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Abstract: The outbreak of SARS-CoV-2 has drastically changed our everyday life and the life of
scientists from all over the world. In the last year, the scientific community has faced this worldwide
threat using any tool available in order to find an effective response. The recent formulation,
production, and ongoing administration of vaccines represent a starting point in the battle against
SARS-CoV-2, but they cannot be the only aid available. In this regard, the use of drugs capable
to mitigate and fight the virus is a crucial aspect of the pharmacological strategy. Among the
plethora of approved drugs, a consistent element is a heterocyclic framework inside its skeleton.
Heterocycles have played a pivotal role for decades in the pharmaceutical industry due to their high
bioactivity derived from anticancer, antiviral, and anti-inflammatory capabilities. In this context, the
development of new performing and sustainable synthetic strategies to obtain heterocyclic molecules
has become a key focus of scientists. In this review, we present the recent trends in metal-promoted
heterocyclization, and we focus our attention on the construction of heterocycles associated with the
skeleton of drugs targeting SARS-CoV-2 coronavirus.

Keywords: antiviral; heterocyclization; metal-promoted

1. Introduction

The novel coronavirus disease (COVID-19) has resulted in a worldwide pandemic,
with increasingly large numbers of infections [1]. Europe has recorded over 21.8 million
infections and over 530,000 confirmed deaths [2]. The recent development of anti-COVID
19 vaccines has provided an effective weapon in the fight against this coronavirus [3–5].
Unfortunately, the persistent diffusion rate, the isolation of new variants, and the increasing
mortality due to SARS-CoV-2 infection suggest that vaccines cannot be considered as the
only clinical treatment [6]. Scientists from various fields have cooperated in the discovery
and design of old drugs and potential new agents on both a small and a large scale [7].
However, promising strategies based on interferons [8] and monoclonal antibodies [9],
as well as cell-based and immunopathology therapies, have resulted to be time- and
cost-consuming and, thus, they cannot be considered valuable alternatives in the current
conditions [10]. Researchers have focused their attention on current small molecules used
as anti-influenza, antimalarial, and anti-HIV drugs. Various existing antiviral drugs have
shown activity against COVID-19 both in vitro and in vivo, while some clinical trials have
been conducted treating patients with these drugs or their combination [11–13]. Recently,
pharmaceutical company Pfizer reported that their PF-0732 1332 molecule is currently in
phase I clinical trials, representing the first orally administered clinical compound that
targets the SARS-CoV-2-3CL protease. A common point among the different antiviral
agents is the recurring presence of heterocyclic scaffolds (Figure 1).
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Heterocyclic compounds have versatile applications across many chemistry fields.
N, S, and O are the most common heteroatoms, and their corresponding heterocycles can
be found as the main structural units in synthetic pharmaceuticals and agrochemicals,
as well as widely present in nature in plant alkaloids, nucleic acids, anthocyanins, and
flavones [19]. Drugs containing a heterocyclic moiety inside their structure show antitu-
mor, anti-inflammatory, antifungal, antidepressant, anti-HIV, antimalarial, and antiviral
properties [20–22]. In particular, the latter three properties are central in the fight against
SARS-CoV-2 [23–25]. Over the years, due to the importance of these small molecules, syn-
thetic organic chemists have focused their efforts on the development of synthetic protocols
which are more and more efficient, atom-economical, and environmentally friendly. Metal-
catalyzed protocols, involving all metals from transition to rare-earth metals, have attracted
the attention of chemists as compared to other synthetic methodologies because they di-
rectly employ easily available substrates to build multi-substituted complex molecules
under mild conditions. Metal-catalyzed heterocyclization starting from acyclic precursors
is considered a very performant tool in drug synthesis [26]. In this review, we focus our
attention on metal-catalyzed heterocyclization methodologies for achieving pivotal scaf-
folds associated with molecules showing anti-COVID-19 properties. We describe recent
applications in heterocycle synthesis, and we compare the classical synthetic routes and
modern approaches used to obtain bioactive small molecules.

2. Chloroquine and Hydroxychloroquine

Chloroquine (CLQ) and its hydroxyl analogue hydroxychloroquine (CLQ-OH) were
developed as antimalarial drugs, and they are used in the treatment of malaria, amebiasis,
rheumatoid arthritis, and lupus erythematosus syndrome [10]. Both drugs show strong
antiviral effects toward SARS-CoV-2 infection with calculated IC50 values of 8.8 µM for
CLQ and 5.47 µM for CLQ-OH [27,28]. Extensive clinical trials are ongoing to prove the
efficacy of these drugs for treating COVID-19 infection [29]. They present a similar action
mechanism; chloroquine and hydroxychloroquine are able to modify the pH of host cell
lysosomes. This pH increase corresponds to a modification of the cellular biological activity,
leading to a cascade of processes which prevent cellular replication [30]. The fundamental
effect of chloroquine and hydroxychloroquine in the treatment of different pathologies has
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spurred chemists to establish various routes for their synthesis. Figure 2 reports the key
intermediates used in the main strategies developed over the decades.
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Figure 2. Key intermediates in chloroquine synthesis as reported by Hammer (A), Jonnson (B), and
Margolis (C). The lower panel shows a common retrosynthetic approach for hydroxychloroquine
synthesis as reported by Hammer, Kumar, Min, and Yu.

Synthetic routes for chloroquine are based on harsh conditions that promote byproduct
formation and low overall yield of the whole process. In the first known synthesis of
chloroquine, reported by Surrey and Hammer, formation of the pivotal quinoline core 2
was carried out at high temperature, which promoted the formation of undesirable isomers
2′ and 3′. Moreover, the decarboxylation step, promoted by a strong base and a mineral
acid, is not considered sustainable (Scheme 1) [31].
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Scheme 1. Critical steps in Hammer synthesis.

Jonnson and Buell later developed a CLQ synthesis method with an improved overall
yield of 25%. Unfortunately, the formation of the quinoline moiety led to the easy formation
of byproducts due to the strong reaction conditions (Scheme 2) [32].
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Scheme 2. Critical steps in Jonnson synthesis.

