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Abstract

Nucleic acids physical properties have been investigated by theoretical methods based both on

fully atomistic representations and on coarse grained models, e.g. the worm-like-chain, taken from

polymer physics. In this article, I present an intermediate (mesoscopic) approach and show how to

build a three dimensional Hamiltonian model which accounts for the main interactions responsible

for the stability of the helical molecules. While the 3D mesoscopic model yields a sufficiently

detailed description of the helix at the level of the base pair, it also allows one to predict the

thermodynamical and structural properties of molecules in solution. Relying on the idea that the

base pair fluctuations can be conceived as trajectories, I have built a computational method based

on the time dependent path integral formalism to derive the partition function. While the main

features of the method are presented, I focus here in particular on a newly developed statistical

method to set the maximum amplitude of the base pair fluctuations, a key parameter of the theory.

Some applications to the calculation of DNA flexibility properties are discussed together with the

available experimental data.
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1. Introduction

In living organisms DNA molecules store and carry the genetic information encoded in the

sequence specificity of the two complementary strands assembled via the Watson-Crick base

pairing. While the specific bonding of base pairs (bps) lies at the heart of the DNA biological

functions, predictability and thermodynamic properties of the base pairing are also crucial

to a variety of DNA-based methodologies such as detection of genomic variations via DNA

microarrays [11], classification of genetic distance between species [16], mutation scanning

and genotyping of Polymerase-Chain Reaction (PCR) products [22] using high-resolution

melting whereby the accuracy of the process clearly relies on the control of the base pairing

thermal stability.

The thermal separation of the helical strands has been a focus of research both in molecu-

lar biology and biochemistry since the fundamental biological processes of replication, tran-

scription and protein binding require the local unzipping of the double helix which allows

for reading and copying of the genetic code [36].

While the DNA structure is stable at room temperature mostly due to the covalent bonds

between adjacent nucleotides along the sugar-phosphate backbone, thermal fluctuations can

locally disrupt the hydrogen bonds, starting in regions rich in the weaker adenine-thymine

bps, thus leading to formation of transient breathing bubbles as the energy scale for the

separation of the bonds between paired bases is of a few kBT , kB being the Boltzmann

constant and T is the temperature. While denaturation bubbles generally appear both in

linear and circular supercoiled DNA as a response to release the torsional stress, their size

and number varies with the ambient conditions, sequence heterogeneity and chain length.

The denaturation transition of DNA in solution is made evident by the large increase

in the UV absorption spectra due to the rearrangement of the π electrons of the bases

once the stacking of planar adjacent bases decreases and the hydrogen bonds break. The

percentage increase in light absorption at ∼ 260 nm is proportional to the relative presence,

in the heterogeneous molecule, of adenine-thymine (AT) bps with respect to guanine-cytosine

(GC) bps [39]. In fact the latter present three hydrogen bonds while the former, with two

hydrogen bonds, can be more easily disrupted by thermal effects. Note that the effective

bond energies of AT-bps may be ∼ 30 meV, that is just above kBT at room temperature.

Thus, the melting temperature, usually defined by the mid-point transition at which half of
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the bps are broken, provides a measure of the relative content of GC and AT pairs in the

sequence [31].

Providing an example of a phase transition, the DNA melting has been widely studied

in statistical physics [27] and a vast literature has been produced to analyze the helix-

coil transition together with the thermally driven formation of denaturation bubbles. Also

the flexibility properties of DNA helices have been extensively investigated: among them,

the force-extension behavior, the persistence length and the cyclization probability i.e., the

probability that, for a given ensemble of linear chains, a fraction of them will close into a

loop. To these purposes, several computational methods such as transfer integrals [35, 37]

and transfer matrix [24] methods, Monte Carlo simulations [1], molecular dynamics [15], and

path integrals [51, 52, 55] have been applied both to mesoscopic Hamiltonian and polymer

physics models. The need for models at intermediate length scales arises from the fact that,

for instance, the thymine nucleobase contains fifteen atoms and the DNA monomer unit (the

nucleotide made of a nucleobase plus sugar-phosphate group) contains a few tens of atoms

[2]. Hence, even for a short double stranded DNA sequence, a fully atomistic representation

becomes computationally extremely time consuming and unsuitable to derive quantitative

information on specific physical properties.

Among the mesoscopic Hamiltonian approaches, the Peyrard-Bishop (PB) model [25]

has been widely used in DNA investigations over the last decades. The PB Hamiltonian

assumes a point-like representation for the nucleotides and describes the main forces which

stabilize the DNA molecule, hydrogen bonds between inter-strand pair mates and intra-

strand harmonic stacking between adjacent bases, in terms of a single degree of freedom,

that is the relative distance between pair mates.

It follows that the model is essentially one-dimensional and, under specific conditions

to be stated below, it maps onto an exactly solvable Schrödinger equation which yields a

crossover temperature characteristic of a smooth thermal denaturation. A later version of the

PB model (termed the PBD model [5]) incorporating an-harmonic stacking interactions has

been proposed to account for the sharpness of the melting transition (in the thermodynamic

limit of an infinite chain) although the character of the denaturation generally depends on the

length and specificities of the sequence [47]. Furthermore, the PB and PBD model treat the

base pair (bp) displacements as continuous variables thus accounting for the dynamics of the

nucleotides on complementary strands through an effective Morse potential for the hydrogen
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bonds between the bp mates. While this property allows in principle for a description of those

intermediate states which are relevant to the DNA dynamics, the PBD model predictions

for the bp lifetimes of open and closed states have yielded much shorter estimates than those

inferred from proton–deuterium exchange experiments [12]. Accordingly, improved versions

of the 1D model [26] have added solvent potential terms which a) enhance the dissociation

energy over the Morse plateau and b) introduce a hump whose maximum determines the

threshold around which a bp may first temporarily open and then either re-close or fully

dissociate. Such re-closing barrier accounts for the hydrogen bonds that the open bases may

establish with the solvent, albeit at an higher cost as bases are hydrophobic. Although such

improvements partly reconcile the calculated bp lifetimes with the experimental estimates,

it is pointed out that the PB model assumes a ladder configuration for the DNA chain

whereas a realistic analysis of the thermodynamics and dynamical properties of DNA should

not overlook the helical structure of the molecule with its twisting and bending degrees of

freedom [56]. Notwithstanding these caveats, the PB Hamiltonian still provides a simple

and appealing representation for the double stranded chain (which lies at the base of its

popularity) and therefore I take it as the initial point of the discussion.

