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Abstract

Anisotropic diffusion is a well recognized tool in digital image process-
ing, including edge detection and denoising. We present here a particular
nonlinear time-dependent operator together with an appropriate high-order
discretization for the space variable. The iterative procedure emphasizes
the contour lines encircling the objects, paving the way to accurate recon-
structions at a very low cost. One of the main features of such an approach
is the possibility of relying on a rather large set of invariant discontinuous
images, whose edges can be determined without introducing any approxi-
mation.

1 Introduction

The literature on digital image processing is rather rich. For this reason, we
restrict our reference list by only mentioning a few publications: [6], [7], [12],
[13], [15]. For at least three decades, partial differential equations (PDEs) have
been contributing to the progress in image processing. Since the seminal works of
Mumford-Shah [10] and Perona-Malik [11], variational and PDE-based methods
have found a wide range of applications. Some works in these directions, partic-
ularly related to anisotropic diffusion using PDEs, are for instance: [1], [2], [3],
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[5], [9], [14]. Here, images are analyzed in a continuous context through appropri-
ate nonlinear time-dependent equations, suitably discretized. The equations are
dissipative in nature, and the nonlinear coefficients act with different strengths,
depending on the intensity of the local gradient. In this framework, for example,
edge detection algorithms tend to subdivide, during time evolution, the image
into uniform regions, with the aim of providing successively a reasonable recov-
ery of the contour lines of the objects involved. We use a similar approach in this
paper, realizing some meaningful improvements with respect to the more classical
versions. First of all, the discretization of the PDE will be of a higher-order. This
property is achieved by using a larger stencil and, in addition to the standard
grid-points, an intermediate grid (the so-called “staggered grid”) built on half-
fractional indices. Such a scheme can be adopted in several other situations, not
necessarily related to the specific cases studied here.

The second change we propose concerns the nonlinear diffusion coefficient,
which is built in order to ensure a large space of “invariant images”. These are
images presenting sharp discontinuities that are not modified by the action of
the operator. The algorithm of edge detection in these situations does not in-
troduce any approximation, so that the contours remain perfectly represented.
Unfortunately, the differential equation resulting from this modification is rather
dissipative in presence of sharp variations (with the exception of the above men-
tioned invariant images). This is in contrast with the usual approach and makes
the algorithm non competitive when iterating many times with a time-step cho-
sen according to the standard arrow of time. Things are instead getting better
if we move backwards (negative time). Reverse nonlinear diffusion is in general
an unstable process. This is however true for the continuous problem. In truth,
we will implement the discrete scheme for just one or a few steps, so that the
method is not going to be a source of instabilities. In this way, with a proper
triggering of the parameters, the variations tend to become sharper, helping the
process of edge determination. Some type of noise (such as “salt and pepper”) is
also greatly amplified, so that it can be easily detected and successively filtered
in an appropriate fashion. For the sake of brevity, this last aspect will not be
considered in the present paper.

The applications presented here are very preliminary. Improvements can
be certainly examined, in conjunction with a series of other specialized filtering
procedures. Actually, a single step of the method is very low-cost and can provide
interesting information about the image under study. For example, this prediction
can be used as a starting guess in view of implementing other, more sophisticated,
techniques, as those already available in the market.
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2 Introducing the algorithm in 1D

Let N denote the number of pixels along a given interval. Most of the times, one
has N = 256. Their distance will be denoted by h. In practice, given x0, we will
deal with the points:

xi+1 = xi + h, i = 0, 1, . . . N, (1)

where we added two extra pixels at the beginning and at the end. We will also
consider the N + 3 shifted points, obtained from the expression:

x−1/2 = x0 −
h

2
, xi+1/2 = xi +

h

2
, i = 0, 1, . . . N + 1. (2)

We start from our image, which is represented by the values ui, i = 1, . . . N ,
belonging to a palette with tones of grey from 1 to K. In typical applications
we have K = 256. The minimum grey level is 1 (black) and the maximum level
K = 256 (white). We extend the image outside its limits by defining u0 = u1
and uN+1 = uN . This will correspond later to what we call Neumann boundary
conditions.