In 2007, Margolis et al. proposed a synthetic route to achieve CLQ. The relatively mild
conditions of the process made it suitable for large-scale production; however, in this case,
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the formation of the quinoline scaffold was also promoted at high temperature, thereby
favoring byproduct formation (Scheme 3) [33].
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Scheme 3. Critical steps in Margolis synthesis.

Even the synthetic methodologies developed for hydroxychloroquine feature critical
steps. Hammer and coworkers, in their three-step, synthesis proposed obtaining the target
via an SNAr between intermediate 8 and dichloroquinoline 3 as the final step. Low overall
yield, use of phenol as the solvent, and high reaction temperature hindered the scale-up of
this strategy (Scheme 4) [34].
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Scheme 4. Critical steps in Hammer synthesis.

Kumar and coworkers, inspired by Hammer’s work, modified the synthetic protocol
and enhanced the overall yield from 18% to 40%. However, the final SNAr step to achieve
CLQ-OH was carried out in harsh conditions (high temperature and long reaction time)
(Scheme 5) [35].
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Scheme 5. Critical step in Kumar synthesis.

Recently, Min et al. proposed an alternative approach to functionalize quinoline 3;
however, the use of high pressure in combination with high temperature represents a safety
concern (Scheme 6) [36].
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Scheme 6. Critical step in Min synthesis.

Yu and Gupton exploited the continuous-flow methodology to improve the process
from an industrial point of view. Starting from 2-acetylcyclopentan-1-one 9, they were
able to synthesize the key intermediate 8 while achieving a yield improvement of 52%
compared to classical processes. Unfortunately, even in this case, the C–N coupling to
access hydroxychloroquine was carried out in unsustainable conditions (Scheme 7) [37].
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Quinoline Synthesis: Metal-Promoted Annulation

The biological importance of quinoline-based drugs has resulted in the synthesis of
this substituted heterocycle becoming a hot topic for organic chemists worldwide [38–41].
A plethora of elegant syntheses have been developed; however, the use of harsh conditions
and limitations due to the nature of some reagents have restricted the application of these
protocols both in academia and in industry [42]. The recent trend of obtaining targets with
high purity using sustainable conditions has resulted in the use of metal catalysts becoming
central in the synthetic strategies of complex drugs.

Friedländer synthesis using 2-aminobenzaldehyde and carbonyl derivatives has been
exploited for a long time to obtain substituted quinolines. Currently, modifications of this
methodology have permitted the development of efficient and elegant protocols for the
synthesis of this heterocyclic framework (Figure 3).
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Figure 3. Friedländer classical condensation (A) and metal-catalyzed Friedländer condensation (B).

Among the different metal catalysts exploited to trigger Friedländer condensation,
Ru(II) complexes were found to be very effective. Their relative cheapness and safety in
handling make them good promoting systems to perform scale-up.

Yus et al. studied the condensation between (2-aminophenyl)(phenyl)methanol 10 and
ketones 11 for the formation of 2,3,4-substituted quinolines 12. The reaction is promoted
by RuCl2(DMSO)4, and its ability to accept and donate H2, thereby restoring its original
oxidation, is crucial for the catalytic cycle (Scheme 8) [43].
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Scheme 8. Ru(II) complex triggering indirect Friedländer annulation in the study by Yus.

Optimized reaction conditions permit obtaining polysubstituted quinolines at suf-
ficient to excellent yields in relatively mild conditions (e.g., 12 a–d), producing water as
waste. The addition of benzophenone acting as a hydrogen scavenger allows improving the
final yield of the targets. This result can be explained by the partial inability of ruthenium
hydride species to restore the catalytic cycle (Scheme 9) [44].
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The same synthetic protocol was applied to both sterically hindered ketones 11 and var-
ious anilines 13 for the formation of the desired quinoline derivatives 14 a–c (Scheme 10).
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Scheme 10. Sterically hindered quinoline derivatives.

Yus proved the versatility of RuCl2(DMSO)4 as a catalyst in the hydrogen-borrowing
process to obtain substituted quinolines 12, 14 by exploiting the reactivity of secondary
alcohols 15 with (2-aminophenyl)methanol 10 (Scheme 11) [43,45].
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Scheme 11. Secondary alcohols as an electrophilic source.

The plausible catalytic cycle involves the formation of the active corresponding potas-
sium alkoxides. The subsequent oxidation/condensation cascade leads to the formation of
the target quinoline (Scheme 12) [43].
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Scheme 12. Catalytic cycle for ruthenium hydrogen-borrowing quinoline synthesis.

In addition to RuCl2(DMSO)4, an indirect Friedländer process was reportedly pro-
moted by iridium, palladium, copper, and rhodium complexes [46–51]. Figure 4 presents
the common catalysts used in the annulation between aniline derivatives and hydroxylic
scaffolds to achieve quinoline motifs.
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Figure 4. Metal catalysts used in indirect Friedländer annulation.

An effective alternative to the indirect Friedländer approach is represented by the one-
pot alkynylation/cyclization protocol using aniline derivatives, substituted alkynes, and
aldehydes. In 2016, Maiti et al. proposed an innovative solvent-free CuBr–ZnI2 catalytic
strategy to afford polysubstituted quinolines and chiral sugar-based quinolines (19 a–d) in
sufficient to good yields (Scheme 13) [52].
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Scheme 13. ZnI2/CuBr-catalyzed complex quinoline scaffold.

In this three-component protocol, substituted aniline 16, terminal alkynes 17, and
aldehydes 18 react fast and in mild conditions through C–C and C–N bond formation
promoted by Zn(II) and an C(sp2)–H activation promoted by Cu (I) and the transient
formation of aryl Cu(III) species, followed by subsequent cyclization.

A comparable protocol was developed by Sarode and coworkers. They showed the
catalytic ability of zinc(II) triflate to promote multicomponent C–C and C–N formation
using anilines 16, terminal alkynes 17, and aryl aldehydes 20 in solvent-free conditions
(Scheme 14) [53].
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Scheme 14. Zn(Otf)2-mediated C–H activation to achieve quinolines.

The use of inexpensive catalysts, the absence of toxic solvents and additives, and
the tolerance toward different functional groups make this reaction a great candidate for
scale-up processes.

