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I. ANALYTIC CONTINUATION WITH THE PADE APPROXIMANTS
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FIG. 1: Comparison of the DOS N;s(w) in the single-band system at T = Tc, 1.2T¢, and 1.47c obtained from the exact
analytical continuation from Ref. [1] as well as the Padé approximants (thin curves). The parameters are set at (kra)™' = 0.

N0 = My /QmEF,S/(Qﬂ'Z) is the DOS at the Fermi level for a non-interacting Fermi gas at 7' = 0.

In this Supplemental Material, we show the validity of the Padé approximants, which assume that 3;(p, z) with
the complex frequency argument z for given p is in the form
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The parameters {ay, Bx} (K =1,---,7) are determined by the 2j numerical values of ¥;(p, iwy) along the imaginary
axis. In this work, we use 200 (= 2j) data.

In the T-matrix approach, one can analytically perform the analytic continuation [1]. The imaginary part of the
retarded self-energy in this approximation can be written as

IS (k,w) = = Imlii(q,w + &qk) [bw + Eq-ri) + F(Eq—r.)] (2)
q

where b(z) = [e*/T — 1]7" and f(x) = [¢*/T 4 1]~" are Bose and Fermi distribution functions, respectively. The real
part of the self-energy can be obtained via the Kramers-Kronig relation
Im¥; (k,w)

w —w

ReX;(k,w) = %P/ dw’ (3)
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FIG. 2: Comparison of the DOS N;s(w) obtained from the Padé approximants (solid curve) and —Gs(r = 0,7 = 3/2)8/7 =
0.405Ny,s (dashed line) in the single-band model at T' = T. = 0.2437% s in the unitarity limit. We also plot the square-root
type DOS in a non-interacting counterpart and —G2(r = 0,7 = §/2)3/7 = 0.560Ny s (long-dashed line). The dash-dotted
curve shows the weight factor 1/[2 cosh(Sw/2)] in Eq. (5).

where P is the Cauchy principal value. To see how the Padé approximants work in the analytic continuation procedure,
we compare the DOS with the exact analytic continuation in Ref. [1] and that with the Padé approximants in the
T-matrix approach. For simplicity, we consider the single-band system (i = s). Here we define the non-interacting

DOS at the Fermi level Ny s = mivjﬂmflv where Er g is the Fermi energy at 7' = 0 in the single-band system. Figure 1
shows the DOS at unitarity in the single-band system at T = T, 1.27,, and 1.47.. The results with the Padé
approximants represented by the thin curves show an excellent agreement with those with exact analytic continuation
done in Ref. [1] even near T' = To.

For comparison, we calculate the single-particle Green’s function G;(r,7) with the spatial position r and the

imaginary time 7, which is given by

Gi(r,7)=T Z Gi(k, iw)e'Fr=wr), (4)
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At sufficiently low temperature, it is related to N;(w = 0) as [2]

- B 1 [ Ni(w)
Gi(r=0,7=B/2) —5/_wdwm

1. dw w  dN;(w) o
N _iNl(O) /,Oo cosh(Bw/2) [1 + N;i(0)  dw |,_, + ]
~ —%Ni(w —0), (5)

where 8 = 1/T is the inverse temperature. The correction originating from the leading-order term is proportional to
T2, which is neglected for simplicity. We evaluate G;(r = 0,7 = 3/2) as

Gi(r=0,7) = > e 7 [f(&r) — 1]

k
+T Y [Gik,iw) — GY (k,iwy)] e, (6)
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where the Matsubara frequency sum is evaluated numerically (see Sec. II).

First, we consider the single-band case. Figure 2 shows the comparison between Ny(w) and Gs(r = 0,7 = 3/2)3 /7
where G is the single-particle Green’s function in the single-band Fermi gas. In a non-interacting case with same u and
T, we obtain G2(r = 0,7 = 3/2)3/m = 0.560Np s, which is close to Nos(w = 0) = m\/2mpus/27% ~ 0.606 N s where
s is the single-band chemical potential. The difference between them originates from the leading-order correction in
Eq. (5). In the strongly interacting case, we obtain Gs(r = 0,7 = 3/2)8/7 ~ 0.405Ny . Although it is smaller than
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FIG. 3: Same plots with Fig. 2 in a two-band Fermi gas. The parameters are 7' = Tc = 0.1137F, (kp71a11)_1 = =2,
(kp,2a20)"" = —0.6, and A\12 = 2. The weight factor 1/[2cosh(fw/2)] (dash-dotted curve) in Eq. (5) is also plotted.

the non-interacting counterpart, it is larger than the result with the analytic continuation with the Padé approximants
given by Ng(w = 0) = 0.186Nys. This is also expected to be the leading-order corrections in Eq. (5), which involve
not only Ny(w = 0) but also Ng(w # 0) multiplied by the weight factor 1/[2 cosh(Bw/2)] shown in Fig. 2. To see this,
we evaluate the same quantity using Ng(w) obtained from the analytic continuation with the Padé approximants,
resulting in G5(r = 0,7 = 3/2)3/m ~ 0.408Ny s Indeed, it is close to that obtained from Eq. (6) with the Matsubara
Green’s function Gs(k, iw;).

