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4ARC Centre of Excellence for Future Low Energy Electronics Technologies,

School of Physics, The University of New South Wales, Sydney, N.S.W. 2052, Australia

Although there is strong theoretical and experimental evidence for electron-hole superfluidity in separated
sheets of electrons and holes at low T , extending superfluidity to high T is limited by strong 2D fluctuations and
Kosterlitz-Thouless effects. We show this limitation can be overcome using a superlattice of alternating electron-
and hole-doped semiconductor monolayers. The superfluid transition in a 3D superlattice is not topological,
and for strong electron-hole pair coupling, the transition temperature Tc can be at room temperature. As a
quantitative illustration, we show Tc can reach 270 K for a superfluid in a realistic superlattice of transition
metal dichalcogenide monolayers.

It was predicted half a century ago that bound pairs of
electrons and holes (excitons) in a semiconductor should
quantum condense at low temperatures[1]. To prevent fast
electron-hole (e-h) recombination, the electrons and holes can
be confined in two spatially separated two-dimensional (2D)
layers[2]. At atomically small layer separations, the attractive
Coulomb interaction is strong and e-h binding energies in ex-
cess of 1000 K have been demonstrated[3]. Under appropriate
conditions, these indirect excitons are predicted to form a su-
perfluid condensate with a large energy gap[4, 5]. Enhanced
tunneling has been observed in e-h double-bilayers[6] at tran-
sition temperatures Tc ∼ 1 K. Such enhancement of tunneling
is a strong indication of superfluidity or Bose-Einstein con-
densation (BEC)[7]. A dramatic increase in Tc was recently
reported with the observation of enhanced tunneling up to
Tc ∼ 100 K in a double-monolayer transition metal dichalco-
genide (TMD) heterostructure[8, 9], in agreement with recent
predictions[10].

One might reasonably expect that the transition tempera-
ture could be further increased up to the limit set by the large
pair binding energies ∼ 1000 K and the large superfluid gaps
� 300 K. However any further increase of the transition tem-
perature in these quasi-2D systems is blocked by the Mermin-
Wagner theorem[11, 12]. Thus the maximum transition tem-
perature is not limited by the e-h binding energy or superfluid
gap, but by a Berezinskii-Kosterlitz-Thouless (BKT) topolog-
ical transition[13]. The transition temperature TBKT is pro-
portional to the carrier density, so it does not increase with
coupling strength. Increasing TBKT by increasing the density
is not possible, because strong screening of the e-h Coulomb
interactions at high densities kills the superfluidity[5, 14].

Here, we overcome the restrictions associated with
Mermin-Wagner and exploit the strong e-h coupling, by con-
sidering superfluidity in a three-dimensional (3D) superlat-
tice, consisting of a stack of alternating electron and hole
monolayers. In a 3D system, strong e-h coupling and the
associated large superfluid gaps can lead to superfluid transi-
tions at room temperature. We focus specifically on a superlat-
tice of alternating electron-doped and hole-doped monolayers
of the transition metal dichalcogenides n-WS2 and p-WSe2,

but the approach would work for other systems of stacked e-
h 2D layers. We note there are already many examples of
superlattice-based superconductors[15], including the high-Tc
cuprates[16, 17].

Figure 1(a) schematically shows the infinite superlattice
of alternating n- and p-doped monolayers of two different
TMDs, indicated by green and black lines. Within each mono-
layer, a layer of W transition metal atoms is sandwiched be-
tween two layers of S or Se chalcogen atoms. We consider
an AA stacked superlattice of WS2 and WSe2 monolayers,
with the tungsten atoms horizontally aligned, and the chalco-
gen atoms horizontally aligned. For this stacking, the super-
lattice has a direct band gap[18]. Electrons and holes gener-
ated by the alternate n- and p-doping of the monolayers form
bound pairs. The WS2/WSe2 band alignment is type-II, which
keeps the electrons and the holes spatially separated in their
monolayers. This ensures long lifetimes for the interlayer ex-
citons: in a related double-monolayer MoSe2/WSe2 system,
optically generated interlayer excitons with lifetimes∼ 1.8 ns
have been observed[19].