Korivi and Cheng exploited Ni catalysis to assist the annulation between iodo-anilines
21 and aroylakynes 22 (Scheme 15) [54].
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Scheme 15. Ni(0)-catalyzed quinoline synthesis.

This methodology permits achieving a broad range of 2,4-disubstitued quinolines 19
in satisfactory yields. The Ni catalyst does not need an extreme inert atmosphere to work.
Zn powder is necessary to regenerate the initial oxidation state of the nickel catalyst from
Ni(II) to Ni(0).

Recently, aroylakynes were exploited by Liu and coworkers to access the complex
quinoline scaffold 24 (Scheme 16) [55].
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Scheme 16. Au(I) complex-triggered N-heterocyclization in Liu work.

In this procedure, the catalytic system (Ph3P)AuCl/AgOTf promotes the cycloaddition
between 2-aminoaryl carbonyls 23 and internal alkynes 22 at good to excellent yields (e.g.,
24 a–d) in sustainable conditions, affording a plethora of polysubstituted quinolines 24
containing various functional groups. The presence of Ag(I) salt as an additive was
crucial for the activation of the catalyst due to the ability of silver to dechlorinate the Au
catalyst, thereby increasing the electrophilicity of the metal center. The procedure exhibits
adaptability to different functional groups using both internal alkynes and aminoaryl
derivatives, leading to a wide array of substrates.

The efficiency of gold catalysis was shown in the work of Ji et al. The same promoting
system displayed high efficiency in the cyclization of 2-trifluoromethylated propargy-
lamines 25 (Scheme 17) [56].
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Scheme 17. Obtention of 2-trifluoromethylated quinolines via gold catalysis.

A gold(I) catalyst triggers the internal cyclization of propargylamines to obtain diverse
quinolines 26. Mild conditions and a broad scope of the reaction were attained using this
methodology. It is important to highlight the facile introduction of a fluorinated moiety
into the target, considering the biological significance of fluorinated quinolines.

An innovative and elegant pathway to achieve polysubstituted quinolines 29 was
proposed by Xu et al., whereby an Ag(I) catalyst promotes 6-endo-dig cyclization of 2-azide
alkyne derivatives 27 followed by an R–X 28 insertion into the imino carbene generated in
the catalytic cycle (Scheme 18) [57].
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Scheme 18. Azide-alkyne 6-endo-dig cyclization promoted by AgSbF6.

Readily available materials, the cheap silver catalyst, and mild reaction conditions
make this procedure appealing for organic chemists. The introduction of halogens into
the heterocyclic scaffold provides the possibility of target derivatization to access vari-
ous quinolines.
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3. Arbidol

Arbidol (uminefovir) is an oral antiviral drug with a broad spectrum of activity against
many types of viruses. It has been licensed for the treatment of influenza A and B in Russia
since 2003 and in China since 2006 [58]. Arbidol is a non-nucleoside membrane fusion
inhibitor that prevents the interaction of the influenza virus with the host cell. Arbidol
shows a binding mode with the SARS-CoV-2 spike protein similar to that with influenza
virus hemagglutinin (HA) [59,60]. SAR studies on Arbidol have indicated that the indole
core and the thiophenyl motifs are pivotal for the molecule bioactivity (Figure 5).
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Figure 5. The indole and thiophenyl scaffold (green) interact with the hydrophobic membrane of
influenza HA, whereby internal interactions (red lines) constrain the molecule to establish CH–π
interactions with the amino-acid residues.

The lipophilicity of the previous synthons permits them to penetrate the hydrophobic
cavity of influenza virus HA, thereby inducing a structural change and the consequen-
tial break of the salt bridge between the virus and hosting cell [61]. The identification
of potential scaffolds inside the drug has permitted scientists to apply a synthetic chem-
istry approach to their modification them in order to enhance their antiviral activity and
synthesize analogues with increased anti-COVID 19 properties [62].

The first synthetic approach to obtain Arbidol was reported in 1993 by Trofimov, in-
volving decoration of the aromatic ring of the indole derivatives 30 previously synthesized
by the same group (Scheme 19) [63].
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Scheme 19. First reported synthesis of Arbidol by Trofimov.

This approach has been widely employed in large-scale production despite the use of
toxic solvents such as carbon tetrachloride or formaldehyde and dimethylamine for the
final Mannich reaction. In the last year, the total synthesis of this bioactive compound was
renewed beginning from the synthesis of the crucial intermediate 30.

Gong and coworkers described the synthesis of various ethyl 5-hydroxy-1H-indole-3-
carboxylates 37 with anti-hepatitis B activity. To achieve the target compounds, formation
of the intermediate 36 was used as a precursor of Arbidol starting from commercially
available ethyl 4-chloro-3-oxobutanoate 33 (Scheme 20) [64].
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Scheme 20. Arbidol precursor synthesis reported by Gong.

A Nenitzescu reaction between enamine 35 and 1,4-benzoquinone permits accessing
the 5-hydroxyindole intermediate 36 in sufficient yield and with punctual regiochem-
istry. Successive decorations of the indole ring lead to the construction of antiviral target
compounds 37.

In the last decade, the ongoing interest around Arbidol due to its antiviral properties
has led to it becoming a target for API producers. In 2016, Gao et al. developed a total
synthesis protocol for Arbidol starting from nitrophenol 38 (Scheme 21) [65].
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Scheme 21. Current industrial synthesis of Arbidol.

This eight-step process leads to the formation of Arbidol in excellent overall yield.
The enamine 43 is pivotal for the construction of the Arbidol indole scaffold. In this work,
enamine oxidative cyclization triggered by Pd(II) was exploited to achieve substituted
indole in mild conditions while minimizing regioisomeric drawbacks. Unfortunately, the
use of a large excess of Cu(OAc)2 as an oxidant is necessary to restore Pd(0) to Pd(II), which
makes this cyclization less attractive from a synthetic point of view.

Its recent commercialization, the establishment of various synthetic protocols, and
its use as a potential candidate in the therapy against SARS-Cov-2 have enhanced the
interest in Arbidol. The indole scaffold has emerged as central in the existing synthesis
protocols; thus, the development of alternative indole synthesis approaches involving
different starting materials and metal catalysts may lead to accelerated production of
this API.

