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Abstract

Quantum reading provides a general framework where to formulate the statistical discrimi-
nation of quantum channels. Several paths have been taken for such a problem. However, there
is much to be done in the avenue of optimizing channel discrimination using classical codes. At
least two open questions can be pointed to: how to construct low complexity encoding schemes
that are interesting for channel discrimination and, more importantly, how to develop capacity-
achieving protocols. The aim of this paper is to present a solution to these questions using polar
codes. Firstly, we characterize the rate and reliability of the channels under polar encoding. We
also show that the error probability of the scheme proposed decays exponentially with respect to
the code length. Lastly, an analysis of the optimal quantum states to be used as probes is given.

Keywords: Quantum Reading, Polar Codes, Capacity-Achieving Protocols.

1 Introduction

Quantum hypothesis testing aims to identify strategies in order to statistically discriminate quan-
tum states or processes. The former is called quantum state discrimination and has been largely an-
alyzed in the literature (starting from Refs. [14, 16]). The latter, under the name of quantum channel
discrimination, has been recently addressed [8, 2, 11, 30, 29, 36, 10, 13, 12]. In its basic formula-
tion, one has to identify a quantum channel selected from a set accordingly to a probability measure.
This should be done by using suitable input state and output measurement. As such, it is a double-
optimization problem and hence results in a daunting task. Performance are usually quantified in
terms of minimum error probability and recently bounds on it were found for general strategies [24,
19]. Although theoretically subtle, quantum channel discrimination is interesting for practical appli-
cations. For instance, it is at the basis of the decoding procedure of two-way quantum cryptography
[26] where the secret information is encoded in a Gaussian ensemble of phase-space displacements.
It also appears in the quantum illumination of targets [20, 35], where the sensing of a remote low-
reflective object in a bright thermal environment corresponds to the binary discrimination between a
lossy channel (presence of target) and a depolarizing channel (absence of target). Following this line,
quantum channel discrimination can be reformulated in the framework of quantum reading [23].
There, the data storage corresponds to a process of channel encoding, where information is recorded
into a cell by storing a quantum channel picked from a given ensemble. Then readout corresponds to
the process of channel decoding, which is equivalent to discriminating between the various channels
in the ensemble. In such a setting, using a quantum resource, such as entanglement, was shown to
overcome any classical strategy based on mixtures of coherent states, hence the name of “quantum”
reading.

Efficient paths to quantum reading can be also envisaged by the use of coding techniques [25,
9]. There are at least two possible approaches: classical coding on the quantum memory cell labels
and quantum coding on the probe states used in the readout. This paper takes the former one.
Similar to channel coding, where redundancy is added to protect the information to be transmitted,
we use classical codes to encode the information to be recorded in the memory cell. The goal is
to decrease the error probability in discriminating the channels in the ensemble. There are several
classical codes that one could use for quantum reading, depending on the goal in mind. In this
work, we are interested in information-theoretically provable codes that could be used to attain high
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information rates and low error probability. Therefore, suitable codes can be derived from the family
of polar codes.

Creating capacity-achieving codes has been a challenge since the development of Classical Infor-
mation Theory. Even more difficult was to show there exist theoretically-proven such codes. For-
tunately, developing the idea of information combining, Arikan was able to show that for binary
memoryless symmetric (BMS) channels such codes exist [3]. They are called polar codes. The major
achievement of Arikan’s paper is to show a clever way to combine information, which leads to new
synthetic channels manifesting a polarization phenomenon. They are commonly divided into two
groups named “good” and “bad” channel1. Furthermore, the fractions of good and bad channels
are related to the capacity of the original channel in consideration. Encoding and decoding schemes
take advantage of these properties to attain low complexity. It is worth mention that polar code
construction highly depends on the channel into consideration.

Several papers extend or apply the idea of polarization in a diversity of channels and areas [32,
4, 31, 18]. In particular, polar codes have also been constructed to classical-quantum channels [37],
and quantum channels [38, 27]. However, this is not the case when one considers quantum reading,
which is the goal of this paper. The distribution of the channels to be discriminated can be sym-
metric or asymmetric. Asymmetric quantum reading can be seen as a generalization of the former
quantum reading and this formulation can be justified by the measurement strategy implemented
in the decoding process or energy constrain imposed over the channels. Since these two conditions
are plausible hypothesis to be considered in classical digital memories, which are the main goal of
channel model used in this paper, we will formulate our results for asymmetric quantum reading
and, where it makes necessary, an adaptation for symmetric quantum reading is given. Therefore,
our polar code will be design to, primarily, asymmetric quantum channels. In the classical paradigm,
this has been done by Sutter, et al. [33], and Honda and Yamamoto [18]. Some of the ideas used in
Ref. [18] are applied in this paper. However, as we will see, the transition from the classical to quan-
tum paradigm is subtle and major changes are needed to be done to derive our construction. This
is particularly true for the measurement process implemented in the decoding part. An adequately
definition for rate and reliability is also needed.