Figure 3 shows the comparison between N;(w) obtained by the analytic continuation with the Padé approximants
and —G;(r = 0,7 = (3/2)3/7 in a strongly interacting two-band Fermi gas with (kp1a11) ™! = =2, (kp 2a22) ™' = —0.6,
and Az = 2 at T = T.. In the weakly-interacting deep band (i = 1), we obtain —G1(r = 0,7 = 3/2)3/m ~ 0.815Ny
which is close to the non-interacting counterpart given by 0.808 Ny due to the cancellation of two contributions, that
is, the pseudogap suppression and the band-renormalization enhancement of the DOS. In the strongly-interacting
shallow band, we obtain —Go(r = 0,7 = 3/2)8/7 ~ 0.317Np which is smaller than the non-interacting counterpart
given by 0.397Ny. However, it is larger than the results of Padé approximants given by No(w = 0) = 0.144 Ny due to
the contribution from Na(w # 0).

II. MATSUBARA FREQUENCY SUM

We evaluate numerically the Matsubara frequency sum in the self-energy ¥;(p, iw;) as

] <ncut,b

Si(pyiw) = Un +T> > [Tiilg,ive) — U] GY(q — pive — iw), (7)
P L

where n? is the number density for a non-interacting gas and we introduce the cutoff number ncy . We take
Neus,b = 1000 ~ 50000, depending on the coupling parameters as well as the temperature. In addition, we add the
contribution beyond ncy b by approximately transforming the summation into continuous integration [3]. In Fig. 4,
we show the dependence by ncys,p of the typical self-energy ¥;(p = 0,iw; = inT) at T = T, with (kg 1a11)"t = -2,
(kp’gazg)*l =0, and A2 = 1. We find sufficient convergences of them within the relative errors of 0.01% in both
bands.

We note that the Matsubara frequency sum in I (q,iv;) can analytically be performed as

Mee(q,iv) = 1= f(&prat) = f(&pe)

P i — Eptq,t — Epye

(8)

In the case of the number density n;, we decompose the equation with the non-interacting density n{, the NSR,
correction dnNSR [4], and the remaining part én; as

ni = 2 fleni) 2T Y {G(k,iwn)} Silk, i)
k
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FIG. 4: The real part of the self-energies ReX;(p = 0,4w; = iwT) in (a) the deep band (i = 1) and the shallow band (i = 2)
as a function of the bosonic Matsubara frequency cutoff ncut,b in a two-band Fermi gas at T = T, with (kF,lau)*l = -2,
(kpyzagz)il =0, and A2 = 1.

+2r 3 { (K, i) G?(k,iwn)f{G?(k,iwn)}QEi(k:,iwn)}

k,iw,
= n? 4 Snnsr + On;. 9)
Using the same technique in Eq. (8), we can analytically perform the fermionic Matsubara summation in 5nNSR [4]
onNSR = _7' 5" Uu[l + Ulli(g,iv)] — Ur2Ua115(q, i) Ol;;(q, iv) (10)
(1 + Unllii(g, in)][1 + Uzallaa(q, iv1)] — Ur2Uzellii (g, ivi)a2(q, ivi) op 7

q,ZV

where i denotes the opposite band index of i (e.g. i = 1 when i = 2). We note that the bosonic Matsubara frequency
sum in Eq. (10) is numerically evaluated with the same technique used for the self-energy calculation in Eq. (7).
When we perform the fermionic Matsubara sum in dn;, we introduce the cutoff number ncy ¢ as

‘n|§ncut,f

oni =21y Y {Gi(k,iwn)—G?(k,iwn)—{G?(k,iwn)}QEi(k,iwn)}, (11)

in which the convergence with respect to meys s is faster compared to the summation of G;(k,iw,) without the
decomposition. Figure 5 shows the ng, ¢ dependence of dn; in a two-band Fermi gas at T = T with (]CF710411)71 = -2,
(kF’Qazg)_l =0, and A2 = 1. We find sufficient convergences for n.,; ¢ at each coupling parameter and temperature.
We use neys,r = 200 ~ 300, checking their convergences within the relative errors of 0.01%.
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