We first build the (first-order) variations:

di+3/2 =
1

h
(ui+2 − ui+1) ≈

du

dx
(xi+3/2), (3)

where u is some differentiable function assuming the values ui at the points xi.
Successively, we introduce an approximation of the second derivative operator:

si+3/2 =
1

h

(
ui+3 − ui+1

2h
− ui+2 − ui

2h

)
=

1

2h2
(ui − ui+1 − ui+2 + ui+3)

=
1

2h

(
di+5/2 − di+1/2

)
≈ d2u

dx2
(xi+3/2), i = 0, . . . , N − 2. (4)

It is possible to show that the above formula is exact when u is a polynomial of
degree less than or equal to three.

We then introduce the quantities:

Ri+3/2 =

√
(di+3/2)2

1 + (di+3/2)2
si+3/2, , i = 0, . . . , N − 2, (5)

where we also define:

R−1/2 = R5/2, R1/2 = R3/2, RN+1/2 = RN−1/2, RN+3/2 = RN−3/2. (6)
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The next step is to interpolate the above values from the fractional to the
integer grid. To this purpose we adopt the formula:

Ri ≈ −
1

16
Ri−3/2 +

9

16
Ri−1/2 +

9

16
Ri+1/2 −

1

16
Ri+3/2, (7)

based on a Lagrange type interpolation. This is also exact up to polynomials of
degree three.

The final step is to update the vector ui, i = 1, . . . N . This is done as follows:

ui ← ui + γRi, i = 1, . . . N, (8)

where γ ∈ R is a suitable parameter to be determined later. Again, we can
prolong the set of values by defining u0 = u1 and uN+1 = uN . In this way, if
necessary, we can restart the cycle from formula (3) and get a successive update
of the values ui, i = 1, . . . N . In the next section we explore the reasons of the
above construction.

3 Preliminary considerations in 1D

There are strong connections with partial differential equations. Indeed, let u =
u(t, x) be the solution of the following time-dependent nonlinear problem defined
in a finite interval:

∂u

∂t
=

√
d2

1 + d2
∂2u

∂x2
, (9)

where d = ∂u/∂x. The problem is supplied with initial conditions and boundary
constraints of Neumann type at the extremes of the interval.

The construction proposed in the previous section corresponds to a finite-
differences approximation of the above time-dependent nonlinear problem, with
respect to the space variable. This is followed by a first-order time discretization
using the explicit Euler scheme. One step of the algorithm is actually represented
by the passage in (8). Note that the parameter γ in (8) may assume positive or
negative values. This means that time can flow in both directions, so that our
differential problem in not necessarily dissipative in nature. We are not interested
to study the behavior of (9) in time, and, in the applications that follow, we will
implement (8) just for one or a few steps.

Contrarily to classical methods (see, for example, section 5), the anisotropic
coefficient

√
d2/(1 + d2) in (9) is less pronounced when the derivatives are small,

therefore the solution tends to smooth out the edges during the time evolution.
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For this reason, we will prefer to work with negative values of γ. Running back-
wards brings notoriously to ill-posed problem, although the question can be han-
dled with the due hypotheses (see, e.g., [8]). We will use, however, very few steps
of the algorithm and the parameters will be calibrated in order to stay away from
impracticable situations.

We would like to mention some features of the algorithm in order to justify
the choices we made. Suppose that between the given points xi and xi+1 of a
given 1D image we have a jump. With this we mean that uj = V1 for j ≤ i,
and uj = V2 for j ≥ i + 1, where V1, V2 ∈ R, with V1 6= V2. Then, after a
cycle of (8), these values remain unchanged. This is true because the variations
in (3) are all zero with the exception of di+1/2. On the other hand, it easy to
check that si+1/2 = 0 (see (4)). Since, for any k, the values Rk+1/2 in (5), (6)
contain the products dk+1/2sk+1/2, they turn out to be identically zero. Thus,
the algorithm exactly preserves isolated discontinuities, and therefore does not
introduce any dissipation, whatever is γ. It is possible to check that this property
holds true also for distributions where uj = V1 for odd indices and uj = V2 for
even indices. There are, in fact, plenty of basic configurations that are preserved
by the algorithm.