The analysis of quantum memory cell in this paper is twofold. Initially, polar coding is applied
on the labels of the quantum memory cell in order to decrease the error probability in distinguishing
them. In this direction, we show that the polarization phenomenon can be characterized in quantum
memory cell by studying its composing parts; namely, channel combining and channel splitting. The
former constitutes a systematic approach to combine source bits so the polarization phenomenon
emerges. An encoding matrix, sometimes also called combining function, describing the process is
given in this paper. The latter is an information-theoretically analysis of the synthesized channels cre-
ated in the channel combining part. Initially, the first level encoding process combining two quantum
channels is analyzed. We show that the rate and reliability of the synthesized channels polarize. This
is later used in the asymptotic analysis. A connection between rate and reliability is also presented,
showing that rate is inversely proportional to reliability. Next, our first major result is given. It char-
acterizes the asymptotic distribution of the synthesized channel with respect to the length code. This
result is based on proving the existence, shown in this paper, of a symmetric quantum channel that
can be used to obtain the statistics of the (asymmetric) quantum channel of interest. Lastly, in this
first part, we draw the encoding and decoding scheme. The strategy used for encoding the frozen
bits does not follow the scheme used in previous works on polar codes for classical-quantum chan-
nels. Additionally, examining the error probability obtained after the decoding scheme, we see that
it decays exponentially with respect to the length code. The second part addresses the optimization
problem of probe states. As a first-order approximation of classical digital memories, we consider
amplitude damping channels as our channel model. The fundamental result of this part is showing
that the optimal probe states are pure states. Even though we have taken into consideration just the
first level polar encoding, it seems satisfactory supposing this can be extended to any N -level polar
encoding.

1The reason for such names is due to the capacity of these new channels been close to its maximum value and close to
zero, respectively.
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This paper is organized as follows. In Section 2 we present previous results on polar codes for
classical-quantum channels, and some important definition used to characterize quantum memory
cells. This section constitutes the fundamentals that our work in based on. Next, the main results
are shown in Section 3. Encoding and decoding schemes are described and analyzed in detail, show-
ing that the use of polar coding is also interesting for quantum memory cells. The following subject
treated in this work is the optimization of states used to probe the channels. This is drawn in Sec-
tion 4. Lastly, we draw our conclusions and some final remarks in Section 5.

1.1 Notation

We denote classical random variables as X , Y , U , whose realizations are elements of the finite sets
X , Y , U , respectively. The probability distributions are respectively represented by pX(x), pY (y), and
pU (u) for the random variables X , Y , U . In particular, X is always assumed to be discrete and, in
some parts of the text, to be a Bernoulli random variable with values in {0, 1} and PX(0) = p by
using the notation X ∼ Ber(p). For such random variables, its binary Shannon entropy is defined
as H(X) = h(p) := −p log(p) − (1 − p) log(1− p). The use of subscript and superscript on a letter
indicates a sequence starting with the element denoted by the subscript and ending with the element
denoted by the superscript, e.g. Xj

i (with j > i) is the sequence of random variablesXi, Xi+1, . . . , Xj .
XN simply stands for the sequence X1, X2, . . . , XN . A classical memoryless channel is written as
W : X → Y from the input alphabet X to the output alphabet Y . We write WN to denote N uses
of the channel W ; i.e., WN : XN → YN with WN (yN |xN ) =

∏N
i=1W (yi|xi) since W is memoryless.

Quantum systems A, B, and C correspond to Hilbert spaces HA, HB , and HC . The notation AN :=
A1A2 · · ·AN denotes a joint system consisting of N subsystems, each of which is isomorphic to HA.
Let L(HA) denote the algebra of bounded linear operators acting on a Hilbert space HA. The subset
L+(HA) of L(HA) denotes the set of all positive semi-definite operators. A special and important
class of operators in L+(HA) is the one containing density operators D(HA). A density operator
ρA ∈ D(HA) is a positive semi-definite operator with unit trace, Tr{ρA} = 1, and represents the state
of a quantum systemA. Lastly, a quantum channelW is a linear completely positive trace-preserving
map from L(HA) to L(HB).