Beginning with an analysis of the fundamental properties of the one-dimensional harmonic

model, I will follow a step by step procedure to add more physical information to the

Hamiltonian model eventually attaining a realistic three-dimensional mesoscopic description

for a helical molecule in solution.

Section 2 presents both the harmonic and the an-harmonic one-dimensional Hamiltonian

pointing out both the merits and the shortcomings of a ladder model. The three-dimensional

Hamiltonian with radial, twisting and bending degrees of freedom is presented in Section 3

together with the effects of a solvent potential. Section 4 outlines the theoretical background

for the computational method which I have built to get the structural and thermodynamical

properties of DNA molecules in solution. A newly developed statistical approach to set

the maximum amplitude for the bps fluctuation in helical molecules is presented and its

merits are highlighted. Section 5 shows an application of the theory to the calculation of

the cyclization probability of short DNA chains together with a comparison to available

experimental data. Some final remarks are made in Section 6.
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FIG. 1: (Color online) Ladder model for an open end chain with N point-like base pairs arranged

along the two complementary strands. The transverse base fluctuations, r
(1,2)
n , are measured with

respect to the mid-chain axis hence, the distance between the pair mates is defined with respect

to R0.

2. 1D Hamiltonian Model

In a fundamental work Englander et al. [9] suggested that the transient opening of adja-

cent bps, associated with torsional oscillations around the helix axis, could generate coherent

thermally activated soliton excitations propagating along the DNA backbone. These obser-

vations have fostered a line of research on the non-linear dynamics of DNA which continues

nowadays [40]. Following the observations by Prohofsky [28] on the strong non-linearities in

the hydrogen bonds stretching modes, Peyrard and Bishop [25] put forward a minimal har-

monic model to calculate the average inter-strand separation as a function of temperature.

The schematic of the model is shown in Fig. 1. The double helix is represented by a ladder of

N point-like homogeneous bps (of common mass µ) which are arranged like beads along two

parallel strands set at the distance R0. The latter is the bare helix diameter in the absence

of fluctuations which, in fact, does not appear explicitly in the original PB model (nor in the

PBD). For each pair mate, only transverse fluctuations are considered as these are generally

much larger than the longitudinal bps displacements (along the molecule backbone) which

are accordingly dropped.
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2.1 Harmonic Stacking Potential

The Hamiltonian of the model first proposed by Peyrard and Bishop [25] reads:

HPB =

N
∑

n=1

[

µ

2

(

(

ṙ(1)n

)2
+
(

ṙ(2)n

)2
)

+ VS

(

r(1)n , r
(1)
n−1

)

+ VS

(

r(2)n , r
(2)
n−1

)

+ VM

(

r(1)n − r(2)n

)

]

,

VS

(

r(1)n , r
(1)
n−1

)

=
K

2

(

r(1)n − r
(1)
n−1

)2
,

VM

(

r(1)n − r(2)n

)

= D

[

exp
(

−a(r(1)n − r(2)n )
)

− 1

]2

. (2.1)

The model contains: i) a two particle harmonic intra-strand stacking potential with force

constant K and ii) a one particle inter-strand Morse potential which represents the hydrogen

bonds between pair mates. D is the bp dissociation energy and a is the inverse length setting

the range of the Morse potential. While the latter is a usual choice to model hydrogen bonds,

any other potential with a hard core accounting for the electrostatic repulsion between

negatively charged phosphate groups on complementary strands, a stable minimum and a

dissociation plateau would be physically suitable.

Eq. (2.1) is conveniently rewritten in terms of the variables, zn = (r
(1)
n + r

(2)
n )/

√
2 and

yn = (r
(1)
n − r

(2)
n )/

√
2, which describe respectively the in-phase and out-of-phase displace-

ments depicted in Fig. 1. Then, the transformed Hamiltonian reads:

HPB =

N
∑

n=1

[

q2n
2µ

+
K

2

(

zn − zn−1

)2

+
p2n
2µ

+
K

2

(

yn − yn−1

)2

+D
[

exp
(

−āyn
)

− 1
]2
]

,

qn ≡ µżn ,

pn ≡ µẏn ,

ā ≡ a
√
2 . (2.2)

While Eq. (2.2) is quadratic in the in-phase coordinate, the non-linear contributions are

ascribed to the out-of-phase coordinate which stretches the hydrogen bonds. As an example,

Fig. 2 shows the Morse potential as a function of the pair mates separation for two parameter

choices usually taken to represent GC and AT bps.

The model can be also extended to deal with a chain of heterogeneous bps by introducing

site dependent parameters i.e., K → Kn,n−1, D → Dn and ā → ān. The thermodynamics of
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FIG. 2: (Color online) Morse potential VM versus base pair separation, calculated from Eq. (2.1)

after setting R0 = 0. Two sets of parameters, suitable for GC and AT base pairs are considered.

Dn is in units meV and ān is in Å−1.

the Hamiltonian in Eq. (2.2) can be derived by calculating the classical partition function

which, in the canonical ensemble, is given by:

ZPB =
1

h2N

N
∏

n=1

∫ ∞

−∞

dqn

∫ ∞

−∞

dzn

∫ ∞

−∞

dpn

∫ ∞

−∞

dyn exp
[

−βHPB(qn, zn, pn, yn)
]

,

(2.3)

where β = 1/(kBT ). As a basic notion of statistical mechanics, the partition function

must be dimensionless. Accordingly the constant h is introduced to fulfill this requirement.

Observing that, for each base, the double integral
∫

dqn
∫

dzn (or
∫

dpn
∫

dyn ) has the

dimension of energy times time (action), h is consistently taken as the Planck constant.