Metal-Promoted Heterocyclization to Achieve Polysubstituted Indoles

Indole is one of the most common heterocyclic scaffolds, used in a large array of drugs,
natural products, and agrochemicals. The importance of this aromatic N-heterocycle has
been highlighted by the continuous work carried out on it [66]. In this section, we suggest
some recent metal-catalyzed heterocyclization pathways to achieve polysubstituted indoles
in an easy and accessible way with the aim of finding plausible alternative strategies for
the synthesis of the indole core present in Arbidol.

Ruchirawat et al. came up with an efficient and easy procedure for accessing a plethora
of substituted indoles 45 (Scheme 22) [67].
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Scheme 22. PtCl4-catalyzed N-acetyl-2-alkynylaniline cyclization.

Stable and easily accessible 2-alkynylanilines 44 are employed in this intramolecular
cyclization catalyzed by PtCl4 in mild conditions with a high tolerance toward various
functional groups. The catalyst was found to be performant with low loading (1–2 mol.%)
and it did not need an elevated reaction temperature. Most substrates are converted to
the desired target at room temperature in high yields (e.g., 45 a,b,d), whereas refluxing
conditions are needed with halogens or EWG groups in the 7-position; however, in this
case, excellent conversion is also afforded (e.g., 45 c).

Recently, Co(III) catalysts have attracted the interest of chemists due to their versatility
and selectivity in various chemical transformations. Liang and Jiao, in their work, proposed
an interesting indole synthesis approach triggered by an inexpensive cationic cobalt(III)
complex starting from readily accessible N-nitrosoanilines 46 and substituted alkynes 47
(Scheme 23) [68].
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Co(III) catalysts have proven to be suitable for the efficient and direct cyclization of
nitroso derivatives with internal alkynes. This methodology provides a large array of
polysubstituted indoles bearing different functionalities ranging from halogens to electron-
withdrawing and alkyl groups (e.g., 48 a–d). An improved regioselectivity, low-cost
rare abundant metal catalyst, and the lack of strong oxidizing agents make this protocol
attractive for both academia and industry.

The flexibility of Cp*Co(III) was also demonstrated by Glorious and coworkers. In
their work, they proposed a switchable cyclization between N-phenylalkylamides 49 and
alkynes 47 to obtain quinolines and indoles (Scheme 24) [69].
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Scheme 24. Indole synthesis reported by Glorious.

The selectivity on this protocol is based on the reactivity of an organometallic inter-
mediate which can undergo dehydrative cyclization copromoted by Lewis acids to form
substituted quinolines or dehydrogenative cyclization to form indoles. This methodology
leads to decorated and synthetically precious scaffolds; however, it necessitates a high reac-
tion temperature and the use of a stoichiometric oxidizing agent to promote the cyclization
of starting materials.

Among the rare abundant metals, manganese complexes also show the ability to
trigger the formation of indole scaffolds. Wan’s research group proposed an unprecedented
coupling reaction between aromatic amines 51 and diazo compounds 52. This Mn(II)-
catalyzed tandem reaction provided a different and practical approach for obtaining an
indole skeleton under mild conditions (Scheme 25) [70].
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This novel methodology based on a radical–carbene coupling reaction permits obtain-
ing a plethora of interesting indoles bearing various functionalities. Mild conditions, readily
available or easy-to-prepare precursors, and the cheap and easy-to-handle Mn(OAc)2·4H2O
catalyst make this synthetic procedure attractive for affording N-heterocycles.

As previously shown in the Arbidol synthetic approach, the construction of 5-hydroxy
indole derivatives is pivotal due to their presence in molecules showing biological activity
(e.g., serotonin). Unsworth and coworkers presented an efficient silver(I)-catalyzed “back-
to-front” cyclization of alkyne in a pyrrole scaffold (Scheme 26) [71].
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Scheme 26. Ag(I)-catalyzed “back-to-front” indole synthesis.

The proposed methodology presents a unique reaction mechanism. DFT studies
on pyrrole-ynones 55 have shown that the activation of the alkyne moiety via silver
transmetalation is followed by an unusual pyrrole C-3 position nucleophilic attack against
the formal C-2 position. Additionally, the reactions proceed at room temperature in
sustainable conditions, affording indole targets in excellent yields.

Pd(II) complexes can be used to efficiently synthesize substituted indole scaffolds.
Recently, Youn and coworkers in their work described Pd-catalyzed annulative couplings of
2-alkenylanilines 59 with aldehydes 60 using alcohols both as a solvent and as a hydrogen
source (Scheme 27) [72].
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Youn demonstrated high regioselectivity related to a hydropalladation process and
exploited the reactivity of an alkylpalladium intermediate with imines. The use of alcohol
both as a solvent and as a hydrogen donor represent for the uniqueness of this reaction.
A large scope of methodology and good yields are achieved, and the process has even
been applied in the synthesis of compound 61 d, a calorimetric detector of DNA [73].
Unfortunately, the high reaction temperature (120 ◦C) and air-sensitive catalyst remain
major barriers to the scale-up of this methodology.

Among the different synthetic processes developed over the years, metal-catalyzed
dehydrogenative annulation has shown the selectivity of metal-catalyzed reactions along
with enhancing process sustainability. Usually, these kinds of reactions proceed in mild
conditions, exploiting green and renewable sources such as alcohols or glycols with the
formation of water or ammonia as principal byproducts. These cyclizations can be trig-
gered by a plethora of metal catalysts, leading to multi-decorated indole frameworks
(Scheme 28) [74].
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4. Telmisartan

Telmisartan (commercial name Micardis®) is a potent and selective angiotensin II type
1 (AT1) receptor antagonist. It is characterized by excellent AT1 receptor-binding activity, a
long half-life, and good tolerability (Figure 6) [75].
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Figure 6. (Q)SAR of telmisartan. Pink circles represent lipophilic pockets; blue dashed lines represent
H-bond donor sites [76].