Figure 1: Transformation of the distribution u corresponding to (10) after one step
of the algorithm (8) (left: γ > 0, right: γ < 0).

The next interesting case to be studied is the one where we consider the
following 1D image:

uj =


V1, j ≤ i− 1,

1
2
(V1 + V2), j = i,

V2, j ≥ i+ 1,

(10)
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where V1, V2 ∈ R, with V1 6= V2. In Fig. 1 we show a couple of cases corresponding
to V1 > V2 in (10). When γ in (8) is positive (plot on the left), after one step some
dissipation is introduced, so that the corresponding picture is smoothed. When
instead γ is negative (plot on the right) the jump is emphasized. Of course, the
parameter γ has to be chosen in an appropriate range (also depending on the
values V1 and V2). If γ is too small, nothing interesting happens. Otherwise, if
it is too large, the final picture may come out to be heavily deteriorated. One
may also consider to apply a certain number of steps of this process. The user
may then decide the reliability of the outcome depending on the requested result.
Different values of γ may be also implemented at each step.

4 The algorithm in 2D

In 2D the natural extension of (9) reads as follows:

∂u

∂t
=

√
d2

1 + d2
∆u, (11)

where d = |∇u|, with ∇u, ∆u being the gradient and the Laplace operator,
respectively. Such an equation is defined on a square and Neumann boundary
conditions are imposed. This formulation allows us to build the algorithm for the
two dimensional case, as described here below.

We start by introducing the points:

xi+1 = xi + h, yj+1 = yj + h, i, j = 0, 1, . . . N. (12)

The values of grey attained at these points are denoted by ui,j. Usually the
minimum grey level is 1 and the maximum grey level is 256. In this construction
we have to assume that the initial picture (only defined for i, j = 1, . . . N) has been
bordered in order to satisfy a discrete version of Neumann boundary conditions.
Note that the values u0,0, uN+1,0, u0,N+1, uN+1,N+1, are irrelevant, since they will
not be used in the algorithm.

Intermediate grids, where the indices take semi-integer values, are naturally
associated to the primary grid as in (2), that is:

x−1/2 = x0 −
h

2
, y−1/2 = y0 −

h

2
, xi+1/2 = xi +

h

2
, yj+1/2 = yj +

h

2
,

i, j = 0, 1, . . . N + 1. (13)

The situation is summarized in Fig. 2.
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Figure 2: A generic pixel, denoted by the square, is centered at a grid point cor-
responding to integer indices (at the crossing of the solid lines). Another grid, with
fractional indices, is used to carry out the computations.

The next step is to define the values at the shifted nodes by averaging the
values at the integer nodes as follows:

ui+3/2,j+1 =
1

2
(ui+1,j+1 + ui+2,j+1) , (14)

ui+1,j+3/2 =
1

2
(ui+1,j+1 + ui+1,j+2) , (15)

where, for the sake of simplicity, we omitted to specify the range of variability of
the indices. Successively we build the variations in both directions:

dxi+3/2,j+3/2 =
1

h

(
ui+2,j+3/2 − ui+1,j+3/2

)
, (16)

dyi+3/2,j+3/2 =
1

h

(
ui+3/2,j+2 − ui+3/2,j+1

)
, (17)

so that the approximation of the Laplace operator ends up to be:

li+3/2,j+3/2 =
1

2h

(
dxi+5/2,j+3/2 − dxi+1/2,j+3/2 + dyi+3/2,j+5/2 − d

y
i+3/2,j+1/2

)
≈ (∆u)(xi+3/2,j+3/2). (18)

We then introduce the quantities:

Di+3/2,j+3/2 =

√(
dxi+3/2,j+3/2

)2
+
(
dyi+3/2,j+3/2

)2
, (19)
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and

Ri+3/2,j+3/2 =

√√√√ (
Di+3/2,j+3/2

)2
1 +

(
Di+3/2,j+3/2

)2 li+3/2,j+3/2. (20)

We also extend the above values by introducing a double layer in proximity of
the boundary, in order to enforce Neumann type boundary conditions, as done
in (6).

