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I. ANALYTIC CONTINUATION WITH THE PADÉ APPROXIMANTS
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FIG. 1: Comparison of the DOS Ns(ω) in the single-band system at T = Tc, 1.2Tc, and 1.4Tc obtained from the exact
analytical continuation from Ref. [1] as well as the Padé approximants (thin curves). The parameters are set at (kFa)

−1 = 0.

Ns,0 = m
√

2mEF,s/(2π
2) is the DOS at the Fermi level for a non-interacting Fermi gas at T = 0.

In this Supplemental Material, we show the validity of the Padé approximants, which assume that Σi(p, z) with
the complex frequency argument z for given p is in the form

Σi(p, z) =
α1 + α2z + · · ·+ αjz

j−1

β1 + β2z + · · ·+ βjzj−1 + zj
. (1)

The parameters {αk, βk} (k = 1, · · · , j) are determined by the 2j numerical values of Σi(p, iωℓ) along the imaginary
axis. In this work, we use 200 (= 2j) data.
In the T -matrix approach, one can analytically perform the analytic continuation [1]. The imaginary part of the

retarded self-energy in this approximation can be written as

ImΣi(k, ω) = −
∑
q

ImΓii(q, ω + ξq−k,i) [b(ω + ξq−k,i) + f(ξq−k,i)] , (2)

where b(x) = [ex/T − 1]−1 and f(x) = [ex/T + 1]−1 are Bose and Fermi distribution functions, respectively. The real
part of the self-energy can be obtained via the Kramers-Kronig relation

ReΣi(k, ω) =
1

π
P
∫ ∞

−∞
dω′ ImΣi(k, ω)

ω′ − ω
, (3)
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FIG. 2: Comparison of the DOS Ns(ω) obtained from the Padé approximants (solid curve) and −Gs(r = 0, τ = β/2)β/π =
0.405N0,s (dashed line) in the single-band model at T = Tc = 0.243TF,s in the unitarity limit. We also plot the square-root
type DOS in a non-interacting counterpart and −G0

s (r = 0, τ = β/2)β/π = 0.560N0,s (long-dashed line). The dash-dotted
curve shows the weight factor 1/ [2 cosh(βω/2)] in Eq. (5).

where P is the Cauchy principal value. To see how the Padé approximants work in the analytic continuation procedure,
we compare the DOS with the exact analytic continuation in Ref. [1] and that with the Padé approximants in the
T -matrix approach. For simplicity, we consider the single-band system (i = s). Here we define the non-interacting

DOS at the Fermi level N0,s =
m
√

2mEF,s

2π2 where EF,s is the Fermi energy at T = 0 in the single-band system. Figure 1
shows the DOS at unitarity in the single-band system at T = Tc, 1.2Tc, and 1.4Tc. The results with the Padé
approximants represented by the thin curves show an excellent agreement with those with exact analytic continuation
done in Ref. [1] even near T = Tc.

For comparison, we calculate the single-particle Green’s function Gi(r, τ) with the spatial position r and the
imaginary time τ , which is given by

Gi(r, τ) = T
∑
k,iωl

Gi(k, iωl)e
i(k·r−ωlτ). (4)

At sufficiently low temperature, it is related to Ni(ω = 0) as [2]

Gi(r = 0, τ = β/2) = −1

2

∫ ∞

−∞
dω

Ni(ω)

cosh(βω/2)

= −1

2
Ni(0)

∫ ∞

−∞

dω

cosh(βω/2)

[
1 +

ω

Ni(0)

dNi(ω)

dω

∣∣∣∣
ω=0

+ · · ·
]

≃ −π

β
Ni(ω = 0), (5)

where β = 1/T is the inverse temperature. The correction originating from the leading-order term is proportional to
T 2, which is neglected for simplicity. We evaluate Gi(r = 0, τ = β/2) as

Gi(r = 0, τ) =
∑
k

e−ξk,iτ [f(ξk,i)− 1]

+T
∑
k,iωl

[
Gi(k, iωl)−G0

i (k, iωl)
]
e−iωlτ , (6)

where the Matsubara frequency sum is evaluated numerically (see Sec. II).
First, we consider the single-band case. Figure 2 shows the comparison between Ns(ω) and Gs(r = 0, τ = β/2)β/π

where Gs is the single-particle Green’s function in the single-band Fermi gas. In a non-interacting case with same µ and
T , we obtain G0

s (r = 0, τ = β/2)β/π = 0.560N0,s, which is close to N0,s(ω = 0) = m
√
2mµs/2π

2 ≃ 0.606N0,s where
µs is the single-band chemical potential. The difference between them originates from the leading-order correction in
Eq. (5). In the strongly interacting case, we obtain Gs(r = 0, τ = β/2)β/π ≃ 0.405N0,s. Although it is smaller than
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FIG. 3: Same plots with Fig. 2 in a two-band Fermi gas. The parameters are T = Tc = 0.113TF,t, (kF,1a11)
−1 = −2,

(kF,2a22)
−1 = −0.6, and λ12 = 2. The weight factor 1/[2 cosh(βω/2)] (dash-dotted curve) in Eq. (5) is also plotted.