Recently, it was demonstrated that the SARS-CoV-2 virus binds to the membrane
protein ACE2 (angiotensin-converting enzyme 2) of cells via its S protein (spike). ACE2
catalyzes the transformation of angiotensin II (apoptosis and inflammatory effects) to an-
giotensin 1–7 (anti-inflammatory effects) [77]. The presence of the virus, thus, reduces the
formation of a natural antagonist of angiotensin II. According to this plausible mechanism,
ongoing pharmaceutical therapies are based on the administration of drugs decreasing
the activity of angiotensin II, e.g., classical ACE inhibitors or angiotensin II type 1 (AT1)
receptor antagonists such as telmisartan [78]. Over the decades, various synthetic ap-
proaches have been developed to obtain the bis-benzimidazolic framework of telmisartan.
The first reported synthesis of this drug was presented by Ries and coworkers in 1993
(Scheme 29) [79].
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Scheme 29. First reported synthesis of telmisartan.

This eight-step process faces some synthetic issues. The nitrosation of 62 is based on
the use of a large amount of strong mineral acids, which represents both a safety and a
wastewater disposal concern. Moreover, the use of polyphosphoric acid (PPA) to promote
cyclization to achieve intermediate 65 is associated with tricky operation conditions and
work-up. The alkylation of 65 with 66 leads to regioisomer formation, and this corresponds
to an increase in the difficulty of the purification of the final API and a lower overall yield
(21% yield in eight steps).

Recently, the growing interest around telmisartan has spurred synthetic chemists to
improve the known synthetic strategy or to find alternative and more performant pathways
to obtain this drug.

In 2020, Shen et al. designed an efficient synthetic route for telmisartan. They focused
their attention on the synthesis of the bis-benzimidazole intermediate 65 via Cu catalysis,
avoiding PPA as a condensing agent (Scheme 30) [80].
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Scheme 30. Cu(I)-catalyzed annulation in telmisartan synthesis.

The improved methodology is based on the ability of the Cu(I) salt to promote the
annulation of benzimidazolyl-substitued o-haloyralamidines 68 and 69 to their correspond-
ing bis-benzimidazolic scaffolds. This seven-step process achieve the desired API in 54%
overall yield while enhancing the safety, operability, and sustainability of the original
protocol. The use of DMSO constitutes a process issue because the solvent is unrecoverable.

Xiang’s research group described the use of a green inorganic salt to promote the
synthesis of the benzimidazolic framework. They exploited Na2S2O4 in a protic solvent to
obtain the key intermediate 65 in an excellent 85% yield (Scheme 31) [81].
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Scheme 31. Xiang’s work.

Starting from simple and commercially available starting materials, Xiang accom-
plished a seven-step total synthesis of telmisartan in good yield with a really high purity of
the final API (99.7% HPLC). The reductive cyclization to obtain 65 employs inexpensive
sodium dithionite (Na2S2O4), which acts as a single electron donor to reduce the nitro
group in 71 to an amino group and promotes condensation/cyclization with butanal 72.
An important drawback of this reaction is linked to the high loading of reducing agent
(600 mol.%) needed to promote the reaction with high conversion to the desired target.

Gupton et al. converted the batch approach in flow-based synthesis to obtain the
target drug. The convergent process exploited a Suzuki cross-coupling between 77 and 78
to afford telmisartan in 81% yield over three steps (Scheme 32) [82].
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Scheme 32. Continuous-flow approach proposed by Gupton.

This approach required no intermediate isolation or solvent exchange, implying an
improvement over existing batch methods that need numerous additional operations that
add complexity and waste to the overall process.

Metal-Catalyzed Annulation in Benzimidazole Synthesis

The importance of benzimidazole and its derivatives, such as bis-benzimidazoles, due
their broad biological activities, makes them desirable scaffolds for the pharmaceutical
industry [83]. The increasing demand for drugs featuring a benzimidazole framework has
led to organic chemists seeking alternative pathways or renewing classical methodologies
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to obtain this N-heterocycle. Typical synthetic procedures involve the use of a stoichio-
metric amount of strong acids, high reaction temperatures or reaction auxiliaries leading
to undesired byproducts, and a lot of waste formation [84]. The synthesis of benzimida-
zoles should accomplish process sustainability by using renewable resources with high
atom economy. In this section, we present recently proposed sustainable metal-catalyzed
methodologies to achieve substituted benzimidazoles.

Milstein et al. suggested a cobalt-catalyzed dehydrogenative coupling between easily
accessible aryl diamines 79 and alcohols 80 to obtain 2-substituted benzimidazoles with
high selectivity (Scheme 33) [85].
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Scheme 33. Pincer Co(II)-catalyzed dehydrogenative coupling to benzimidazoles.

This appealing methodology permits achieving 2-substituted benzimidazoles in out-
standing yields (e.g., 81 a–d), avoiding the use of additives or an exogenous base. The
hydride source NaBEt3H is necessary to activate the catalyst reduction from Co(II) to
Co(I). The use of an earth abundant metal catalyst and the formation of water and hydro-
gen as reaction byproducts make this methodology highly sustainable and applicable in
pharmaceutical synthesis.

A similar dehydrogenative approach to obtain benzimidazole was adapted by Hong
and coworkers. They tested, for the first time, the ability of a Knölker-type catalyst, tricar-
bonyl (η4-cyclopentadione) iron complexes, to promote oxidative coupling between substi-
tuted aryl diamines and alcohols to produce N-alkylated benzimidazoles (Scheme 34) [86].
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Scheme 34. Iron complex-catalyzed dehydrogenative coupling to N-alkylated benzimidazoles.

The first reported case of iron-catalyzed dehydrogenative coupling allowed obtaining
substituted benzimidazoles in great yields (e.g., 82 a–d) in relatively mild conditions. The
regioselectivity of the reaction is modifiable as a function of the electron density of the group
tethered to alcohols (electron-rich heteroaromatic substituents give reverse regioselectivity).
The main limitation is represented by the excess use of t-BuOK to promote the annulation
process. To avoid initial alcohol oxidation, the CeCl3–CuI catalytic system promotes the one-
pot cyclo-dehydrogenation of aniline Schiff bases generated “in situ” from the condensation
of 79 and aldehydes. Subsequent oxidation afforded benzimidazoquinazoline derivatives
that present antiviral activity [87].

The use of cheap and easy-to-handle Cu(I) to catalyze various reactions has increased
over the decades. Zhou’s research group tested Cu(I)’s ability to promote benzimidazole
formation in a three-component one-pot process starting from 2-haloaniline 83, arylic
aldehydes 84, and ammonia (Scheme 35) [88].
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Scheme 35. Cu(I) one-pot synthesis of benzimidazoles.