We start with a hybrid continuum-tight binding approach
to determine the band structure of the superlattice. The low-
energy single-particle Hamiltonian for this superlattice, valid
in the K and K ′ valleys, can be written as,

H~k,s,τ =

(
H1
s,τ (kx, ky) T (kz)
T †(kz) H2

s,τ (kx, ky) + δbI2

)
. (1)

The indices are s = ±1 for spin, and τ = +1 and −1 for
valley K and K ′, respectively. We will represent 2D vectors
in the x-y space of the monolayer planes as k‖, and vectors in
3D space as ~k ≡ (k‖, kz), with the z-direction perpendicular
to the monolayers. The k‖ momentum vectors are expressed
relative to the center of the K or K ′ valley.

The Hamiltonian for the type ` = 1 (WS2) or type ` = 2
(WSe2) monolayer can be expressed for low energies in a
Bloch basis, one for each type TMD monolayer, comprising
the transition metal atomic orbitals for the lowest conduction
band, d0, and the highest valence band, d±2 (the plus and mi-
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Figure 1. (Color online) (a) Schematic illustration of the WS2/WSe2
heterostructure superlattice of periodicity 2d, of alternating mono-
layers of the two different TMDs, one type n-doped (green lines)
and the other p-doped (black lines). (b) Lowest conduction band
and highest valence band of the superlattice as a function of kz , ex-
pressed relative to the centre of the K valley. Blue and red bands
are spin up and spin down bands, respectively. For the K′ valley, the
spins are reversed. (c) Bands predominantly associated with WS2 as
a function of k‖. Inset shows a close up of the two spin-split WS2

conduction bands, separated by 2λc = 27 meV. (d) Bands predomi-
nantly associated with WSe2 as a function of k‖.

nus correspond to the K and K ′ valley, respectively)[20].

H`
s,τ (kx, ky) =

(
Eg

`

2 + λc,`sτ a`t`(τkx − iky)

a`t`(τkx + iky) −E
g
`

2 + λv,`sτ

)
. (2)

a` is the lattice constant of the type ` monolayer, t` the in-
tralayer hopping parameter, and Eg` the band gap. λc,` and
λv,` are the spin-orbit coupling strengths in the conduction
and valence bands. Values of these parameters are found in
Table S1 in the Supplementary Material[21]. A bias potential
between the two different TMDs, δb = 0.412 eV, ensures that
the band alignment agrees with Ref. 22.

In Eq. (1), T (kz) is the interlayer part of the Hamiltonian,

T (kz) =

(
2tc cos(kzd) 0

0 2tv cos(kzd)

)
, (3)

where d = 0.65 nm is the distance between monolayers. tc
and tv are the interlayer hopping parameters between the con-
duction band d0-states and the valence band d±2-states of the
opposite monolayers.

For AA stacking, the interlayer nearest neighbors have the
same in-plane coordinates, so the interlayer hopping between
the d0-states does not vanish. The coupling strength between
the d±2-states is almost identical for AA and AB stacking[23].
From bilayer MoS2 we know that the coupling strength be-
tween the d0-states is ∼ 1

7 of the coupling strength between
the d±2-states[23]. Since the coupling strength is determined
only by the type of orbitals and the spatial separation, which
is the same for all TMDs, we will assume tc = 1

7 tv as a gen-
eral relation. For TMD heterostructures, the effective hopping

parameter is assumed to be given by the average value of the
hopping parameters of each of the two TMDs, in general a
good approximation[23]. For our WS2/WSe2 superlattice, the
transition metal atoms of the TMD monolayers are the same,
making this an even better approximation.

