaussian fluctuations strongly modifies the values of
the Ginzburg–Landau parameters approaching the BEC regime of the crossover. We investigate the
reliability of the Ginzburg–Landau theory, with fluctuations, studying the behavior of the coherence
length and of the critical rotational frequencies throughout the BCS-BEC crossover. The effect of the
Gaussian fluctuations gives qualitative correct trends of the considered physical quantities from the
BCS regime up to the unitary limit of the BCS-BEC crossover. Approaching the BEC regime, the
Ginzburg–Landau equation with the inclusion of Gaussian fluctuations turns out to be unreliable.

Keywords: Ginzburg–Landau theory; BCS-BEC crossover; pair fluctuations

1. Introduction

The last two decades of developments in the confinement, cooling, and control of
the interaction in alkali-metal atomic gases have powered the interest in the BCS-BEC
crossover [1,2]. The crossover from the BCS state to the BEC one has been observed in
two-hyperfine-component Fermi gases of 40K atoms and 6Li atoms [3,4] with the use of
Fano–Feshbach resonances [5]. A simple, but powerful tool to study superconductivity and
superfluidity around the critical temperature is the Ginzburg–Landau theory [6]. In [7],
Banerjee et al. showed that at the phenomenological level, the thermodynamic properties of
cuprate superconductors can be described through a free-energy functional having the GL
form for a wide range of temperatures and hole dopings. An extension of the GL theory to
multicomponent systems was exploited in [8,9] to characterize the screening of detrimental
fluctuations in superconductors having coexisting shallow and deep electronic bands. In
addition, in [10], Miloŝević et al. showed how the GL theory is suitable to describe different
systems as hybrid and layered superconductors, which exhibit anisotropy in different
directions. The main motivation of our work rests on the formulation of an alternative,
simpler approach for the calculation of complex superfluid properties throughout the
BCS-BEC crossover close to the critical temperature. Indeed, the microscopic study of
collective modes [11], Josephson effect [12], vortex configurations, and multicomponent
superfluidity [8,9] requires in general demanding numerical calculations. Here, we propose
that, through the GL theory with fluctuations, it is possible to study several superfluid
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quantities by simply knowing the value of the GL parameters. To investigate the reliability
of the GL theory with fluctuations throughout the BCS-BEC crossover, we compared the
result obtained from the GL theory with the microscopic approach for the coherence length
and the critical rotational frequencies.

In this work, we studied a three-dimensional neutral fermionic system close to the
superfluid phase transition temperature. We derived the phenomenological Ginzburg–
Landau equation through the Gorkov’s microscopic approach [13]. In particular, we
calculated the Ginzburg–Landau parameters in the BCS-BEC crossover through the in-
tegral functional approach as in [14–16]. The results obtained applying the mean-field
approximation were compared with the ones applying the beyond-mean-field approxi-
mation. Through GL parameters, we investigated the behavior of the coherence length,
comparing our results with the one obtained by Palestini and Strinati through the micro-
scopic diagrammatic approach in [17]. Then, we analyzed the critical rotational frequencies
that are the neutral system analogue of the critical magnetic fields for superconductors [18].

2. Methods

The Hamiltonian density of the fermionic system considered in our work is given by:

H(x) = Ψσ(x)

[
− h̄2∇2

2m
− µ

]
Ψσ(x)− gΨ↑(x)Ψ↓(x)Ψ↑(x)Ψ↓(x), (1)

where m is the mass of the fermions, µ is the chemical potential, and Ψσ and Ψσ are
the complex Grassmann fields with spin σ =↑, ↓. This Hamiltonian density describes
a system with a single-channel interaction, where g > 0 is the strength of the s-wave
interatomic coupling. Through a functional integral formulation, it is possible to study the
finite-temperature BCS-BEC crossover tuning the coupling g. Introducing the bosonic field
∆(x):

∆(x) = g < Ψ↓(x)Ψ↑(x) >, (2)

and applying the Hubbard–Stratonovich transformation the Hamiltonian density reads:

H(x) = Ψσ(x)

[
− h̄2∇2

2m
− µ

]
Ψσ(x) +

|∆(x)|2
g

− ∆(x)Ψ↓(x)Ψ↑(x)− ∆(x)Ψ↑(x)Ψ↓(x), (3)

where ∆(x) is the gap energy. Following [14], we proceed with the integral formulation of
the effective action S:

Se f f [∆(x)] =
∫ β

0
dτ
∫

dx
|∆(x)|2

g
− Tr

[
lnG−1[∆(x)]

]
, (4)

where β = 1/kBT (kB is the Boltzmann constant), T the temperature, and G−1[∆(x)] the
inverse of the Nambu propagator:

G−1(x, x′) =

[
−∂τ +

∇2

2m + µ ∆(x)
∆(x) −∂τ − ∇

2

2m − µ

]
δ(x− x′). (5)

The trace in Se f f is over space ~x, imaginary time τ, and Nambu indices. We can
move to the momentum space and expand the effective action in terms of powers of ∆(q)
since the gap energy is small around the critical temperature. The effective action can be
written as:

Se f f [∆, ∆] =
1
V ∑

q

|∆(q)|2
Π(q)

+
1
2

1
V ∑

q1,q2,q3

b∆q1 ∆∗q2
∆q3 ∆∗q1−q2+q3

+ ..... (6)

where Π is the coefficient of the second-order terms |∆(q)|2 with all the gradient orders
of ∆(q) and V is the volume of the system. To obtain a relation formally equal to the
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GL functional, we have to consider only the quadratic term, the quadratic gradient term,
and the quartic term of Equation (6). In this approximation, the inverse of the coefficient
Π reads:

Π−1(q) = a +
c|q|2
2m

. (7)

The parameters of the expansion terms have the following form [14]:

a = − m
4πh̄2aF

+
1
V ∑

k

[
1

2εk
− tanh(βξk/2)

2ξk

]
, (8)

b =
1
V ∑

k

[
tanh(βξk/2)

4ξ3
k

− βsech4(βξk/2)
8ξ2

k

]
, (9)

c =
1
V ∑

k

[
tanh(βξk/2)

4ξ2
k

− βsech2(βξk/2)
8ξk

]
, (10)

where ξk = εk − µ with εk = h̄2k2/2m. Minimizing the effective action Se f f in the real
space, we obtain the GL equation:

δSe f f [∆, ∆]

δ∆
= 0, (11)[

a + b|∆(x, t)|2 − h̄2c
2m
∇2

]
∆(x, t) = 0. (12)

The GL equation is generally formulated with the Cooper pair field Ψ(x, t) instead
of the gap energy ∆(x, t). It is possible to shift from one notation to the other replacing
∆(x, t) = Ψ(x, t)/

√
2c. In this way, we obtain:[

A +
B
2
|Ψ(x, t)|2 − Γ∇2

]
Ψ(x, t) = 0, (13)

where:

A =
a

2c
, (14)

B =
b

2c2 , (15)

Γ =
h̄2

4m
. (16)

2.1. Gap Equation and Number Equation

The GL parameters depend on the temperature T, the chemical potential µ, and
the interaction strength g. To determine this triad of values throughout the BCS-BEC
crossover, we start solving the gap and the number equation at the lowest-mean-field level
of approximation at the critical temperature Tc0. The first one is calculated by applying the
saddle point condition:

∂Se f f (∆(x))
∂∆(x)

= 0. (17)

In this way, we obtain the linearized BCS equation for the critical temperature:

1
g
=

1
V ∑

k

tanh(ξk/2Tc0)

2ξk
. (18)
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Replacing the summation over the discretized wave vectors k with the integral over
continuous wave vectors, an ultraviolet divergence appears in the equation for Tc0. This
divergence can be eliminated by introducing a regularization based on the scattering length
aF, defined by the two-body problem via m/4h̄2πaF = −1/g + ∑k(εk)

−1. The regularized
equation for Tc0 reads:

− m
4πh̄2aF

=
1
V ∑

k

[
tanh(ξk/2Tc0)

2ξk
− 1

2εk

]
. (19)

The number equation is given by:

n = − 1
V

∂Ω[∆(x)]
∂µ

, (20)

where n is the total fermionic density of the system, which in our case is fixed, and
Ω=−ln(Z)/β is the grand potential where Z =