2 Preliminaries

This section is devoted to introducing the main concepts of polar codes and quantum reading. We
begin with a brief overview of binary polar codes and their desirable attributes. They can be used
to achieve the capacity of discrete memoryless channels (DMC); there are encoding and decoding
efficient schemes; and it is possible to reach error probabilities that decay exponentially in the square
root of the blocklength. In the following, quantum reading problematic is introduced. The general
concept is given, followed by the channel model adopted for analyzing probe states. In the end, we
present the quantities assumed as rate and reliability.

2.1 Classical-Quantum Polar Codes

Let W : X → D(HB) be a binary-input memoryless classical-quantum channel (cq channel) with
input and output alphabets given by X and D(HB), respectively. Suppose the random variable X is
Ber(1

2). Then the transition probabilities can be derived from the joint input-output state

ρXB =
1

2
|0〉〈0|X ⊗ ρB0 +

1

2
|1〉〈1|X ⊗ ρB1 , (1)

where ρBx = W (x), for x = 0, 1. Notice that we are using superscripts to emphasize the system
to which each part belongs. Whenever this is clear from context, they will be omitted. One im-
portant characterization can be given to this cq channel: since the possible outcomes are uniformly
distributed over all possible labels x ∈ X , we say that the cq channel W is symmetric. Similarly, a
cq channel is called asymmetric when this does not happen. Though in this subsection we are going
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to deal with a symmetric channel, the rest of the text adopts asymmetric channel in order to provide
a more general formulation. As a last comment to be made, we adopt as input alphabet X = Z2,
and arbitrary finite-dimensional output alphabet D(HB) and transition probability. This choice of
input alphabet allows us to operate with their elements; in particular, we can use XOR operations,
or sum mod 2 operations, with the elements of the input alphabet. An appropriate combination of
these operations leads to channel polarization.

Channel polarization consists mainly of two parts. The first one is named channel combining,
which describes a method of combining inputs of N cq channels. The second is channel splitting.
This part is an information-theoretical analysis of new inputs and outputs that the channel combining
produces. These new inputs and outputs generate synthesized channels. With a careful examination
the synthesized channels, it is possible to show that, for an arbitrarily large number of them, they
fit into two sets called good and bad channels. The statistical behavior of them gives the desirable
attributes of polar codes [3, 5, 18, 37, 38, 27]: they achieve the capacity when used for transmitting
information over a cq channel; they can be encoded efficiently (with a complexity that is essentially
linear in the blocklength); the error probability of the decoder decays exponentially in the square
root of the blocklength. A descriptive explanation of channel polarization, synthesized channels,
and some attributes of polar codes are given below.

Suppose there are N copies of a cq channel W , which we denote by WN , and N realizations uN

of a random variable U representing the source. The general formulation of polar codes consists of
applying a composition function to the input uN , traditionally represented by a matrixGN , and using
the output of the composition function, defined as xN , as the actual inputs for the channelsWN . This
general procedure is called channel combining, and a scheme is shown in Fig. 1. Observe that this
is the same scheme used in any linear channel coding; the type of the composition function is what
determines the coding scheme to generate a polar code. For a particular example of coding scheme
and composition function, with N = 2, see Fig. 2.

W

W

u1

u2

ρx1

ρx2

uN W ρxN

GN

Figure 1: General polar encoding scheme for a classical-quantum channel. The matrix GN represents
the composition function applied on the input uN and resulting in the vector xN = uNGN . The
density operator ρxN = ρx1 ⊗ · · · ⊗ ρxN is the output WN (xN ).

W

W

u1

u2

ρu1⊕u2

ρu2

G2

Figure 2: Polar encoding scheme for N = 2. The choice of the composition function characterizes the
encoding scheme to be polar.
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Now, we can introduce channel splitting and the polarization phenomenon that emerges from it.
For i ∈ {1, . . . , N}, we define the i-th synthesized channel W (i)

N with input alphabet U and output
D(HU i−1

1
HBN ) as

W
(i)
N (ui) =

∑
ui−1
1

1

2i−1

∣∣ui−1
1

〉〈
ui−1

1

∣∣U i−1
1 ⊗ ρBN

ui−1
1
, (2)

ρB
N

ui−1
1

=
∑
uNi+1

1

2N−i
ρB

N

uNGN
, (3)

where N is a power of two and GN is the composition function. This formulation comes from ana-
lyzing a successive decoder acting on the output channel with the help of a genie. For more details,
have a look at the original formulation by Arikan [3] or its extension to classical-quantum channels
in Ref. [37].