The energy spectrum shown in Fig. 1(b)-(d) and the corre-
sponding eigenstates are obtained by numerically solving the
eigenvalue equation of the 4 × 4 Hamiltonian, Eq. (1). For
a given spin and valley quantum number, the single-particle
eigenstate for energy band β is |ψ~k,β〉. For the WS2 mono-
layer conduction band, we need consider only the lowest con-
duction band, with spin down (up) for the K (K ′) valley
(see Fig. 1c), since the band above will start to fill only for
T & 300 K. We label the corresponding superlattice band
β = 1c, referring to the dominant component in Eq. (S1) in
the Supplementary Material[21]. Similarly, for the valence
band of the WSe2 monolayer, the very large spin splitting
means that we need consider only the highest valence band,
with spin up (down) for theK (K ′) valley. We label the corre-
sponding superlattice band β = 2v . Because of the spin polar-
ization in the valleys, the number of flavors for the electrons
and holes comes only from the valley degeneracy, gv = 2.
Figure 1(b) shows the lowest conduction band and highest va-
lence band of the WS2/WSe2 heterostructure superlattice as a
function of the perpendicular wave vector component kz , ex-
pressed relative to the center of the K valley. Blue and red
bands are spin up and spin down bands, respectively. For the
K ′ valley, the spins are reversed. Figure 1(c) and (d) show the
bands associated predominantly with WS2 and WSe2, respec-
tively, as a function of the in-plane wave vector component
k‖, again relative to the K valley.

We will evaluate the bare Coulomb interaction matrix ele-
ments 〈ψ~κ′,α′ψ~k′,β′ |V |ψ~κ,αψ~k,β〉 for e-h scattering between
the |ψ~k,β〉 eigenstates of the superlattice, with V (r) =

−e2/ (4πεrε0r). The dielectric constant εr accounts for static
screening effects of both ions and the filled valence bands. For
bulk WS2 εr =

√
εzε‖ = 9.9, and for WSe2 εr = 11.2[24].

In the limit of no hybdridization between the different TMD
types, the system would effectively consist of two decoupled
bulk TMDs with an interlayer distance twice that of their nor-
mal bulk forms. It is shown in Ref. 25 that the dielectric
constant of MoS2 is approximately halved when the inter-
layer distance is doubled. For the WS2/WSe2 superlattice,
we therefore take as the value of the dielectric constant for the
heterostructure superlattice εr = 5.5, half of the average of
the two bulk TMDs. While the Keldysh potential[26] applies
for monolayer TMDs, here the nature of the interactions in
〈ψ~κ′,α′ψ~k′,β′ |V |ψ~κ,αψ~k,β〉 is 3D and the average interparticle
distances for the densities we are considering are much larger
than the small distance between layers.

The interaction between electrons and holes from same type
TMD monolayers is given by[27, 28] ,

V (0)(q‖, qz)=
−e2

4πεrε0NA

2π

q‖

[
sinh(2q‖d)

cosh(2q‖d)− cos(2qzd)

]
(4)

(for details see discussion in the Supplementary Material[21]).
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Equation (4) passes between the correct 2D and 3D limits
(see Fig. S1 in the Supplementary Material[21]). In the limit
d → ∞, the rightmost term is equal to unity, and we recover
the 2D interaction potential for N layers of surface area A. In
the limit d→ 0, a Taylor expansion of the trigonometric func-
tions transforms the rightmost term to 2q‖/(2d(q2‖+q2z)), thus
recovering the 3D interaction potential for volume (AN2d).

For electrons and holes from different type TMD monolay-
ers, we find that the interaction is,

V (d)(q‖, qz)=
−e2

4πεrε0NA

2π

q‖

[
2 sinh(q‖d) cos(qzd)

cosh(2q‖d)− cos(2qzd)

]
(5)

In the limit d→ 0, Eq. (5) reduces to the standard 3D interac-
tion potential, while the limit d → ∞ introduces the familiar
factor 2e−q‖d.