As in the one-dimensional case, the successive step is to interpolate the above
values from the fractional to the integer grid. We do this by implementing the
Cartesian product of formula (7), so obtaining:

Ri,j ≈
1

256

(
Ri−3/2,j−3/2 − 9Ri−3/2,j−1/2 − 9Ri−3/2,j+1/2 +Ri−3/2,j+3/2

−9Ri−1/2,j−3/2 + 81Ri−1/2,j−1/2 + 81Ri−1/2,j+1/2 − 9Ri−1/2,j+3/2

−9Ri+1/2,j−3/2 + 81Ri+1/2,j−1/2 + 81Ri+1/2,j+1/2 − 9Ri+1/2,j+3/2

Ri+3/2,j−3/2 − 9Ri+3/2,j−1/2 − 9Ri+3/2,j+1/2 +Ri+3/2,j+3/2

)
. (21)

In order to avoid misunderstandings, let us observe that the number 256 at the
denominator in (21) represents the algebraic sum of the integer weights at the
numerator, and has nothing to do with the scale of greys of the color palette.

Finally, an update of the values ui,j is realized by setting:

ui,j ← ui,j + γ Ri,j, i, j = 1, . . . N, (22)

where again γ ∈ R is a suitable parameter that can be freely chosen depending
on the kind of performances requested. If another step is required, the procedure
restarts from the definitions in (14), (15), (16), (17). If necessary, different values
of γ may be proposed at each step.

In Fig. 3 we display for N = 10 some black&white images that are left
unchanged by the algorithm, independently from the value of γ in (22). This
means that all the values Ri,j are zero. Even if there is the presence of the
Laplace operator, the scheme does not introduce any diffusion in these cases.

Before facing more complex situations (see section 6), a simple preliminary
test has been conducted on the image of Fig. 4 (left), where we set N = 20. The
pixels corresponding to i < j are white, whereas the remaining ones are black.
This displacement is not an invariant of the algorithm. Hence, some values Ri,j

turn out to be different from zero. After one step of (22) we are in a situation
similar to that of Fig. 1. For choices of γ not excessively large, we get a smoothing
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Figure 3: Although these images present sharp discontinuities, they remain unchanged
after an application of the nonlinear differential operator resulting from the discretiza-
tion of the spatial part in (11).

of the picture, if the parameter γ is positive (center image in Fig. 4). Indeed,
with minor oscillations, the shades change from black to white through a series
of intermediate greys. If, instead, γ is negative (image on the right in Fig. 4),
we get a kind of overshooting in proximity of the discontinuity, that amplifies the
width of the edge. In these plots, the grey palette has been re-scaled in such a
way the global minimum is still black and the maximum white. We also note
some discrepancies at the four corners. These are due to the use of formula (21),
which requires a certain number of extra values outside the image domain in
order to compute the values R1,1, R1,N , RN,1, RN,N . This says that Neumann
type conditions are not always the optimal choice. We do not have, however,
other alternatives to suggest at the moment.
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Figure 4: Transformation of the image on the left by applying one step of the
algorithm (center: γ > 0, right: γ < 0).

5 A classical scheme for anisotropic diffusion

The algorithm discussed so far belongs to the category of anisotropic diffu-
sion schemes. These techniques are based on the solution of a nonlinear time-
dependent PDE, presenting a dissipative behavior. The dissipation coefficient
generally depends on the magnitude of the local gradient. As an example, we
just introduce here the classical scheme proposed by Perona and Malik in their
pioneering work [11], which is based on the following nonlinear evolution equation:

∂u

∂t
= div

(
ga(‖∇u‖) ∇u

)
, (23)

where, for a given parameter a, the function ga is chosen as follows:

ga(η) =

(
1 +

η2

a2

)−1

, η ≥ 0. (24)

In this way, the diffusion coefficient is small when ‖∇u‖ is large (in particular, in
proximity of the edges), and vice versa. Let us observe that (11) is not expressed
in divergence form, though this variant could be in principle examined.