the non-interacting counterpart, it is larger than the result with the analytic continuation with the Padé approximants
given by Ns(ω = 0) = 0.186N0,s. This is also expected to be the leading-order corrections in Eq. (5), which involve
not only Ns(ω = 0) but also Ns(ω ̸= 0) multiplied by the weight factor 1/[2 cosh(βω/2)] shown in Fig. 2. To see this,
we evaluate the same quantity using Ns(ω) obtained from the analytic continuation with the Padé approximants,
resulting in Gs(r = 0, τ = β/2)β/π ≃ 0.408N0,s Indeed, it is close to that obtained from Eq. (6) with the Matsubara
Green’s function Gs(k, iωl).
Figure 3 shows the comparison between Ni(ω) obtained by the analytic continuation with the Padé approximants

and −Gi(r = 0, τ = β/2)β/π in a strongly interacting two-band Fermi gas with (kF,1a11)
−1 = −2, (kF,2a22)

−1 = −0.6,
and λ12 = 2 at T = Tc. In the weakly-interacting deep band (i = 1), we obtain −G1(r = 0, τ = β/2)β/π ≃ 0.815N0

which is close to the non-interacting counterpart given by 0.808N0 due to the cancellation of two contributions, that
is, the pseudogap suppression and the band-renormalization enhancement of the DOS. In the strongly-interacting
shallow band, we obtain −G2(r = 0, τ = β/2)β/π ≃ 0.317N0 which is smaller than the non-interacting counterpart
given by 0.397N0. However, it is larger than the results of Padé approximants given by N2(ω = 0) = 0.144N0 due to
the contribution from N2(ω ̸= 0).

II. MATSUBARA FREQUENCY SUM

We evaluate numerically the Matsubara frequency sum in the self-energy Σi(p, iωl) as

Σi(p, iωl) = Uiin
0
i + T

∑
p

|ℓ|≤ncut,b∑
ℓ

[Γii(q, iνℓ)− Uii]G
0
i (q − p, iνℓ − iωl), (7)

where n0
i is the number density for a non-interacting gas and we introduce the cutoff number ncut,b. We take

ncut,b = 1000 ∼ 50000, depending on the coupling parameters as well as the temperature. In addition, we add the
contribution beyond ncut,b by approximately transforming the summation into continuous integration [3]. In Fig. 4,
we show the dependence by ncut,b of the typical self-energy Σi(p = 0, iωl = iπT ) at T = Tc with (kF,1a11)

−1 = −2,
(kF,2a22)

−1 = 0, and λ12 = 1. We find sufficient convergences of them within the relative errors of 0.01% in both
bands.

We note that the Matsubara frequency sum in Πℓℓ(q, iνl) can analytically be performed as

Πℓℓ(q, iνl) =
∑
p

1− f(ξp+q,ℓ)− f(ξp,ℓ)

iνl − ξp+q,ℓ − ξp,ℓ
. (8)

In the case of the number density ni, we decompose the equation with the non-interacting density n0
i , the NSR

correction δnNSR
i [4], and the remaining part δni as

ni = 2
∑
k

f(ξk,i) + 2T
∑
k,iωn

{
G0

i (k, iωn)
}2

Σi(k, iωn)
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FIG. 4: The real part of the self-energies ReΣi(p = 0, iωl = iπT ) in (a) the deep band (i = 1) and the shallow band (i = 2)
as a function of the bosonic Matsubara frequency cutoff ncut,b in a two-band Fermi gas at T = Tc with (kF,1a11)

−1 = −2,
(kF,2a22)

−1 = 0, and λ12 = 1.

+2T
∑
k,iωn

[
Gi(k, iωn)−G0

i (k, iωn)−
{
G0

i (k, iωn)
}2

Σi(k, iωn)
]

≡ n0
i + δnNSR + δni. (9)

Using the same technique in Eq. (8), we can analytically perform the fermionic Matsubara summation in δnNSR
i as [4]

δnNSR
i = −T

∑
q,iνl

Uii[1 + Uī̄iΠī̄i(q, iνl)]− U12U21Πī̄i(q, iνl)

[1 + U11Π11(q, iνl)][1 + U22Π22(q, iνl)]− U12U22Π11(q, iνl)Π22(q, iνl)

∂Πii(q, iνl)

∂µ
, (10)

where ī denotes the opposite band index of i (e.g. ī = 1 when i = 2). We note that the bosonic Matsubara frequency
sum in Eq. (10) is numerically evaluated with the same technique used for the self-energy calculation in Eq. (7).

When we perform the fermionic Matsubara sum in δni, we introduce the cutoff number ncut,f as

δni = 2T
∑
p

|n|≤ncut,f∑
n

[
Gi(k, iωn)−G0

i (k, iωn)−
{
G0

i (k, iωn)
}2

Σi(k, iωn)
]
, (11)

in which the convergence with respect to ncut,f is faster compared to the summation of Gi(k, iωn) without the
decomposition. Figure 5 shows the ncut,f dependence of δni in a two-band Fermi gas at T = Tc with (kF,1a11)

−1 = −2,
(kF,2a22)

−1 = 0, and λ12 = 1. We find sufficient convergences for ncut,f at each coupling parameter and temperature.
We use ncut,f = 200 ∼ 300, checking their convergences within the relative errors of 0.01%.
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