While this choice can be rigorously motivated in quantum mechanics, it may sound somewhat

arbitrary in a classical context. Note however that in the calculation of average physical

quantities, such as the energy, the pre-factors involving h cancel out.

Inserting Eq. (2.2) in Eq. (2.3), one can promptly integrate out the momenta and the

in-phase contributions so that ZPB transforms into:
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ZPB =

(

2πµ

h2β

)N(
2π

βK

)N/2 N
∏

n=1

∫ ∞

−∞

dyn exp
[

−β(VS(yn, yn−1) + VM(yn))
]

,

VS(yn, yn−1) =
K

2
(yn − yn−1)

2 ,

VM(yn) = D
(

exp(−āyn)− 1
)2

. (2.4)

Thus the model is essentially one dimensional as it is written in terms of the stretching

mode yn which measures the distance between pair mates for the n-th bp. While at this

stage such distance is generally assumed to vary from −∞ to ∞, a consistent method to

define a finite cutoff on the base pair fluctuations is given in Section 4.

Also note that yn should be generally defined with respect to the bare helix diameter but,

in the PB model, the absence of fluctuations corresponds to yn = 0 as in Fig. 2. Further,

it is pointed out that the PB model sets to zero also the bare rise distance between adjacent

bps along the chain.

The multiple integrals in Eq. (2.4) can be carried out exactly in the limit of a large

system, N → ∞, assuming periodic boundary conditions and making use of Transfer Integral

techniques already applied in the study of the thermodynamics of an anharmonic system

with quartic potential [32]. This permits to derive the thermodynamical properties once the

eigenvalues and eigenvectors of the Transfer Integral operator are known [42].

Moreover, the PB model can also be studied analytically in the continuum approximation.

The latter holds if the intra-strand stacking forces provide the major contribution to the

chain stability while the transverse fluctuations are small. In this limit the effective force

constant of the Morse potential is Dā2 hence, the strong coupling regime is defined by

Dā2 ≪ K. Under these conditions, a description of the thermally driven separation of

the DNA complementary strands, albeit qualitative, can be obtained. More precisely, the

statistical mechanics of the classical model in Eq. (2.1) can be mapped onto the quantum

mechanics of the Morse oscillator [54]. Solving the Schrödinger equation for a particle

with mass µ in the Morse potential [18], one finds the conditions for the existence of a

discrete spectrum of localized states and of a continuous spectrum whereby the transition

between the two subsets is physically related to the depth of the Morse potential. Thus, the

disappearance of the last bound state in the Schrödinger equation is formally equivalent to

the melting of the double helix whose transition temperature is found to be:
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Tc =
2

kB ā

√
2KD . (2.5)

This picture provides an appealing description of the thermally induced separation be-

tween the strands in Fig. 1 but it should be checked whether the derived expression for Tc

and the underlying assumptions i.e., strong coupling and continuum regime, are consistent

with the available experimental information. Although large discrepancies are found in the

literature regarding the estimate of the harmonic elastic constant in DNA sequences [8],

K values in the range [20 − 60]meV · Å−2 are considered appropriate to most cases and

accordingly assumed in mesoscopic models. While one may indeed adjust the parameters in

Eq. (2.5) so as to get Tc of order ∼ [320− 370] K as estimated for DNA of variable sequence

and length [23, 39], the fact remains that the above mentioned strong coupling (continuum)

hypothesis, Dā2 ≪ K, is never verified for meaningful choices of the parameters (see e.g.

Fig. 2). This suggests that the effects related to the discreteness of the chain are relevant in

DNA. For these reasons, theoreticians recur to mesoscopic models in order to account for a

description of the molecules at the level of the bp.

Before proceeding to develop the mesoscopic Hamiltonian, I emphasize that the presence

of the on-site Morse potential in Eqs. (2.4) (or of any other similar hard-core potential with

a plateau) has two fundamental consequences:

1) For very large bps separation, VS(yn, yn−1) grows as y
2
n and the integrand in the first

of Eqs. (2.4) tends to zero. This however does not occur if all yn are equal to each other: in

this case, it is VS that vanishes whereas the integrand remains finite (that is, it approaches a

constant value). Accordingly, the partition function diverges for yn → ∞. The divergence

of the partition function arising from the translational mode is well known in physics and also

the technique to tackle the divergence is known [34]. For instance, in semiclassical methods

for translationally invariant φ4 potential models, the zero mode eigenvalue corresponds to the

ground state of the fluctuation spectrum. As such mode breaks the Gaussian approximation,

it can be extracted from the determinant of the quantum fluctuation around the classical

path and regularized [45]. Here however this technique does not work, precisely because

the on-site VM(yn) breaks the translational invariance of the system. As a consequence, the

partition function still diverges for large and equal yn’s while no straightforward analytic

method is available to remove such divergence. For these reasons, a truncation of the phase
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space available to bps fluctuations is always required in the computational methods applied

to Eq. (2.4). On the other hand, the cutoff on the bps separations is not only a numerical

requirement but it also has physical motivations as there is no reason to assume that the

distance between pair mates may get infinitely large for DNA molecules in solution. This

issue will be analyzed in detail in Section 4.

2) A theorem due to van Hove [14] shows that, for 1D models with short range pair

interactions such that the partition function is expressed in terms of difference of particle

coordinates, the free energy does not have any singularities hence, phase transitions are

forbidden in these models. However, Eq. (2.4) contains the unbound on site potential VM(yn)

acting as an external field, therefore the van Hove’s theorem does not apply.

It is worth noticing that neither the general argument given by Landau [17], regarding

the impossibility of phase transitions in 1D, applies to our system. In fact, this argument

states that phase coexistence cannot occur in 1D at finite temperatures as the energetic cost

of making a domain wall between two regions is finite. Instead, in the continuum limit,

Eq. (2.4) admits a domain wall solution connecting open and closed parts of the molecule

but the domain wall energy is infinite for a large system.

Thus, the thermally driven separation of the complementary strands provides an example

of phase transition, at least in the thermodynamic limit of an infinite chain, whose properties

have been the subject of intense debate [4, 29].