The large reaction scope, the inexpensive but performant Cu(I)–Cu(III)catalytic system,
the high tolerability toward various functional groups, and the use of water as a solvent
make this synthetic procedure attractive for the future synthesis of complex bioactive
compounds with a benzimidazole scaffold.

The ability of Cu salts to promote N-heterocycle formation was highlighted in Zhang’s
work. Synthesis of 5-diarylamino benzimidazoles 88 was accomplished via a radical-
induced tandem triple C–H activation starting from secondary aromatic amines 87 and
aminating agents 86 (Scheme 36) [89].
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The unprecedented aerobic copper-catalyzed synthesis of benzimidazoles 88 proceeds
with high conversion, selectivity of desired targets, and excellent tolerability toward a broad
array of functional groups. The low-cost catalytic system, readily available reagents, and
atom efficiency make this process intriguing and desirable for benzimidazole construction.

Li et al. obtained substituted benzimidazoles 91 by exploiting Ir(III) catalysis under
redox neutral conditions, triggering a C–H activation–amidation–cyclization pathway
(Scheme 37) [90].
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Scheme 37. Neutral redox Ir(III)-promoted benzimidazole synthesis.

Ir(III) annulative coupling between N-functionalized anilines 89 and dioxazolones
90 led to the desired target’s formation in sufficient to good yields (e.g., 91 a–d). High
chemo- and regioselectivity were achieved. The only reaction byproducts were CO2 and
H2O, providing excellent atom economy.

5. Quercetin and Luteolin

Quercetin and Luteolin are natural products derived from plants, known as phyto-
chemicals, and they belong to the flavonoid category [91].

This class of compounds is hardly toxic and presents considerable antiviral properties.
The bioactive properties of flavonoids were demonstrated by the large number of antiviral
medications produced between 1981 and 2006 [92]. Recently, flavonoids have been exten-
sively studied for targeting the spike protein of SARS-CoV-2 to restrict virus access to host
cells and for inhibiting the SARS-CoV 3CL protease to decrease viral infectivity. Molecular
docking software identified quercetin and luteolin to be the best candidates for COVID-19
inhibitors [93–96].

Flavonoids are biosynthesized by plants starting from phenylalanine, which is rapidly
converted to 4-coumaroyl-CoA. Malonyl CoA reacts in a 3:1 ratio with the coumayl-CoA
derivative to give the key intermediate naringenin, catalyzed by chalchone synthase. Two
different pathways lead to the formation of quercetin (via hydroxylation, promoted by
flavone 3-hydroxylase F3H and dehydrogenation) and luteolin (via dehydration, promoted
by flavone synthetase SI) (Scheme 38) [97].
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Promising preliminary studies both in vitro and in vivo, readily available cheap
sources, and the lack of severe side-effects have led to increased interest in flavonoids as
potential therapeutic agents against COVID-19 infections [98]. The flavonoid approach
to treat respiratory infections due to COVID-19 has emerged as a valid pharmacological
alternative, but some aspects remain questionable. Some flavonoid plant sources such as
peanut shells or fava beans contain allergenic substances that can affect patients; moreover,
the poor oral absorption of flavonoids makes their administration a tricky process [99].
To overcome the problems related to the use of these natural compounds, alternative
synthetic routes and decoration pathways are essential. Recently, flavonoid synthesis has
been studied intensively by organic synthetic chemists, and a plethora of metal-catalyzed
synthesis approaches have been proposed to enlarge the scope of these compounds. In
the next paragraph, we report interesting examples of nonbiomimetic flavonoid synthesis
starting from available and stable materials.

Metal-Catalyzed O-Heterocyclization to Flavonoids

The flavonoid framework is recurrent in drugs and natural products, showing unique
biological properties and physiological actions. Due to their varied biomedical applications,
flavones have aroused great interest in the chemistry community, leading to the develop-
ment of performant and sustainable synthesis and functionalization approaches in the last
decade. Metal-catalyzed heterocyclization represents an outstanding and selective strat-
egy to obtain these scaffolds starting from readily available or easy-to-synthesize starting
materials. Below, recent strategies are reported for the synthesis of substituted flavones.

Liu et al., in their work, proposed the palladium-catalyzed dehydrogenative annula-
tion of o-acyl phenols 92 to flavones 93 (Scheme 39) [100].
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Pd(0) exhibits high activity in promoting the C–H functionalization of electron-rich
o-acyl phenols, followed by C–O bond formation and relative annulation. The reaction
proceeds without oxidants and hydrogen acceptors which can lead to byproduct formation.
The high isolated yield of flavonoid derivatives, low catalyst loading, recoverable heteroge-
neous catalytic system, and broad substrate scope make this methodology appealing for
industrial purposes.

In 2017, Lee’s research group exploited [Ru(p-cymene)2Cl2]2 to promote the C–H
activation of salicylaldehyde 94 and trigger decarboxylative coupling with alkynoic acids
95 to reach obtain flavonoids 96, 97 (Scheme 40) [101].
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Scheme 40. Ru(II)-triggered annulative coupling to produce flavonoid frameworks.

This simple and selective one-pot metal-catalyzed synthetic methodology leads to the
formation of a large array of homoisoflavonoids 97 and flavones 96 in good yields, starting
from cheap salicylaldehyde and easily accessible propiolic acid. The selectivity of the two
targets is determined by the solvent choice: in t-amyl alcohol, 96 is dominant, whereas the
use of DMSO produces 97.

The potential of a metal-promoted decarboxylative coupling/annulation protocol was
exploited by Qi and coworkers. They utilized Ag(I) salt to trigger radical tandem alkynyla-
tion/annulation to yield a plethora of flavones 99 in mild conditions, identifying arylpropi-
olic acids 95 and α-keto acids 98 as valid precursors for the reaction (Scheme 41) [102].
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This new mild Ag(I) radical approach was found to be performant for obtaining
flavonoid frameworks in sufficient to good yields and with high tolerability toward the
functional groups present in the scaffolds. Persulfate is necessary to re-oxidize Ag(I) to the
active species Ag(II).