∫
D∆D∆exp(−Se f f [∆, ∆]) is the partition

function. At the mean-field approximation, we impose ∆(x) = 0. In this way, one obtains
Z = e−S0 and Ω0 = S0/β. The number equation is:

n = n0(µc0, Tc0) =
1
V ∑

k

[
1− tanh

(
ξk

2Tc0

)]
= 2 f (Ek), (21)

where f (Ek) is the Fermi distribution function. Comparing Equation (19) with Equation (8),
we can see that the GL parameter a is zero at the critical temperature. What is generally
done is an expansion of the parameter around the critical temperature:

a =
1
V

da
dT

∣∣∣∣∣
Tc0

(T − Tc0) = α(T − Tc0), (22)

where α is the derivative of a with respect to T evaluated at the critical temperature, and
it reads:

α =
1
V ∑

k

sech2(ξk/2kBTc0)

4kBT2
c0

. (23)

The same happens with the GL parameter A defined by Equation (13):

A =
dA
dT

∣∣∣∣∣
Tc0

(T − Tc0) = A(T − Tc0), (24)

where A is the derivative of the GL parameter A evaluated at the critical temperature.
Solving Equations (19) and (21), we can estimate the saddle point Tc0 and µc0, as a function
of the scattering length aF. We get a Tc0 that grows continuously from BCS to BEC [14]. It is
indeed well known that the mean-field approximation is not enough to properly describe
the system in the BEC regime at finite temperature. We can further explore this problem
using the Ginzburg–Levanyuk criterion [19]. The mean-field approximation is valid only if
the temperature T of the system satisfies the inequality:

T − Tc0

Tc0
> Gi3D, (25)

where Gi3D is the Ginzburg–Levanyuk number in 3D:

Gi3D =

(
BT1/2

c0

8πΓ3/2 A3/2

)2

. (26)
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Equations (25) and (26) provide the temperature interval around the critical one in which
fluctuations cannot be neglected throughout the BCS-BEC crossover. Replacing Equations (8)–(10)
in Equations (14)–(16) and then in Equation (26), we study the behavior of Gi3D along with
the BCS-BEC crossover.

As we can see from Figure 1, around the unitary limit, fluctuations cannot be neglected,
while in the BCS regime, the mean-field approximation works very well near the critical
temperature. For these reasons, in the BCS-BEC crossover regime, it is necessary to include
beyond-mean-field Gaussian fluctuations around the saddle point. The Gaussian action
expanded to second order in ∆(x) is given by:

SGauss = S0 + βV ∑
q,ωl

Π−1(q, iωl)|∆(q, iωl)|2, (27)

where Π−1 is the same as Equation (6) and ωl = 2lπ/β is the bosonic Matsubara frequency.
We include all the second-order terms of the gradient expansion. The partition function
Z =

∫
D[∆, ∆]e−SGauss reads:

ZGauss = e−S0 det
[
Π−1

]−1
(28)

and the grand potential ΩGauss = −ln[ZGauss]/β reads:

ΩGauss = Ω0 +
ln
[
det(Π−1)

]
β

. (29)

For a nonsingular square matrix A, we have log
[
det(A)

]
= Tr

[
log(A)

]
. In this way,

we obtain the beyond-mean-field grand potential:

ΩGauss = Ω0 +
Tr
[
ln
(

Π−1
)]

β
(30)

and the beyond-mean-field number equation:

n = − 1
V

∂ΩGauss
∂µ

, (31)

which yields:

n = n0 +
kBTc

V
∂Tr[ln(Π)]

∂µ
, (32)

where n0 is given by Equation (21). Following the Nozières–Schmitt-Rink approach [20], we
can rewrite Equation (32) in terms of the phase shift defined by Π(q, ωq ± i0+) = |Π(q, ω)|
exp[±iδ(q, ω)]. The number equation incorporating the effects of Gaussian fluctuations is:

n = n0(µc, Tc) + ∑
q

∫ ∞

−∞

dω

π
nB(ω)

∂δ(q, ω)

∂µ
, (33)

where nB(ω) = 1/[exp(βω)− 1] is the Bose–Einstein distribution function and δ(q, ω) =
Arctan[Im[Π(q, ω)−1]/Re[Π(q, ω)−1]] is the phase shift. As discussed and first obtained
in [14], we solve Equations (19) and (33) with Tc instead of Tc0 in Equation (19) to obtain
the critical temperature Tc and the critical chemical potential µc in the BCS-BEC crossover
in the beyond-mean-field approximation.
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Figure 1. The Ginzburg–Levanyuk number Gi3D as a function of the inverse normalized scattering
length 1/kFaF (blue line) and the reference value Gi3D = 1 (black line). Here, kF = 3π2n1/3 is the
noninteracting Fermi wave vector.