When evaluating 〈ψ~κ′,α′ψ~k′,β′ |V |ψ~κ,αψ~k,β〉, it suffices to
consider the dominant intraband interactions: α = α′ = 1c
and β = β′ = 2v because of the large energy band gaps. For
the superfluid calculations, e-h pairs with zero center of mass
momentum are required for which the interaction is,

〈ψ−~k′,α=1c
ψ~k′,β=2v

|V |ψ−~k,α=1c
ψ~k,β=2v

〉 =

F
(H)
~k,α;~k′,β

V (0)(q‖, qz) + F
(0)
~k,α;~k′,β

V (d)(q‖, qz),(6)

with ~q = ~k − ~k′. The form factors F (H)
~k,α;~k′,β

and F (0)
~k,α;~k′,β

are
given in Eqs. (S4) of the Supplementary Material[21].

Equation (6) expresses the property that, due to the hy-
bridization between the bands of the different type monolay-
ers, there is a small intralayer contribution to the e-h poten-
tial. This is because, while the electrons and holes in the hy-
bridized bands are mostly in opposite layers, there is a small
probability they will be in the same layer. At large momentum
exchange q‖, the potential is dominated by 2D interactions be-
tween same type TMDs, V (0)(q‖, qz), while at small q‖, the
total interaction potential in Eq. (6) is dominated by 3D inter-
actions between different type TMDs, V (d)(q‖, qz) (see Fig.
S1 in the Supplementary Material[21]). Since pairing by the
screened Coulomb attraction is primarily generated by two-
particle scattering processes with small momentum exchange,
pair formation is 3D in character.

Our interacting Hamiltonian for electrons and holes in the
superlattice is,

H=
∑
~k(ε~k,1c−µe)c

†
~k,1c

c~k,1c+(−ε~k,2v−µh)d†~k,2v
d~k,2v

+
∑

~k~k′

〈ψ−~k′,1cψ~k′,2v|V |ψ−~k,1cψ~k,2v 〉c
†
−~k′,1c

d†~k′,2v
d~k,2vc−~k,1c

(7)

We make the standard transformation for the holes in the va-
lence band to positively charged particles with positive ener-
gies, so the chemical potentials µe and µh in the monolayers
are both positive. c†~k,1c

and c~k,1c (d†~k,2v
and d~k,2v ) are the

creation and destruction operators for the electrons (holes).
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Figure 2. (Color online) (a) Maximum superfluid gap ∆max and (b)
condensate fraction C, as functions of the equal electron and hole
densities n. Top axis shows effective 2D density n2D .

The 3D superfluid gap ∆(~k) at zero temperature is deter-
mined from the self-consistent mean-field equation,

∆(~k) = −
∑

~k′

V RPA(~k,~k′)
∆(~k′)
2E~k′

, (8)

where E~k =
√
ξ2~k

+ ∆2
~k

, with ξ~k = 1
2 (ε~k,1c − ε~k,2v )−µ. We

evaluate Eq. (8) at a fixed value of the average chemical poten-
tial µ = 1

2 (µe + µh). The terms in the summation over k′‖ are
non-negligible only at low energies, but the summation over
k′z has significant contributions across the full Brillouin zone,
i.e. between ±π/2d. V RPA(~k,~k′) is the self-consistent RPA
screened e-h interaction in the superlattice in the presence of
the superfluid. The screening is due to the polarization of the
electron and hole densities and the superfluid condensate[5].
The expression for V RPA(~k,~k′) is given in the Supplemen-
tary Material[21].

For given values of the chemical potentials µe and µh, the
3D electron and hole densities are given by,

n =
gv

AN2d

∑

~k

(
v~k
)2

. (9)

Note even though we set electron and hole densities n equal,
µe 6= µh because of the unequal effective masses.