2.2 Anharmonic Stacking Potential

A significant improvement over the PB model has been brought about by the inclusion

of a non-linear term in the stacking potential to account for the observed sharpness of the

melting process. This is ascribed to the cooperative character of the bp opening along the

stack [5]. Specifically, in the PBD model, the two particles harmonic potential in Eq. (2.4)

is replaced by the anharmonic potential

V an
S (yn, yn−1) =

K

2

[

1 + ρ exp
[

−α(yn + yn−1)
]

]

(yn − yn−1)
2 , (2.6)

where the non-linear parameters ρ and α drive the cooperative behavior of the system

towards denaturation. At this stage the choice of these new parameters may look somewhat

11



arbitrary as they cannot be straightforwardly related to physical observables. However, as

for α, the condition α < ā should be fulfilled in order to ensure that the range of the

stacking is taken larger than that of the Morse potential. This is consistent with the fact

that covalent bonds along the stack are stronger than bp hydrogen bonds hence, a large

amplitude transverse fluctuation sampling the Morse plateau may not suffice to unstack the

bp. In general, when all bps are closed, yn , yn−1 ≪ α−1 for all n. Under these conditions,

we see from Eq. (2.6) that the effective coupling is ∼ K(1 + ρ).

If, however, a fluctuation causes either yn > α−1 or yn−1 > α−1, then the hydrogen bond

between pair mates loosens and the base moves out of the strand axis. Accordingly the π

electrons overlap in the base plateaus is reduced, the binding between neighboring bases

along the strand weakens and the effective coupling drops to ∼ K. As a consequence, also

the adjacent base moves out of the stack thus propagating the fluctuational opening. This

explains the link between anharmonicity and cooperativity leading to bubble formation and

eventually to denaturation in the anharmonic PBD model.

Then, small α values indicate that large fluctuations are required to unstack a bp and

produce a consistent reduction in the stacking energy while ρ weighs the energetic reduction

in going from a closed, stiff bp conformation to the open one.

Despite the new features introduced by the non-linear terms, it is remarked that: i)

neither V an
S (yn, yn−1) accounts for the fact that the stacking energy should remain finite also

for very large yn − yn−1 i.e., when adjacent bps along the stack slide past each other until

they no longer overlap. In fact, for very large bps separation, V an
S (yn, yn−1) behaves like

VS(yn, yn−1) ; ii) the above discussed problem concerning the divergence of the partition

function persists also with the PBD model [50].

3. 3D Hamiltonian Model with Solvent Potential

Following these considerations, it is clear that a more realistic representation of the

helical molecule has to go beyond the 1D ladder model and incorporate the essential degrees

of freedom for the bps in a linear chain. In Fig. 3, I report the schematic for the three-

dimensional mesoscopic model which has been first presented in ref.[56] and there used to

calculate the probability for an open ends chain to close into a loop. Essentially, the model

incorporates twisting and bending fluctuations for any dimer in the chain assuming that

12
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FIG. 3: (Color online) Three dimensional model for an open end chain with N point-like base

pairs. The segment AB, i.e. the separation between two neighboring base pairs along the molecule

stack, is the distance between the tips of the radial displacements rn, rn−1. The rn’s represent the

inter-strand fluctuational distance between the two mates of the n− th base pair. Such distance is

measured with respect to the On’s which lye along the central axis of the helix. θn and φn are the

twisting and bending angles respectively formed by adjacent base pair fluctuations. In the absence

of radial fluctuations, all rn’s would be equal to the bare helix diameter and the model would

reduce to a freely jointed chain model made of N − 1 bonds, all having length d. In the absence

of bending fluctuations, the model would reduce to a fixed-plane representation as depicted by

the ovals in the r.h.s. drawing. The latter also convey the idea that the rn’s represent in-plane

fluctuations. The global size of the molecule is measured by the end-to-end distance, Re−e, shown

on the l.h.s. drawing.

the twist angle θn and the bending angle φn are site dependent. Furthermore, the radial

fluctuations rn are defined with respect to the average helix diameter while the finite distance

d along the helical stack (neglected in Section 2) now shows up in the model. Straightforward

geometrical considerations lead to write the distance between adjacent bps represented by

the blue dots in Fig. 3, e.g. the segment AB, as:

dn,n−1 =
[

(d+ rn sinφn)
2 + r2n−1 + (rn cosφn)

2 − 2rn−1 · rn cos φn cos θn
]1/2

. (3.1)
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This distance appears in the stacking potential with first neighbors interactions of the

3D Hamiltonian for a linear chain whose full expression reads:

H = Ha[r1] +

N
∑

n=2

Hb[rn, rn−1, φn, θn] ,

Ha[r1] =
µ

2
ṙ21 + VM [r1] + Vsol[r1] ,

Hb[rn, rn−1, φn, θn] =
µ

2
ṙ2n + VM [rn] + Vsol[rn] + VS[rn, rn−1, φn, θn] ,

VM [rn] = Dn

[

exp(−ān(|rn| −R0))− 1
]2
,

VSol[rn] = −Dnfs
(

tanh((|rn| − R0)/ls)− 1
)

,

VS[rn, rn−1, φn, θn] = Kn,n−1 ·
(

1 +Gn,n−1

)

· dn,n−1
2
,

Gn,n−1 = ρn,n−1 exp
[

−αn,n−1(|rn|+ |rn−1| − 2R0)
]

. (3.2)

Thus VS includes the angular variables through the squared distance in Eq. (3.1) and

represents the extension to the 3D model of the two particles stacking potential defined in

Eq. (2.6).

As Eq. (3.2) will be used in the following calculations, some further comments are deemed

necessary:

(i) Ha[r1] is taken out of the sum as the first bp has only one neighbor i.e., it is coupled

only to the successive bp along the chain.