There are two important quantities used to quantify the polarization phenomenon and error prob-
ability decay in polar coding. These quantities are called rate and reliability. Their definition depends
on the channel under consideration. For a classical-quantum channel W , rate is defined as the mu-
tual information I(X;B) and we denote it as I(W ). Reliability is adopted as the fidelity between
the possible channel outputs, i.e., reliability is given by F (ρ0, ρ1) = ||√ρ0

√
ρ1||1, where ||A||1 is the

Schatten 1-norm of a operator A ∈ L(HB). It is possible to show that these quantities are inversely
proportional to each other in the sense that when one has a value close to its maximum, the other has
a value close to zero [37]. Some interesting results are obtained studying the rate and reliability over
channels produced in the channel splitting part. In particular, for N sufficiently large, it is shown
that the channels W (i)

N are divided in two sets: one set with I(W
(i)
N ) close to unit, these channels are

called “good”; and a set with I(W
(i)
N ) close to zero, called “bad” channels. We denote by A the set

with indexes labeling good channels. Analyzing how the fraction of good and bad channels grow
when N goes to infinity, it is shown the polarization phenomenon and a capacity-achieving coding
strategy for polar codes. See the following proposition for a formal formulation of the exposed ideas.

Proposition 1. [37, Thm. 2, Prop. 4] Let W be a classical-quantum channel. Then the following is true:

1. The channels {W (i)
N } polarize in the sense that, for any δ ∈ (0, 1), as N goes to infinity through powers

of two, the fraction of indexes i ∈ {1, 2, . . . , N} for which I(W
(i)
N ) ∈ (1 − δ, 1] goes to I(W ) and the

fraction for which I(W
(i)
N ) ∈ [0, δ) goes to 1− I(W );

2. For any choice of parameters (N,K,A) for a classical-quantum polar code, the probability of error is
bounded above by

Pe(N,K,A) ≤ 2
∑
i∈A

√
F (W (i),0,W (i),1). (4)

In particular, for any fixed R = K/N < I(W ) and β < 1/2, block error probability for polar coding
under sequential decoding satisfies

Pe(N,K) = o(2−N
β
), (5)

where o(·) is the little-O notation from complexity theory.

We make use of Proposition 1 in the following section to show that polar codes can be applied in
the task of quantum memory cell discrimination.

2.2 Quantum Memory Cell

We now formulate the general description of quantum memory cell used in this paper. A quantum
memory cell is defined as the set {Wx}x∈X of quantum channels. For a fixed x, we have
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Wx : D(HB′) → D(HB) (6)
ρ 7→ Wx(ρ), (7)

whereD(HB′),D(HB) are the sets of input and output density states of the quantum channelWx. We
call x ∈ X the quantum memory cell index. Sometimes we denoteWx asWx

B′→B to highlight the input
and output systems of Wx. An important hypothesis is given in here. We are supposing that the
distribution of the random variable X describing the label of the quantum channels is non-uniform.
This can be justified by the measurement strategy implemented in the decoding process or energy
constrain imposing this distribution. Since these two reasoning are plausible in this paper, we are
going to adopt, in most parts of this paper, that we are dealing with asymmetric quantum reading.
The definition of asymmetric quantum reading goes similarly to the definition of asymmetric cq
channels. A quantum memory cell {Wx}x∈X is called asymmetric if the possible outcomes are non-
uniformly distributed over all possible labels x ∈ X . Lastly, notice that minor changes over our
results lead to the applicability of them to symmetric quantum reading.

Remark 2. Before introducing the channel model used for numerical analysis in this paper, an important
point-of-view over quantum memory cell need to be given. A common approach to quantum memory cell is to
study how to discriminate their elements using different probe states but having the labels fixed. However, in
this paper, we are also interested in improving quantum memory cell discrimination by working on the channel
labels. This optimization is performed by fixing the probe states used. Along these lines, quantum memory cell
can be seen as a set of classical-quantum channels. Thus, a capacity-achieving approach using polar codes is
possible when one deals with quantum memory cell elements having indexes obeying some rule. The rule used
in this paper is given by the composition function of polar codes.

For this paper, we will adopt the amplitude damping (AD) channel as our channel model. This is
because AD channel is the finite-dimensional first-order approximation of bosonic attenuator chan-
nel, which is the standard model for digital memory cell. They can be described in the following
manner. Let ρ ∈ D(H) be a single-qubit density state, then the AD channel can be described by the
following Kraus expression:

Wx(ρ) = A0ρA
†
0 +A1ρA

†
1, (8)

where

A0 =

(
1 0
0
√

1− x

)
, A1 =

(
0
√
x

0 0

)
. (9)

Observe that the same notation for general quantum memory cell and AD channel has been used.
However, through the paper will be clear when we are talking about one or the other.