Figure 2(a) shows the zero-temperature ∆max, the maxi-
mum of the momentum-dependent superfluid gap ∆(~k) (Eq.
(8)), as a function of the 3D electron and hole densities n. For
reference the top axis shows an effective 2D carrier density,
defined as n2D = 2dn. At large densities, Coulomb screening
suppresses the superfluidity. Below an onset density n0, large
gap superfluidity self-consistently weakens the screening suf-
ficiently for superfluidity to appear. As the density is further
decreased, ∆max increases to a maximum value of 48 meV
(560 K), and then decreases. Note that even for very small
values of n, ∆max remains in excess of 10 meV (120 K).
These large values of ∆max reflect the strong e-h Coulomb
pairing interaction. Figure 2(b) shows the condensate fraction
C that determines the density range for the BCS, BCS-BEC
crossover, and BEC regimes (see Eq. (S8) in the Supplemen-
tary Material[21]).

At high densities at weak-coupling, the superfluid transi-
tion temperature Tc can be determined from the mean-field
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Figure 3. (Color online) Superfluid transition temperature Tc as a
function of n, the equal electron and hole density in the superlat-
tice. Red line: Tc determined in the BCS and BCS-BEC crossover
regimes using Eqs. (8) and (9) generalized to finite temperatures.
Blue line: Tc determined in the deep BEC regime using Eq. (S9)
of the Supplementary Material[21]. Green line: interpolation.

BCS equations, Eqs. (8) and (9), generalized to finite tem-
peratures. As the density is lowered, we enter the BCS-BEC
crossover regime. With the increased pairing strength, the
chemical potential µ must drop below the Fermi energy EF
to keep the density fixed. This drop incorporates a large part
of the effect of the fluctuations that build up as the crossover
regime is penetrated. Although within the crossover regime,
the Tc determined from the generalized Eqs. (8) and (9) using
the self-consistent µ starts to overestimate the actual transition
temperature, this overestimate is not expected to exceed 20%
across the full crossover regime[29, 30]. For example, for
ultra-cold fermions, the simplest non-selfconsistent t-matrix
approach overestimates the Tc obtained by Quantum Monte
Carlo (QMC) simulations by only ∼ 20% at unitarity in the
crossover regime (Fig. 3 of Ref. 30). In this simplest t-matrix
approach, the sole ingredient entering the Tc calculation is
the renormalization of the chemical potential. In the self-
consistent screening, we retain the superfluid gap at zero T ,
since the pseudogap arising from the pair fluctuations should
remain of the order of ∆(T = 0) in the intermediate cou-
pling regime[31], and so to a large extent the low-lying excited
states will continue to be excluded from the screening excita-
tions, suppressing the detrimental Coulomb screening. In this
way we take into account a major part of the fluctuation effects
that renormalize Tc to lower values, by incorporating a large
part of the fluctuations through the reduction of the chemical
potential and through the development of the pseudogap.

In the deep BEC regime at low densities (C > 0.9), this
method for determining Tc becomes unreliable, primarily be-
cause the pseudogap is replaced by a real gap of order of the
pair binding energy. In the deep BEC, we can approximate
the e-h pairs as point-like bosons, so we can use the Tc for
BEC of non-interacting bosons (Eq. (S9) of the Supplemen-
tary Material[21]). The Tc thus obtained is known to under-

estimate the actual Tc for BEC as determined by QMC[32].
Finally, in the density range from the upper boundary of the
BEC regime to the start of the deep BEC, we use a smooth
interpolation of Tc between the high- and low-density results.

Figure 3 shows the resulting superfluid transition temper-
ature in the superlattice. In the deep-BEC regime, Tc (blue
curve) can approach 100 K, many orders of magnitude larger
than the BEC transition temperatures found in ultra-cold atom
systems[33–35]. These BEC transition temperatures are so
much larger because the effective electron and hole masses
are tiny compared to atomic masses, and because our densi-
ties are several orders of magnitudes larger than in ultra-cold
atom systems. Increasing the density causes Tc to rapidly rise,
pushing it to a maximum in the BCS-BEC crossover regime
(red curve) very close to room temperature, Tc = 270 K –
conveniently accessible in a domestic refrigerator.