(ii) DNA molecules are usually surrounded by water hence their physical properties

depend on the salt concentration in the solvent [23]. Looking at the Morse potential VM [rn],

it appears that for bp fluctuations much larger than the bare helix diameter i.e., |rn| ≫
R0, the pair mates would sample the flat part of the Morse potential (see Fig. 2) and, in

principle, they could go far apart with no further energy cost. This situation however does

not account for those recombination events which instead may take place in solution and

calls for corrections to the physical picture provided by VM as discussed at length in the

Introduction. Furthermore, when a base gets out of the stack, it may form a hydrogen

bond with the solvent and, in order to re-close, the base encounters an entropic barrier, not

described by VM . Following these arguments, I have introduced in Eq. (3.2) a one-particle

solvent potential, VSol[rn] depending on the input parameters fs and ls [7]. This potential

enhances by fsDn (with respect to the Morse plateau) the height of the energy barrier above

which the bp dissociates and introduces a hump whose width is tuned by ls. This length

14
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Å) tunes the width of the solvent barrier. Also the bare Morse potential with its peculiar plateau

is plotted. DGC is in units meV and āGC is in Å−1 .

defines the range within which VSol is superimposed to the plateau of the Morse potential.

These features are visualized in Fig. 4 which plots the one particle potential VM + VSol as a

function of the bp distance, assuming R0 = 0 and Morse parameters suitable to a GC bp.

A broader discussion of the solvent effects on the DNA thermal properties may be found

e.g. in ref.[49].

(iii) Since all potential parameters are taken as site dependent, Eq. (3.2) can be applied

to model also heterogeneous double stranded sequences. The stacking parameters clearly

refer to the two bps forming the dimer.

In order to extract predictions from the Hamiltonian model for the structural and ther-

modynamic properties of the molecules, we have now to build a computational method.

This is the subject of the next Section.
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4. Computational Method

As seen above, the distance between the complementary mates of any bp in the chain

constantly fluctuates due to the dynamical interactions with the surrounding environment.

Following this observation, I have developed a method based on the idea that the bp distances

rn in Fig. 3 can be conceived as time dependent trajectories and, accordingly, can be mapped

onto the time scale: rn → |rn(τ)| with τ being the imaginary time defined by τ = itr and

tr is the real time for the evolution amplitude of the particle trajectory within the time

interval, tr(b)− tr(a).

The theoretical grounds of the method lie in the analytic continuation of the quantum

mechanical partition function to the imaginary time axis which, in general, permits to obtain

the quantum statistical partition function [10]. Accordingly τ varies in a range τ(b) − τ(a)

whose amplitude is set by the inverse temperature β and the partition function is written

as an integral over closed trajectories, rn(0) = rn(β) , running along the τ -axis.

The imaginary time formalism is widely used in semi-classical methods for the solution

of quantum statistical problems and it has been applied over the years to a number of

condensed matter physics models, see for instance refs. [43, 44].

More recently the method has been adapted to treat the ensemble of DNA molecules

(which is a classical system usually considered at room temperature) as extensively described

in refs.[53, 54, 56]. While the reader may find in refs.[10] the fundamentals of the path

integral formalism, the main features and equations useful to our purposes are hereafter

outlined.

As a consequence of the above mentioned τ -closure condition, the rn(τ) can be written

in Fourier series around the average helix diameter:

rn(τ) = R0 +
∞
∑

m=1

[

(am)n cos(ωmτ) + (bm)n sin(ωmτ)
]

,

ωm =
2mπ

β
, (4.1)

whereby a set of Fourier coefficients, {(am)n, (bm)n}, corresponds to a state for the n-th

bp and provides a measure of the fluctuational distance between the complementary mates1.

1 The coefficients am should not be confused with the inverse length ān of the site dependent Morse potential.
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The expansion in Eq. (4.1) defines the associated integration measure
∮

Drn over the

space of the Fourier coefficients:

∮

Drn ≡
∞
∏

m=1

(mπ

λcl

)2
∫ Λn(T )

−Λn(T )

d(am)n

∫ Λn(T )

−Λn(T )

d(bm)n ,

(4.2)

where λcl is the classical thermal wavelength (see ref.[54]) and Λn(T ) is the temperature

dependent cutoff for the radial fluctuations of the n− th bp. The latter cutoff can be consis-

tently determined by exploiting the normalization property intrinsic to the path integration

technique [48], i.e. the condition that the measure in Eq. (4.2) normalizes the kinetic term

in the action :

∮

Drn exp
[

−
∫ β

0

dτ
µ

2
ṙn(τ)

2
]

= 1 . (4.3)

Using Eqs. (4.1), (4.2), the l.h.s. of Eq. (4.3) transforms into a product of independent

Gaußian integrals which can be solved by setting Λn(T ) = Unλcl/mπ3/2, with Un being

a dimensionless parameter. It is numerically found that Eq. (4.3) is satisfied by chosing

Un = 2.

Importantly, it is also noticed that Eq. (4.3) holds for any µ. This amounts to say that

the system free energy does not depend on µ, as expected for a classical system. Moreover,

the measure in Eq. (4.2) permits to integrate both kinetic and potential actions over the

same degrees of freedom thus avoiding the decoupling between momenta and real space

integrations operated in the usual approach to the classical partition function, see Eq. (2.3)

and the ensuing discussion. Then, Eq. (4.2) correctly renders a dimensionless total partition

function without the need to add an ad hoc normalization constant as done in Eq. (2.3).

It follows that the general partition function associated to Eq. (3.2) is given by:

ZN =

∮

Dr1 exp
[

−Aa[r1]
]

N
∏

n=2

∫ φmax

−φmax

dφn

∫ θmax

−θmax

dθn

∮

Drn exp
[

−Ab[rn, rn−1, φn, θn]
]

,

Aa[r1] =

∫ β

0

dτHa[r1(τ)] ,

Ab[rn, rn−1, φn, θn] =

∫ β

0

dτHb[rn(τ), rn−1(τ), φn, θn] , (4.4)
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where φmax and θmax are the maximum amplitudes for the bending and twisting fluctua-

tions which can be set in accordance with the experimental indications for specific molecules.

It is remarked that:

i) by virtue of the imaginary time mapping, the inverse temperature is introduced in the

formalism. Accordingly, the bp fluctuations do depend on the temperature as it is expected

on general grounds.

ii) As mentioned in Section 2.1, the partition function of the PB (and PBD) model is

customarily computed in Transfer Integral methods by applying periodic boundary condi-

tions which amount to close the linear chain into a loop [13]. This procedure is however

questionable in short chains due to the relevance of finite size effects. This drawback is

avoided in the path integral formalism. In fact, the closure condition for the bp fluctuations

is imposed here on the time axis whereas the chain maintains the open ends in real space.