We assume that u(t, x, y) in (23) is defined on a square where homogeneous
Neumann type conditions are enforced at the boundary. The time t belongs to the
interval [0, T ], for some T > 0. The initial configuration is related to the image
under study. After having introduced a time-step ∆t > 0, similarly to what has
been done in the previous sections, we denote by uki,j the pixel representation of
our image at the grid points (xi, yj) at some given time tk = k∆t, k = 0, . . . , K,
with K∆t = T . The values are updated according to a classical five-points stencil
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associated with the explicit finite difference discretization of equation (23), i.e.:

uk+1
i,j − uki,j

∆t
=

1

h

[
Gk
i+1/2,j

(
uki+1,j − uki,j

h

)
−Gk

i−1/2,j

(
uki,j − uki−1,j

h

)
+

Gk
i,j+1/2

(
uki,j+1 − uki,j

h

)
−Gk

i,j−1/2

(
uki,j − uki,j−1

h

)]
, (25)

where:

Gk
i,j = ga


√√√√(uki+1,j − uki−1,j

2h

)2

+

(
uki,j+1 − uki,j−1

2h

)2


≈ ga
(∥∥∇u(tk, xi, yj)

∥∥) , (26)

and, for instance:

Gk
i+1/2,j =

1

2

(
Gk
i,j +Gk

i+1,j

)
, (27)

with similar definitions adopted for the other terms in (25).

Figure 5: Deformation of the images on top of Fig. 3, after the application of the
scheme (25) when T = 2, ∆t = 0.2 and a = 5.

For the treatment of the boundary points, we take into account a discrete
version of Neumann boundary conditions. Since the approximation method is
explicit in time, suitable restrictions on ∆t should be imposed for stability. For
the details we address to [11]. This last issue is not relevant to the discussion of
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our scheme (actually, the parameter γ in (22) can be either positive or negative),
since the aim is to implement the method just for a few iterations.

There are clear differences with respect to the scheme proposed in this paper.
In particular, the second order operator in (23) is straightly approximated on the
grid points with integer indices. This realizes an approximation error only of
the second order in the space variable. As we said in section 3, the anisotropy
coefficient of the Laplace operator acts differently in our case, suggesting a reverse
of the arrow of time. Finally, the Perona-Malik scheme does not guarantee the
preservation of the invariant situations examined in the previous section. For
instance, in Fig. 5, we show what happens by applying (25) to the images on top
of Fig. 3.

6 Tests on complex images

A typical application in image processing is edge detection, where the techniques
already available are numerous. Remaining in the context of anisotropic diffusion,
after applying our procedure, the resulting image may be treated by selecting the
pixels that tend to diverge from the average. In practice, the new image is
renormalized between 1 and 256 and the following filter is applied:

Fτ (φ) =

{
256, φ ≥ τ or φ ≤ 256− τ,

1, otherwise,
(28)

where τ is a suitable integer between 128 and 256.

Figure 6: The two images used for the tests.
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Figure 7: The Saturn image has been treated with one step of the algorithm (22)
(γ = 8 top, γ = −8 bottom) and a passage of the cut off procedure (28) with τ = 162.

We carried out some tests on the two images shown in Fig. 6. We mainly
worked on edge detection, although this is only one of the possible applications.
After running a single step of the algorithm, we get the outcomes displayed in
Figs. 7, 8, 9. Different values of γ (positive and negative) in the scheme (22),
and τ in the filtering procedure (28), are chosen for comparisons. The results
are not bad at all, especially if we consider that they have been obtained after
just one step of the iterative procedure (22), thus with a cost proportional to the
number of pixels. We point out that similar algorithms (such as the Perona-Malik,
described in the previous section) require instead a large number of iterations.
As expected, the use of negative values of γ (i.e., by going backward in time)
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provides sharper details. Of course, the goodness of the performances should be
judged depending on the type of target one has in mind. We also tried some
experiments (not shown here) by iterating (22) more times. The results are not
so neat, however, since the images start becoming too blurred.