While our calculations use the realistic band structure of a
specific infinite superlattice, our conclusions remain valid for
finite superlattices consisting of more than a few monolayers.
A further advantage of a 3D system over 2D systems is that it
is much less susceptible to disorder, because percolation and
screening favor 3D conduction. Our results open the way to
generating 3D e-h superfluidity at room temperature in this
and related superlattices.
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In this supplementary material we provide a table with relevant parameters for the two TMDs in our quantita-
tive example. We explain how the bare electron-hole interaction potential can be derived, taking into account the
effects of the superlattice geometry and of hybridization between the TMDs. Next, we show how screening ef-
fects in the presence of the superfluid are included by means of the RPA. Finally, expressions for the condensate
fraction and the critical temperature for non-interacting bosons are given.

S1. TABLE OF PARAMETERS FOR WS2 AND WSE2

a (nm) t (eV) Eg (eV) 2λc (eV) 2λv (eV) 2tv (eV)

WS2 0.32 1.37 1.79 0.027 0.43 0.109
WSe2 0.33 1.19 1.60 0.038 0.46 0.134

Table S1. Parameters for WS2 and WSe2: lattice constant[S1]
(a), hopping parameter[S1] (t), band gap[S1] (Eg), spin split-
ting of conduction band[S2] (2λc) and valence band[S3] (2λv),
interlayer hopping parameter[S4] (tv).

S2. E-H INTERACTIONS: EFFECTS OF SUPERLATTICE
GEOMETRY AND HYBRIDIZATION

The energy spectrum (Fig. 1 in the manuscript) and eigen-
states are obtained by numerically solving the eigenvalue
equation of the 4× 4 Hamiltonian (Eq. (1) in the manuscript).
For given spin and valley quantum numbers, the single-
particle eigenstate for energy band β is |ψ~k,β〉, which can be
written as the four-component vector,

|ψ~k,β〉 =




C
~k
1c,β
|Φ~k,`=1〉

C
~k
1v,β
|Φ~k,`=1〉

C
~k
2c,β
|Φ~k,`=2〉

C
~k
2v,β
|Φ~k,`=2〉



. (S1)

The different pseudospin states |Φ~k,`〉 are defined below. The

weighting coefficients C~ki,β include both the effects of inter-
layer hopping generated by T (kz), and the hybridization of
the conduction and valence bands. We may assume the con-
tinuum approximation for the dispersion of the bands in the
parallel direction at low energies, but in the z-direction, with
its small band widths, all kz-values in the first Brillouin zone
must be considered.

Since the influence of the interlayer hopping on the energy
bands is small because of the energy mismatch between the

0 1 2 3
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V
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Figure S1. (Color online) Solid blue curve: Intralayer interaction
potential V (0)(q‖, qz = 0) (Eq. (5) in the main manuscript) as a
function of q‖. Solid red curve: interlayer interaction potential
V (d)(q‖, qz = 0) (Eq. (6) in the main manuscript). Dashed blue
curve: 2D intralayer interaction potential (∝ 1/q‖). Dashed red
curve: 2D interlayer interaction potential (∝ 2e−q‖d/q‖). Dotted
purple curve: 3D interaction potential (∝ 1/q2‖).

bands of the different TMDs, we can write,

〈~r |Φ~k,`〉=
1√
NA

eik‖·r‖

N/2∑

j=−N/2
δ1/2(z−j2d−z`d)ei(2j+z`)kzd ,

(S2)
with N the number of TMD heterostructures and z`=1 = 0
(z`=2 = 1) representing the relative position in the z-direction
of each WS2 (WSe2) monolayer in the superlattice.

The matrix element of the interaction potential between
these states is given by

〈Φ~κ′,`′2Φ~k′,`′1
|V |Φ~κ,`2Φ~k,`1〉 =

− δ`1,l′1δ`2,l′2δ~k+~κ,~k′+~κ′

[
e2

4πεrε0NA
2π
q‖

]
×

N∑

w=−N
ei(2w−z`1+z`2 )qzde−|2w−z`1+z`2 |q‖d , (S3)

with ~q = ~k − ~k′ = ~κ′ − ~κ. The factor δ`1,`′1δ`2,`′2 confines
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the electrons and holes to their original monolayers when they
scatter. For N → ∞ the summation leads to V (0), Eq. (4) in
the manuscript for `1 = `2, i.e. between same type TMD
monolayers, and to V (d), Eq. (5) for `1 6= `2, i.e. between
different type TMD monolayers. These interaction potentials
are shown in Fig. S1.