In Figure 2, we report the behavior of the superfluid critical temperature in the two
approximations. The two black vertical lines delimitate the region in which the system is
considered in the BCS, crossover, or BEC regime. The behavior of the normalized chemical
potential is reported in the inset of Figure 2. At the unitary limit, 1/kFaF = 0, µ/εF is
positive, meaning that the system is still in the crossover regime of the BCS-BEC crossover
with the Fermi surface that survives. To enter the BEC regime, it is necessary to increase
the coupling beyond 1/kFaF = 0.3, where the chemical potential becomes negative and
the Fermi surface collapses. In [21], Pistolesi and Strinati, studying the behavior of the
chemical potential as a function of the product kFξ, where ξ is the intrapair coherence length
obtained from the pair correlation function, found that the system can be considered in
the crossover region when π−1 < kFξ < 2π. In [17], Palestini and Strinati investigated the
behavior of the coherence length throughout the BCS-BEC crossover using a diagrammatic
approach. In this way, we find that the system can be considered in the crossover regime
when −1.4 < 1/kFaF < 1.5. As shown in Figure 2, the effect of the fluctuations can be
neglected in the BCS regime, but they become relevant already at the unitary limit and
are fundamental to obtain the BE condensation critical temperature kBTc ' 0.218εF for
noninteracting bosons in the strong-coupling regime.

Figure 2. The normalized critical temperature kBT/εF as a function of 1/kFaF. The red dashed line
(T = Tc0) is the mean-field result, while the blue solid line (T = Tc) is the beyond-mean-field result.
In the inset is reported the normalized critical chemical potential µc/εF in the beyond-mean-field
approximation as a function of 1/kFaF. Here, εF is the Fermi energy of the noninteracting system.
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2.2. Ginzburg–Landau Parameters and Characteristic Quantities

In the formulation of the GL functional, we found that the coefficient of the quar-
tic term Γ is constant throughout the BCS-BEC crossover. We analyzed the behavior of
the coefficients A and B in the mean-field and beyond-mean-field approximation at their
respective critical temperatures Tc0 and Tc. As we can see from Figure 3a for the GL param-
eter A, Gaussian fluctuations are negligible in the BCS regime and relevant approaching
the BEC regime, but as reported in the inset, the relative difference Rd between the two
approximations does not grow continuously: there is a minimum around the unitary limit.
Instead, for the GL parameter B, reported in Figure 3b, fluctuations are also relevant at the
unitary limit with a maximum for Rd around the value 1/kFaF ' 0.5. From the inset in
Figure 3b, we can also see a minimum for the relative difference at 1/kFaF = −0.5.

Figure 3. The GL parameters A (a) and B (b) as a function of 1/kFaF in the mean-field (red dashed
line) and beyond-mean-field (blue solid lined) approximation. In the insets is reported the relative
difference Rd between the mean-field and the beyond-mean-field results.

To better understand these results, with the GL theory, we study a fundamental length
scale of the superfluid state: the coherence length, which as a function of the GL parameters,
can be written as [22]:

ξGL =

√
− Γ

A(T)
. (34)

The coherence length is the characteristic length of the spatial variation of the Cooper
pair wave function, quantifying interpair correlations. In their work [17], Palestini and
Strinati, using a diagrammatic approach, found that in the BEC regime at zero temperature,
the difference between the mean-field and the beyond-mean-field results is very small. This
result can be reasonably extended also at finite temperature since they showed that until
T = 0.5Tc, the coherence length weakly depends on the temperature. In [23], Pieri et al.
showed in Figure 4 that the chemical potential µ is basically constant for 0 < T < Tc. For
these reasons, we can reasonably extend the use of the Ginzburg–Landau theory down
to 0.5Tc. In Figure 4, we can see that at T = 0.5Tc, the difference between the mean-field
and the beyond-mean-field ξGL increases as we move into the BEC regime. Instead, in the
BCS and crossover regime (BCS side), up to 1/kFaF = 0.5, we obtain a coherence length
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increased by fluctuations with respect to the mean-field of the right order of magnitude, in
agreement with the findings in [17].