Hence, there is no need to impose fictitious periodic boundary conditions.

iii) The free energy of the system is computed as: F = −β−1 lnZN . Then,

the thermodynamical properties of a helical molecule in a solvent are derived from

Eqs. (3.2), (4.1), (4.2), (4.4).

4.1 Radial Cutoff: Theory

As shown above, the maximum amplitude for the bp fluctuations can be technically

determined, in the path integral method, by the normalization condition for the free particle

action. This mathematical condition clearly holds both for the PBD ladder model and for

the DNA helical model in Eq. (3.2) and yields the minimal Un such that Eq. (4.3) is fulfilled.

However, in order to compute specific properties of nucleic acids one may need to take a

cutoff larger than the value set by the normalization condition. In fact, larger cutoffs may

be required to include those large amplitude fluctuations which affect the flexibility of the

chain. This points to the importance of defining a rigorous physical criterion which restricts

the bp configuration space selecting a cutoff consistently with the model potential.

In general, it can be reasonably assumed that the radial cutoff may also vary with the

specific helical conformation of the molecule although, for the task of establishing a consistent

relation between model parameters and radial cutoff, the details of the bp fluctuations over

the twist and bending angles make a minor contribution.
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Accordingly the angles φn and θn in Eq. (3.2) are replaced by average values φ̄ and θ̄

which are taken as input parameters. This permits to retain the 3D nature of the model

while the computational time for the following calculations is markedly reduced. Further,

by tuning φ̄ and θ̄, one can study the relation between radial cutoff and macroscopic helical

conformation.

The latter is generally characterized by a given number of particles per helix turn. In the

case of dsDNA (or dsRNA), let’s say h the number of bps per helix turn. This number is

also named in the literature as the helical repeat. While h may depend on temperature, salt

concentration in the solvent, sequence length and specificities, the value usually reported for

kilo-base long DNA under physiological conditions is h ∼ 10.5 [6]. This has to be understood

as an average value considered that conformational fluctuations and buffeting of the solvent

bath may locally distort the helix and change h.

Hereafter the helical repeat of the molecule is defined by, h = 2π/θ̄ .

To pursue our task, it is noticed that the bps of DNA in solution are constantly subjected

to thermal fluctuations which deform the molecular bonds causing transient openings along

the chain. Accordingly, the bp thermal fluctuations are an example of constrained Brownian

motion for a particle subjected to the specific interactions which stabilize the double helix.

Let’s focus on the mid-chain j−th bp, for instance the A blue dot in Fig. 3 and assume

that, at the initial time, the average distance between the pair mates is, < rj >= R0. At

any successive time t, fluctuations may cause rj to contract or expand with respect to R0.

Accordingly, Pj(R0, t) is defined as the probability that rj does not return to the initial

value up to t and Fj(R0, t) = −dPj(R0, t)dt as the probability that the path will return to

the origin for the first time between t and t + dt.

For the j − th bp embedded in the chain and interacting with its first neighbors via the

stacking potential in Eq. (3.2), I write Pj(R0, t) as a path integral :

Pj(R0, t) =

∮

Dr1 exp
[

−Aa[r1]
]

·
N
∏

n=2, n 6=j

∮

Drn exp
[

−Ab[rn, rn−1, φ̄, θ̄]
]

·

∫ rj(t)

rj(0)

Drj exp
[

−Ab[rj , rj−1, φ̄, θ̄]
]

·
t

∏

τ=0

Θ
[

rj(τ)− R0

]

,

(4.5)

where the Heaviside function Θ[..] enforces the condition that rj(τ) has to remain larger
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than R0 for any τ ∈ [0, t]. This is implemented in the code by evaluating at any imaginary

time τ the amplitude of rj(τ) in Eq. (4.1) and discarding those sets of coefficients which

don’t comply with such condition. The need to introduce two time variables, t and τ , arises

from the fact that, for a given t, the probabilities are given as a sum over the particle

histories rj(τ) in the time lapse [0, t] [21]. Also note that t here is the upper bound for τ

along the imaginary axis and should not be confused with tr defined at the beginning of

Section 4.

Moreover, the measures of integrations over closed (
∮

Drn) and open (
∫

Drj) trajectories

in Eq. (4.5) are coupled via the two particle potential which connects the n− th and j − th

bps along the stack. The actions in Eq. (4.5) are obtained by the following dτ integrals:

Aa[r1] =

∫ β

0

dτHa[r1(τ)] ,

Ab[rn, rn−1, φ̄, θ̄] =

∫ β

0

dτHb[rn(τ), rn−1(τ), φ̄, θ̄] ,

Ab[rj , rj−1, φ̄, θ̄] =

∫ t

0

dτHb[rj(τ), rj−1(τ), φ̄, θ̄] , (4.6)

whereby it is pointed out that the functional for the n− bps is an integral over closed

trajectories (as in Eq. (4.4)) whereas the functional for the j− bp is an integral over open

trajectories.

As a consequence, for the j − th bp, a Fourier series expansion as in Eq. (4.1) can be

still performed, but the normalization condition in Eq. (4.3) cannot be applied. This follows

from the observation that, for any τ , rj(τ) is defined up to rj(t) which is in fact an open

trajectory for any t < β. Hence, a new criterion should be developed to estimate the integral

cutoff on the amplitude of the j − th radial fluctuation.

The criterion is built by inspecting Eq. (4.5) and asking the question: what is the prob-

ability that, at the initial time, the j − th fluctuation is larger than R0 ?

From Eq. (4.1), at t = 0, the j − th trajectory is rj(0) = R0 +
∑∞

m=1(am)j with the

Fourier coefficients being integrated on an even domain. Accordingly, the initial probability

Pj(R0, 0) is expected to be ∼ 1/2 2.