Among the different transition metals, iridium complexes have emerged as powerful
catalysts to promote C–O and C–C bond formation in a highly selective fashion.

Wu et al. tested the ability of iridium complexes to obtain flavones. Simple phenols, in-
ternal symmetric alkynes, and gaseous CO were employed as starting materials; the ligand
choice in the catalytic system is crucial for the success of transformation (Scheme 42) [103].
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Scheme 42. Ir(III) carbonylative annulation to flavones.

This novel carbonylative cyclization permits producing 2,3-disubstitued flavone scaf-
folds in very good isolated yields. The carbonylation is effective on non-preactivated
phenols and alkynes. Limitations of the methodology are related to the use of a high
amount of oxidizing agent and high-pressure CO, which represents a safety concern due
its toxicity.

The use of Lewis acids has emerged as a potent tool to promote heterocyclization and
obtain a plethora of different heterocyclic scaffolds. Among Lewis acids, the use of metal
halides is related to mild reaction conditions and sustainability of the process, making
them desirable as promoting agents or catalysts [104].

Van Lier and coworkers developed silica gel-supported indium halides as a heteroge-
neous catalytic system to access flavones 103 from corresponding 2′-hydroxychalcones 102
(Scheme 43) [105].
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Scheme 43. InCl3/Br3 oxidative C–O bond formation.

The rapid intramolecular oxidative coupling of 102 to flavones was accomplished in
elevated yields. The sustainability of this methodology is fulfilled by the use of inexpensive,
commercially available indium salts in neat conditions while avoiding the formation
of byproducts.

Lewis acid catalysis in flavone synthesis was demonstrated in Su’s work. Di-carbonyl
compounds 104 were annulated efficiently in the correspondent flavones 105 in the presence
of Ga(OTf)3 as a mild promoter (Scheme 44) [106].

Molecules 2021, 26, x FOR PEER REVIEW 28 of 40 
 

 

 

Scheme 43. InCl3/Br3 oxidative C–O bond formation. 

The rapid intramolecular oxidative coupling of 102 to flavones was accomplished in 

elevated yields. The sustainability of this methodology is fulfilled by the use of inexpen-

sive, commercially available indium salts in neat conditions while avoiding the formation 

of byproducts. 

Lewis acid catalysis in flavone synthesis was demonstrated in Su’s work. Di-carbonyl 

compounds 104 were annulated efficiently in the correspondent flavones 105 in the pres-

ence of Ga(OTf)3 as a mild promoter (Scheme 44) [106].  

 

Scheme 44. Ga(OTf)3-promoted flavone synthesis. 

The reaction scope encompasses a wide array of polysubstituted targets in high 

yields. The protocol is operationally simple thanks to a short reaction time, straightfor-

ward work-up, and easy metal triflate recoverability. 

Scheme 44. Ga(OTf)3-promoted flavone synthesis.

The reaction scope encompasses a wide array of polysubstituted targets in high yields.
The protocol is operationally simple thanks to a short reaction time, straightforward work-
up, and easy metal triflate recoverability.

6. SARS-CoV-2 3CL Protease Target Drugs

The SARS-CoV-2 3C-like protease is the main protease present in the virus, and it is
crucial in the translation process from polyproteins to viral RNA [107]. It was demonstrated
that the catalytic domain (Cys-145 and His-41) is particularly conserved, which makes the
3CL protease an attractive target for broad-spectrum anti-coronavirus therapies and drug
discovery [108]. The SARS-CoV-2 main protease and spike protein are essential for the
transmission of the virus and the severity of the infection in the host. Suppressing one or
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both biological targets can address the concerns linked to transmission, whereby acute
COVID-19 symptoms can be drastically minimized [109]. Potential 3CL protease inhibitors
reported in the literature have been screened to test their efficacy. Among the prospective
bioactive molecules targeting this protein, ritonavir in combination with lopinavir and N-
decorated isatins has shown promising results in the fight against SARS-CoV-2 [16,110,111].

Ritonavir (branded name (Norvir®) is a powerful human immunodeficiency virus
(HIV) protease inhibitor with effective antiretroviral activity. The use of a therapeutic dose
of the drug (600 mg per day) has been linked to gastrointestinal and neurological toxicity
as side-effects. However, subsequent pharmacokinetic studies have shown the efficacy
of ritonavir, in low dosage, as a drug “booster” [112]. Coadministration with different
protease inhibitors coincides with their increased concentration in plasma, their increased
elimination half-life, and reduced food influence on their gastrointestinal absorption [113].
The elongated shape and the presence of a thiazole scaffold inside the drug is pivotal for
the boosted activity. It acts as a CYP3A4 inhibitor, attaching irreversibly to the heme or
amino-acid residues via the thiazole interaction [114]. Recent in silico simulations showed
the binding ability and selectivity of the lopinavir/ritonavir drug combination toward the
SARS-CoV-2 3CL protease. These results confirm the utility of anti-HIV drugs in the fight
against COVID-19 [110].

Ritonavir was discovered in 1992, and it was approved and commercialized in 1996.
The classical synthetic route features a convergent coupling of three key intermediates:
BOC-core-succinate, 5-wing, and 2,4-wing (Scheme 45) [115].
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Polymorphism-related problems and the use of process harsh conditions have mo-
tivated synthetic chemists to improve and/or find alternative and sustainable pathways
to obtain ritonavir. Due the biological importance of the thiazole core, it is crucial to
focus the attention on performant and sustainable synthetic strategies to produce this
heterocyclic moiety.

Isatin and its derivatives have emerged as potential SARS-CoV-2 main protease in-
hibitors. Recent studies have demonstrated powerful inhibition by isatin compounds
bearing a carboxamide moiety at C-5 and aromatic groups with a nitrogen atom in the
isatin ring. These two functional groups tethered to the isatin framework are pivotal for
the enhanced bioactivity of the molecule (Figure 7).
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Figure 7. Lead compounds in Lai’s work.

Substitution of the carboxamide group with an ester or carboxylic acid coincides with
a loss of activity due to hydrogen bonds breaking within the protein active site. Rigid
aromatic cycles at the N-1 position favor hydrophobic interactions, which results in better
fitting in the pocket and subsequently higher inhibition activity [16,116].