Figure 4. The normalized Ginzburg–Landau coherence length kFξGL as a function of 1/kFaF in the
mean-field approximation (red dashed line) at temperature T = 0.5Tc0 and in the beyond-mean-field
approximation (blue solid line) at temperature T = 0.5Tc.

In the BEC regime, the increasing discrepancy is linked to how we treated fluctuations
of the order parameter. To formulate the GL functional, we made a series expansion of
the effective action in the small-order parameter, and then we took the zero-order and
the second-order term of ∆2(q). Crossing over from the BCS to the BEC regime, since the
binding energy of the Cooper pairs increases, it is reasonable to think that, in the strongly
interacting limit, the fluctuations become more and more important, and it is no more
sufficient to stop the second-order expansion to describe their effect properly. Indeed, as
we showed in the previous section, it is necessary to consider all the orders of the gradient
term to obtain the right critical temperature in the BEC regime. Generally, it is important to
study the healing length, because in superconductors, it is related to the spatial variation of
the order parameter inside an Abrikosov vortex close to the critical temperature [22]. In our
case of a neutral fermionic system, we can study superfluid characteristic quantities: the
critical rotational frequencies. For charged superconductors in a magnetic field, there exists
a critical value Hc1 over which superconducting vortices start to appear in the system. The
analog for a neutral system is the critical rotational frequency. For a rotating superfluid
with angular frequency ω, there exists a critical value ωc1 over which vortices form in the
superfluid. Increasing ω, as for the superconductors, more and more vortices populate the
system until we reach a second critical rotational frequency ωc2, at which the vortices come
into contact and the superfluidity is destroyed. This is the superconducting analog of the
upper critical magnetic field Hc2. An estimation of ωc1 at which the first vortex enters the
superfluid [24] is given by the relation:

ωc1 =
h̄
m

1
R2 ln

(
R
ξ

)
, (35)

where R is the radius of the superfluid and ξ is the healing length of the vortex. Equa-
tion (35) multiplied by h̄ represents the energy of an isolated vortex, and it is identical to
the one for Hc1 in which h̄/m is replaced by the magnetic quantum flux φ0/2π and R by
the penetration length of the magnetic field λ. It is interesting to note that the length scales
considered in the superconducting and superfluid case are very different. The penetration
length λ is orders of magnitude smaller than the superfluid radius R. This could be ex-
plained by considering the different nature of the vortices between the superconductive
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and superfluid case. In the first one, we have an external potential that tries to penetrate a
superconductor, and over a certain value Hc1, it succeeds by the formation of supercon-
ducting vortices. Increasing the magnetic field, Hc2 is reached and superconductivity is
destroyed: there are no more vortices, and the system is in the normal state. For a rotating
superfluid, over ωc2, the superfluidity disappears, but the entire fluid is rotating as a
unique vortex of radius R. The length in the numerator of the logarithm in Equation (35)
could be related to the maximum size reachable for the vortex. Replacing Equation (34)
in Equation (35), we obtain a GL parameter-dependent relation for the critical rotational
frequency ωc1. To study experimentally a Fermi gas, used an external magnetic field is
generally to confine the system in a specific region. The effect of the trapping potential on a
rotating superfluid throughout the BCS-BEC crossover was studied in [25,26]. They found
that the presence of a trapping potential induces a Landau-level structure in the energy
spectrum when the superfluid rotational frequency approaches the trapping potential
rotational frequency ωr. In particular, in the BEC regime, since the chemical potential is less
than the cyclotron energy gap (2h̄ωr), the system enters the lowest Landau level, while at
unitary and in the BCS regime, where the chemical potential is large compared with 2h̄ωr, it
occupies many low-lying Landau levels. In this work, we did not consider the presence of
the trapping potential because, as we saw, with the GL theory, we cannot properly describe
the superfluid in the BEC regime, while in the BCS regime, the discretization of the energy
spectrum in Landau levels can be neglected.