This is the constraint which needs to be fulfilled in the computation of the first-passage

probability as a function of time. In order to implement this criterion, the Fourier integration
∫ rj(t)

rj(0)
Drj in Eq. (4.5) is integrated by setting a cutoff Λj(T ) = Ujλcl/mπ3/2, with tunable
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Uj : then, the precise value Uj such that Pj(R0, 0) ∼ 1/2 is eventually selected. In this way

one picks the cutoff on the base of a robust physical constraint for a specific set of model

parameters and for a given helical conformations. While the mid-chain bp has been chosen

for reference, the method is general and holds for any bp in the chain.

4.2 Radial Cutoff: Results

The theory is now tested for some specific cases by setting in Eq. (4.5) the average

bending at φ̄ = 6o consistently with the indications of Fluorescence Resonance Energy

Transfer studies probing the DNA bending elasticity at short length scales [20]. The average

twist angle is initially taken as θ̄ = 36o, which corresponds to an average helical repeat

h = 10, close to the usual experimental value for kilo-base long DNA chains at room

temperature. Although the model potential contains only first neighbors radial interactions,

the bps are correlated along the stack due to the helical conformation. Here I am taking a

short homogeneous chain of N = 21 bps which allows for about two turns of the helix. The

diameter is R0 = 20 Å. The bare rise distance d is, at first, set equal to zero like in the PBD

ladder model.

The potential parameters are those taken in ref.[46] namely, Dn = 30 meV, an = 4.2

Å−1, Ki ≡ Kn,n−1 = 60 meV · Å−2, ρn ≡ ρn,n−1 = 1, αn ≡ αn,n−1 = 0.35 Å−1. This

set is consistent with the parameters used by other groups in investigations of the PBD

model [3, 42] and derived by fitting the experimental melting temperatures, though some

discrepancies persist mostly as for the stacking force constants [8, 63]. It is also pointed out

that the terminal bps of a chain lack a first neighbor and generally tend to unstack. To

simulate this effect which is all the more relevant in short chains, the stacking parameters

K2,1 and KN,N−1 are taken one half of the value assumed for the internal dimers. While this

choice is arbitrary, it permits to weigh the impact of chain end effects on the bp cutoff.

Then, we are ready to calculate the probability in Eq. (4.5) as a function of time for

different Uj and select the good cutoff, Uj ≡ Ū , such that Pj(R0, 0) ∼ 1/2 for all internal

2 In principle the Fourier coefficients in Eq. (4.2) are integrated on an even domain. However too negative

am’s are discarded due to the physical condition associated to the hard core of the one particle potential.

The latter is tuned by the parameter which regulates the range of the Morse potential (see Section 2).

The asymmetry in the choice of am’s included in the computation explains why Pj(R0, 0) may get slightly

larger than 1/2. Hence the approximation sign used in the text.
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FIG. 5: (Color online) (a) First-passage probability versus time for the mid-chain bp in equilibrium

with the N − 1 bps at room temperature. A homogeneous chain is taken with N = 21. Four h

values are considered. The respective average twist angles θ̄ are (from top to bottom in the leg-

end) 40o, 36o, 32.7o, 30o. For each twist conformation, the probability is computed assuming the

respective cutoff Ū (in the inset) that fulfills the initial time condition. (b) Zero time probabilities

versus integral cutoff for three twist conformations. The U values for which the plots intersect the

dashed line, are the Ū ’s reported in the inset in (a). The red dot • marks the cutoff found for

the PBD ladder model.

bps (in view of the fact that the chain is homogeneous). Instead, for the terminal bps,

the first passage probability remains smaller than 1/2 as the average bp separation remains

larger than R0. This result follows from the assumption of softer stacking force constant for

the terminal dimers. This causes looser bonds and fraying at the chain ends.

The probability is evaluated over 1000 points along the time axis. Hence the zero time

value Pj(R0, 0) corresponds to the abscissa t/β = 10−3.

For practical purposes, only the first Fourier component (m = 1) needs to be taken

for the path expansion in Eq. (4.1). This suffices to achieve numerical convergence in the

computation of Eq. (4.5) and, generally, also of Eq. (4.4).

The results are displayed in Fig. 5. The Pj(R0, t)’s in Fig. 5(a) are calculated by taking

the Ū ’s obtained respectively from the plots in Fig. 5(b). As a main result, Ū markedly

decreases for larger h. This is understood by observing that our helical chains are considered
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FIG. 6: (Color online) As in Fig. 5(a) but with a finite rise distance d. Five twist conformations

are considered. The respective average twist angles θ̄ are (from top to bottom in the legend)

40o, 36o, 34.3o, 32.7o, 30o. For each h value, the first passage probability is computed assuming

the respective cutoff Ū (in the inset) that fulfills the initial time condition.

to be stable at room temperature also in the untwisted conformations although, in the latter,

large amplitude bp fluctuations would easily disrupt the hydrogen bonds and unstack the

helix. Accordingly, helical molecules in a large h conformation sustain only short scale

fluctuations in order to preserve the overall stability. This interpretation however ensues

from the simplyfing assumption of a model with no intrinsic stiffness i.e., with d = 0. By

further increasing h the helix unwinds and tends to the ladder representation. Consistently,

it is shown in Fig. 5(b), that the selected Ū ’s tend to the cutoff value determined for the

PBD model. As we have seen in Section 2, the PBD model in fact takes d = 0 .

The picture substantially changes once a finite rise distance d is introduced to yield a

more realistic model for the helical molecule. The results are shown in Fig. 6 where the time

dependent probability is computed as a function of time by varying the average twist angle.

Now the intrinsic stiffness d confers stability to the helix which can sustain large amplitude

bp fluctuations also in the untwisted conformations. Accordingly the cutoff value, for which

the zero time probability condition is fulfilled, grows versus h as shown in the inset. For

instance, given a chain with h = 10.5, the obtained value Ū = 5.2 yields a maximum

amplitude Λj(T ) = 1.08 Å for the first Fourier component in Eq. (4.1). This, in turn,
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corresponds to a reasonable estimate of ∼ 2.2 Å for the largest breathing fluctuation of the

j−th bp with respect to the average helix diameter in the closed state. This length is ∼ 10%

of R0 and it is a fair measure for the threshold above which hydrogen bonds are disrupted.