Figure 8: The Saturn image has been treated with one step of the algorithm (22)
(γ = 15 top, γ = −15 bottom) and a passage of the cut off procedure (28) with τ = 155.

Finally, we conclude this section by showing in Fig. 10 the results obtainable
with a standard algorithm, such as the Canny edge detector [4]. In particular
the images in Fig. 10 are obtained by using the Matlab command edge. By
default, edge uses the Sobel detection method. We refer to the MathWorks
documentation for further insights.
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Figure 9: The image of the boat has been treated with one step of the algorithm (22)
(γ = −8) and a passage of the cut off procedure (28) with τ = 165.

Figure 10: The results of the Canny algorithm applied to the two images used for the
tests.

7 Conclusions

A suitable diffusive PDE with anisotropic coefficient has been proposed, together
with a high-order space discretization making use of staggered grid points. Some
exploratory tests have been carried out in the framework of digital image pro-
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cessing. A single step of the algorithm is already sufficient to emphasize the
contour lines of the objects. Thus, the procedure can successfully find applica-
tion in edge detection or denoising techniques, also in conjunction with other
well-known methods.

Acknowledgments

Both authors are members of GNCS-INDAM (Gruppo Nazionale Calcolo Scien-
tifico - Istituto Nazionale di Alta Matematica), Rome.

References

[1] Alvarez, L., Lions, P.L., Morel, J.M.: Image selective smoothing and edge detec-
tion by nonlinear diffusion (ii), SIAM Journal on Numerical Analysis, 29, 845-866
(1992).

[2] Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equa-
tions of image processing, Archives for Rational Mechanics and Analysis, 123,
199-257 (1993).

[3] Buades, A., Coll B., Morel, J.M.: A review of image denoising algorithms, with a
new one, Multiscale Modeling and Simulations, 4(2), 490-530 (2005).

[4] Canny, J.: A computational approach to edge detection, IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-8(6), 679-698 (1986).

[5] Felsberg, M.: On the relation between anisotropic diffusion and iterated adaptive
filtering. In: Rigoll, G. (eds) Pattern Recognition. DAGM 2008. Lecture Notes in
Computer Science, vol 5096. Springer, Berlin, Heidelberg (2008).

[6] Gonzalez, R.C., Woods R.E.: Digital Image Processing, 4th Edition, Pearson, New
York (2018).

[7] Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer
Academic Publishers, Dordrecht (1995).

[8] Hummel, R.A., Kimia, B., Zucker, S.W.: Deblurring Gaussian blur, Computer
Vision, Graphics, and Image Processing, 38(1), 66-80 (1987).

[9] Lindenbaum, M., Fischer, M., Bruckstein, A.M.: On gabor contribution to image
enhancement, Pattern Recognition, 27, 1-8 (1994).

16



[10] Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions
and associated variational problems, Communications on Pure and Applied Math-
ematics, 42, 577-685 (1989).

[11] Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion,
IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629-639
(1990).

[12] Sapiro, G.: Geometric Partial Differential Equations and Image Analysis, Cam-
bridge University Press (2001).

[13] Solomon, C., Breckon, T.: Fundamentals of Digital Image Processing: A Practical
Approach With Examples in Matlab, John Wiley & Sons Inc. (2010).

[14] Weickert, J.: Theoretical foundations of anisotropic diffusion in image processing,
Computing, Suppl. 11, 221-236 (1996).

[15] Weicker, J.: Anisotropic Diffusion in Image Processing, ECMI Series, Teubner-
Verlag, Stuttgart, Germany (1998).

17


	1 Introduction
	2 Introducing the algorithm in 1D
	3 Preliminary considerations in 1D
	4 The algorithm in 2D
	5 A classical scheme for anisotropic diffusion
	6 Tests on complex images
	7 Conclusions