Continuing to increase the frequency of rotation above ωc1, more and more vortices
appear in the superfluid until they came into contact at ωc2. For a superconducting system,
the upper critical magnetic filed Hc2 is given by [22]:

Hc2 =
φ0

2π

1
ξ2 . (36)

Replacing φ0/2π with h̄/m as done above, we obtain the relation for the upper critical
rotational frequency ωc2:

ωc2 =
h̄
m

1
ξ2 . (37)

In Figure 5a, we report the behavior of the lower critical rotational frequency ωc1
throughout the BCS-BEC crossover setting RkF = 72 as in [27], and in Figure 5b, we
report the behavior of the upper critical rotational frequency. The coherence length in
Equations (35) and (37) is taken to be the Ginzburg–Landau coherence length, as studied
and evaluated in this work. As we can see, ωc2 is two orders of magnitude larger than
ωc1 in both approximations. The GL coherence length can also be related to the superfluid
critical velocity vc [11]:

ξGL =
h̄

mvc
. (38)

Replacing Equation (34) in Equation (38), we obtain a relation for the critical velocity
as a function of the GL parameters, while usually, the critical velocity is obtained using
the Landau criterion, as in [11]. Instead of the cusp in the crossover point in which the
pair-breaking and the bosonic branch of the Landau criterion intersect each other, we have a
maximum in the critical velocity that continuously describes the crossover region in which
there is a competition between the fermionic and the bosonic behavior of the fluctuating
Cooper pairs. In [11], the critical velocity in the BEC regime went to zero much slower than
in the BCS regime. The beyond-mean-field results did not follow this behavior because, as
we showed for the coherence length, in the BEC regime, the Ginzburg–Landau theory is
not reliable.
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Figure 5. The normalized critical rotational frequency h̄ωc1/εF (a) and h̄ωc2/εF (b) as a function of
1/kFaF in the mean-field approximation (red dashed line) at the temperature T = 0.5Tc0 and in the
beyond-mean-field approximation (blue solid line) at the temperature T = 0.5Tc.

3. Conclusions

The Ginzburg–Landau equation was obtained through a series expansion of the effec-
tive action in powers of the order parameter, keeping the quadratic, gradient, and quartic
terms. We studied the behavior of the Ginzburg–Landau parameters around the superfluid
critical temperature throughout the BCS-BEC crossover by solving the gap equation and
the number equation in the mean-field and beyond-mean-field approximation. The number
equation was obtained starting from an effective action formed by the mean-field and the
Gaussian fluctuation terms, considering all second-order terms of the expansion. We found
that the effects of the Gaussian fluctuations on the Ginzburg–Landau parameters A and B
are relevant, in particular in the unitary and BEC regime of the BCS-BEC crossover. We
tested the reliability of the Ginzburg–Landau theory by studying the coherence length,
written as a function of the Ginzburg–Landau parameters, and compared our results to the
ones obtained by the diagrammatic approach in [17]. We found a reasonable agreement
in the range of couplings from the BCS regime up to 1/kFaF = 0.5. Beyond this value
of (kFaF)

−1, entering the BEC regime, the effect of fluctuations becomes too strong and
the Ginzburg–Landau equation is not reliable. Increasing the strength of the interatomic
attraction, the Cooper pair size decreases, and the characteristic length of the pair wave
function becomes comparable to the characteristic length of the pair fluctuations. To obtain
the correct results, it is necessary to include gradients of order higher than the second in the
effective energy expansion. This is supported by the fact that at zero temperature, as shown
in [28], the Ginzburg–Landau equation is well defined and becomes the Gross–Pitaevskii
equation with a scattering length aB = 2aF, while from the few-body calculations, we
know that aB = 0.6aF [29]. In [28], from the beyond-mean-field number equation of the
Bogoliubov theory, in which the coefficient of the second-order term is not truncated as in
Equation (7), they derived a new Gross–Pitaevskii equation with ab = 0.56aF, which is very
close to the correct result. Finally, we studied the upper and lower critical rotational fre-
quency, written as a function of the Ginzburg–Landau parameters. We also compared our
results to the one of the critical velocity in [11]. We showed how the Gaussian fluctuations
from the BCS to the unitary limit lead to a qualitative correct effect on the critical rotational
frequencies and critical velocity. On the other hand, also in this case, we found that the
Ginzburg–Landau equation is not able to describe the properties of the system in the BEC
regime of the BCS-BEC crossover. In summary, we showed that the Ginzburg–Landau
theory is a reliable tool to describe 3D systems formed by fermions interacting by a contact
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potential in the weak and intermediate coupling regime. Further investigations are needed
to extend the results of our work to other interesting systems and phenomena, for example
a Fermi system in the presence of impurity scattering processes [30] or in the analysis of
the Josephson effect [31] throughout the BCS-BEC crossover.
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