Although the discussion carried out so far has focused exclusively on DNA molecules, I

wish to emphasize that both the model and the method can be likewise applied to the sister

molecule, the double stranded RNA, after introducing some modifications which account for

its structural peculiarities.

With this caveat and having established a method to determine the radial cutoff, we are

now in the position to calculate some physical properties of molecules in solution.

5. Applications

The computational techniques presented in Section 4 have been applied over the years to

evaluate several properties both of homogeneous and heterogeneous 3D DNA chains such as

cyclization, persistence lengths, distribution lengths, mechanical stretching and end-to-end

distance (see Fig. 5) both for free molecules and in confining environments [55, 57–62].

As an example let’s focus here on the cyclization probability, also named the J-factor,

that is the probability for the occurrence of the circular conformation given an ensemble of

molecules in the linear form. While this property is a strong indicator of the chain flexibility,

there has been a renewed interest towards it following some experiments [19, 38] which have

found a J-factor much larger in short chains than that predicted by the standard worm-

like-chain model (WLC) [41]. The J-factor can be computed by Eq. (4.4) after building

the fraction of molecules whose terminal bps happen to be within a capture volume, that

is very close to each other. The details of the calculation performed for short chains are in

ref.[56]. The J- factor turns out to be strongly dependent on the potential parameters and

specifically on the force constants ρn and αn. Accordingly one may fit the model predictions

to the experimentally available cyclization data in order to determine consistently the non-

linear stacking parameters.

In particular, I have considered the cyclization of single DNA molecules yielding a J- fac-

tor ∼ 10−9 mol / liter for N ∼ 100 as measured by FRET. For this length scale, independent

experiments report consistent values as shown in Fig. 7(b) .

Then, I have set a pair of parameters, e.g. αn = 2.5 Å−1 and ρn = 1.3, which fit the

24



mentioned J- factor value and computed the J- factor as a function of the molecule length,

for five N values, as shown in Fig. 7(a). Also the case with ρn = 1.25 is considered to

remark the strong dependence of the cyclization probability on the molecule stiffness.

In this calculation the helical repeat has been taken constant, h = 10. It follows that

N/h is always an integer for the considered chain lengths and no extra twist is necessary

to close the chain into a loop. Under this conditions, the molecule looping occurs at fixed

helical repeat and does not require the unwinding of the complementary strands. For this

reason, the peculiar oscillations of the J- factor, due to the twist rigidity of the double helix,

do not appear in the plots.

The J- factor drops by decreasing N , markedly below N = 100, in accordance with the

qualitative general expectations. However such drop is not so abrupt as predicted by the

WLC model reported in Fig. 7(b) for two values of persistence length [33]. In fact, the

computed J- factor is still sizeable i.e. ∼ 10−11 at N = 80. While the plots in Fig. 7(a) refer

to homogeneous chains, the displayed trend (sequence length dependence) and the body of

our results would not be modified by heterogeneity effects. Not even different choices for

the pair (ρn, αn) would change such trend.

The results are compared in Fig. 7(b) to the mentioned FRET experiments made at very

short length scales [19, 38]. Indeed, some relevant differences exist between the two sets of

data indicating the difficulty in extracting J- factors from experiments and in performing

quantitative comparison between models and data. Nevertheless both sets of FRET data

concur that there is a sizeable cyclization probability at very short molecule lengths and,

importantly, our theoretical model can predict this feature for a consistent choice of the

potential parameters although the oscillations in the J-factor experimental plot are not

reproduced for the reasons explained above.

I have chosen to focus on the looping probability as this property provides a relevant

benchmark for the theory and can be suitably described only by models which account

for the flexibility of the double helix at short length scales. The structure of the stacking

potential in Eq. (3.2) which allows for large local bending fluctuations and the specific

integration technique which includes a broad ensemble of independent path fluctuations,

both contribute to shape a model for the helix with flexible hinges at the level of the bp.

These mechanisms are responsible for the substantial molecule bendability which leads to

the results shown in Fig. 7.
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FIG. 7: (Color online) (a) J- factor (over 8π2) calculated for a set of five sequence lengths (N). The

potential parameters refer to homogeneous sequences and are the same for all N ’s. Two values

of the non-linear stacking stiffness ρn are taken. (b) The green plot in (a) is compared to the

experimental results of ref.[38] (VH) and ref.[19] (LK). The J-factor of the twisted worm-like-chain

model (WLC) [33] is computed for two persistence lengths, 45 nm and 48 nm.

6. Conclusions

Nucleic acids are macromolecules containing a huge number of atoms even for short

sequences made only of a few tens of base pairs. In dealing with these double helical

molecules, theorists often turn to mesoscopic models which describe the fundamental intra-

strand and inter-strand forces at the level of the base pair and permit to get meaningful

predictions for the thermodynamical and structural properties. Beginning with a well-known

one-dimensional and non-linear model, proposed long ago to investigate the DNA melting,

I have shown how the level of complexity of the Hamiltonian can be increased by progres-

sively adding new ingredients i.e., new degrees of freedom, thus providing a more accurate

description of the double helix in three dimensions. While the 3D model presented in Sec-

tion 3 importantly accounts for the twisting and bending fluctuations between neighboring

base pairs along the molecule axis, still it provides a coarse-grained picture for the molecule:

in fact it assumes a point-like description for the nucleotide made of a nitrogenous base, a

sugar ring and a phosphate group. Further, it neglects the distortion of the hydrogen bonds
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between complementary bases. Nevertheless our 3D Hamiltonian description contains suffi-

cient structural details to investigate the flexibility of helical chains at short length scales.

Certainly, it should be always considered that any step upward in the hierarchy of model

complexity also entails an increase of the computational time required to extract physical

information from that specific model. Finally I have presented the main properties of a

powerful computational technique, based on the path integral formalism, which has been

widely used to derive various physical properties of short sequences both in the linear and

circular form. I have also discussed in detail the statistical method applied to determine

the cutoff on the amplitude of the base pair fluctuations. While the applications of the

theory have generally regarded DNA chains, some latest work has shown possible pathways

to extend the analysis to double stranded RNA molecules.
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