Evaluating the interaction potential between the eigenstates
of Eq. (S1) leads to Eq. (6) in the manuscript. The form fac-
tors appearing in Eq. (6) are given by,

F
(0)
~k,α;~k′,β

= C1,α~k,~k′C
2,β
~k,~k′

+ C2,α~k,~k′C
1,β
~k,~k′

,

F
(H)
~k,α;~k′,β

= C1,α~k,~k′C
1,β
~k,~k′

+ C2,α~k,~k′C
2,β
~k,~k′

,
(S4)

with C`,α~k,~k′ ≡
∑
j=c,v(C

~k′
`j ,α

)?C
~k
`j ,α

. From Eq. (S4), we can

see for α = 1c and β = 2v , that F (0)
~k,α;~k′,β

will be large, and

that the hybridized F (H)
~k,α;~k′,β

will be small.

S3. RPA SCREENING IN THE SUPERLATTICE IN THE PRESENCE OF THE SUPERFLUID

V RPA(~k,~k′), appearing in Eq. (8) in the manuscript, is the self-consistent RPA screened e-h interaction in the superlattice
in the presence of the superfluid. The screening is due to the polarization of the electron and hole densities and the superfluid
condensate[S5]. It is given by,

V RPA(~k,~k′) =
F

(0)
~k,α=1c;~k′,β=2v

V (d)(~q) + F
(H)
~k,α=1c;~k′,β=2v

V (0)(~q)

1 + 2V (0)(~q)
[
Π

(0)
n (~q) + Π

(H)
a (~q)

]
+ 2V (d)(~q)

[
Π

(H)
n (~q) + Π

(0)
a (~q)

] , (S5)

with ~q = ~k − ~k′. The presence of the superfluid strongly affects the Π polarization functions[S5] in Eq. (S5), which for the
superlattice are defined as,

Π(λ)
n (~q) = −gv

∑

~k

F
(λ)
~k+~q,α=1c;~k,β=2v

E~k+~q + E~k

{(
u~k+~qv~k

)2
+
(
u~kv~k+~q

)2}
(S6)

Π(λ)
a (~q) = gv

∑

~k

F
(λ)
~k+~q,α=1c;~k,β=2v

E~k+~q + E~k

{
2u~k+~qv~ku~kv~k+~q

}
, (S7)

where (λ) = (0), (H) (recall Eq. (S4)). The Bogoliubov amplitudes are u2~k = 1
2

(
1 + ξ~k/E~k

)
and v2~k = 1

2

(
1− ξ~k/E~k

)
.

S4. CONDENSATE FRACTION

The condensate fraction,

C =

∑
~k(u~kv~k)2∑
~k(v~k)2

, (S8)

measures the fraction of carriers in the condensate[S6–S9].
C characterizes the different regimes of pairing in ultra-cold
fermions[S10], and we apply the same criterion: in the BCS
regime C < 0.2, with only a small fraction of the electrons and
holes close to the Fermi surface forming pairs and condensing;

0.2 < C < 0.8 characterizes the BCS-BEC crossover regime;
in the BEC regime C > 0.8, and most carriers have formed
bosonic pairs and condensed; in the deep BEC regime, C >
0.9, the condensed bosonic pairs are compact and very weakly
interacting, and there are almost no free carriers.

S5. Tc FOR BEC OF NON-INTERACTING BOSONS

The Tc for Bose-Einstein Condensation of non-interacting
bosons is determined by inverting the equation[S11],

n =
2

AN2d

∑

~k

1

e(ε~k,1c
−ε~k,2v

−ε~0,1c+ε~0,2v )/(kBTc) − 1
.

(S9)
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