In the next section, we report current synthetic methodologies to yield substituted thi-
azoles and nonaromatic isatins. In the last few years, innovative and valid metal/additive-
free approaches have been developed for the synthesis of these heterocycles [117]. In this
work, we focus our attention on metal-triggered processes.

Miscellaneous Metal-Catalyzed Heterocycle Synthesis Approaches

The significance of thiazoles is highlighted by the presence of this heterocyclic scaffold
in relevant molecules acting as antiviral to anticancer drugs. The wide use of thiazoles
and their derivatives in the pharmaceutical industry necessitates the continued develop-
ment of selective, step-economical, and sustainable synthetic procedures to build those
heterocyclic scaffolds.

In 2020, Cao et al. presented a novel and straightforward strategy for the synthesis
of decorated thiazoles starting from thioamides 106, ynals 107, and alcohols via a Cu(I)-
catalyzed reaction (Scheme 46) [118].
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Scheme 46. Three-component synthesis of thiazoles promoted by Cu(I).

The catalytic reaction proceeds in good yields (e.g., 109 a–d) with high regioselectivity
and a broad reaction scope. A domino process leads to the formation of new C–S, C–N,
and C–O bonds to obtain functionalized heterocycles in a one-pot fashion starting from
easy-to-handle and cheap starting materials.

Cu catalysts have proven very effective for thiazole synthesis. Jiao and coworkers
reported a practical and efficient aerobic oxidative sulfuration/annulation protocol to
thiazoles via multiple C(sp3)–H bond cleavage (Scheme 47) [119].
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Simple aldehydes 110, amines 87, and elemental sulfur can be employed to construct
thiazoles through an oxidative sulfuration/cyclization pathway. This methodology shows
elevated tolerance toward various functional groups, thus achieving a large array of hete-
rocyclic frameworks in sufficient to good yields. Cheap Cu(I) salt is used as a precatalyst,
and environmentally friendly molecular oxygen is used as an oxidant. The whole process
is sustainable and appealable for further scale-up.

Pan’s research group exploited heterogeneous palladium catalysts to promote complex
thiazole formation using thiobenzamides and isonitriles as precursors (Scheme 48) [120].
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A multistep cascade approach has been proposed. The reaction is triggered by Pd-
metalated phosphorus-doped porous organic polymers (POPs). This developed catalytic
system was shown to be highly stable, efficient (no loss in catalytic activity after several
runs), and easy to recover from the reaction mixture. The scope of reaction encompasses a
plethora of isonitriles and benzothiamides (e.g., 113 a–d), obtaining excellent yields of the
desired targets.

Isatin (1H-indole-2,3-dione) and its derivatives are found in nature, and their frame-
work is present in a wide range of active compounds as apoptosis-inhibitory, anticonvul-
sant, antiviral, and antifungal agents. Classical synthetic approaches include the Sandmeyer
methodology, Stolle procedure, Martinet synthesis, and Gassman procedure [121]. Gener-
ally, traditional synthetic methodologies lead to isatins in good yield, but the use of harsh
reaction conditions, the use of highly reactive reagents, and the formation of byproducts
decrease their sustainability. The introduction of metal catalytic systems has resulted in
mild and environmentally friendly methodologies to achieve isatins.

In 2017, Das and coworkers developed an innovative method for the Cu(I)-catalyzed
oxidative amidation of 2-aminophenylacetylenes using air oxygen as a green oxidant
(Scheme 49) [122].
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This methodology achieves substituted isatins in good yields. The use of inexpensive
Cu(I) salt as a catalyst and air as an oxidant makes this synthesis practical and environmen-
tally friendly.

Wu et al. proposed a facile strategy to obtain isatin scaffolds via FeCl3-triggered
intramolecular Friedel–Crafts alkylation (Scheme 50) [123].
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The reaction proceeds through direct intramolecular addition and oxidation in a
one-pot manner, yielding substituted isatins in high yield. This cost-effective strategy is
based on a stable precursor and simple operative protocol. Atom economy and gram-scale
application are accomplished, and the use of an earth abundant iron catalyst is desirable
due to its low cost and nontoxicity.

In later work, the same research group showed the capability of RuCl3 to pro-
mote C(sp2)-H activation/oxidative acylation to obtain isatin compounds starting from
α-hydroxy amides 117 (Scheme 51) [124].
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RuCl3 activates aromatic hydroxyl amides 107, promoting their cyclization in mild
conditions. The methodology is carried out in mild conditions and shows a high tolera-
bility toward various functional groups tethered to the heterocyclic scaffold (e.g., 115 i–l).
Ruthenium works both as an oxidant and as an activator; thus, a stoichiometric amount of
transition metal is required.

7. Conclusions

This review presented recent methodologies applied to produce various aromatic
and nonaromatic heterocyclic scaffolds that have gained interest in the fight against the
ongoing SARS-CoV-2 outbreak. We reported the biological mechanisms of promising
old and new APIs showing anti-SARS-CoV-2 activities and the industrial and classical
approaches to their synthesis. A comparison between traditional and metal-catalyzed
protocols revealed the general improvement in reaction conditions and operability due to
metal catalysis. The employment of a catalytic system leads to elevated yields, high target
selectivity, and a high purity of the desired scaffolds; furthermore, the use of metal catalysts
allows reducing and sometimes avoiding the use of strong and unrecoverable reagents
such as mineral acids, strong bases, or necessary additives to promote the formation of the
final products. Unfortunately, the majority of metal-catalyzed heterocyclization reactions
require high temperatures, stoichiometric oxidants, or sacrificial reagents to restore the
metal oxidation state and restart the catalytic cycle. The use of unrecoverable boiling-point
solvents is necessary and represents a critical aspect, as it corresponds to a decrease in
process sustainability. Recently, ongoing modifications of these catalytic procedures have
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exploited the use of greener additives such as air or oxygen as natural oxidizing agents or
ecofriendly solvents, e.g., alcohols or easily recoverable halogenated solvents. Key features
of this review are presented in Figure 8.
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Continued research on heterocyclic scaffold synthesis is crucial to face the crisis caused
by the pandemic, as well as lead to the development of innovative, practical, and easily
scalable processes to produce new drugs or known APIs.
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