The goal of the following sections is to show that using polar codes it is possible to attain optimal
rate with low reliability. This is possible by using synthesized channels formulation and connecting
its properties with the original channel under analysis. A method for approaching this is firstly
introducing the joint input-output density state and characterizing the channel via this density state.
Thus, lets X be a random variable with probability law pX . We can write the joint density state
describing the systems X and B as

ρXB = pX(0) |0〉〈0|X ⊗W0(ρ) + pX(1) |1〉〈1|X ⊗W1(ρ). (10)

As outlined previously, there are two parameters at the center of polarization phenomenon: rate and
reliability. Rate is defined in this work as the quantum mutual information between the source X
and the output system B:

Definition 3. Let X ∼ Ber(p) and Wx
B′→B(ρ) be a quantum memory cell, where x ∈ X . The rate of W is

defined as I(W)ρ := I(X;B)ρ. A direct computation of this quantum mutual information shows that

I(W)ρ = H
(
pW0(ρ) + (1− p)W1(ρ)

)
− pH(W0(ρ))− (1− p)H(W0(ρ)), (11)

where H(σ) is the von Neumann entropy for a density operator σ ∈ D(H).
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For reliability of the quantum memory cellW , it is used the fidelity between the possible output
states:

Definition 4. Let X ∼ Ber(p) and Wx
B′→B(ρ) be a quantum memory cell, where x ∈ X . The reliability of

the quantum memory cellW is defined as

Z(W)ρ := 2
√
p(1− p)F (W0(ρ),W1(ρ)) = 2

√
p(1− p)||

√
W0(ρ)

√
W1(ρ)||1, (12)

where F (ρ, σ) = ||√ρ
√
σ||1 is the fidelity, and ||A||1 is the Schatten 1-norm of a operator A ∈ L(H).

The following section describes the polar coding scheme proposed in this paper and applies the
rate and reliability defined above to quantify the goodness of the codes created.

3 Polar Coding Scheme

In this section, we consider the polarization phenomenon induced by a combining function acting on
the quantum memory cells indexes. This approach is similar to the classical-quantum polarization
explained in the previous section. However, significant refinements in the arguments and proofs are
needed for the results to be valid in our situation.

3.1 Channel Polarization

3.1.1 Channel Combining

As mentioned before, for a fixed quantum probe state, the elements Wx, for x ∈ Z2, of a quantum
memory cell can be seen as a classical-quantum channel. Then, without loss of generality, we will
treat them in this form through this section. For an illustrative description of our coding scheme
in conjunction with our hypothesis, see Fig. 3. Let W be a classical-quantum channel from which
we derive an N -fold classical-quantum channel WN recursively, where N = 2n with n ∈ N0. The
zeroth level of recursion gives solely the channelW1(u) = Wu(ρ), for all u ∈ Z2. The first level is a
composition of two zeroth level channels; i.e., the classical-quantum channelW2 is given by

W2(u1, u2) = W1(u1 ⊕ u2)⊗W1(u2) (13)
= Wu1⊕u2(ρ)⊗Wu2(ρ). (14)

This is shown in Fig. 4.

W (·)(ρ)u1

u2

uN

GN

W (·)(ρ)

W (·)(ρ)

Figure 3: Classical polar coding scheme.

The second level follows from two copies of first level channels. The rule is

W4(u1, u2, u3, u4) = W2(u1 ⊕ u2, u3 ⊕ u4)⊗W2(u2, u4) (15)
= Wu1⊕u2⊕u3⊕u4(ρ)⊗Wu3⊕u4(ρ)⊗Wu2⊕u4(ρ)⊗Wu4(ρ). (16)
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W (·)(ρ)u1 Wu1⊕u2(ρ)

W (·)(ρ)u2 Wu2(ρ)

W2

Figure 4: Fundamental polar encoding block

W2

u1 Wu1⊕u2⊕u3⊕u4(ρ)

W2

u2

R4

u3

u4

Wu3⊕u4(ρ)

Wu2⊕u4(ρ)

Wu4(ρ)

W4

Figure 5: Second level of polar coding scheme.

We depict this scheme in Fig. 5.
Following the same procedure, we can derive the n-level channels. As described in [3], the matrix

GN , which connects the source output uN to the channel input xN by xN = uNGN , can be expressed
as

GN = RNF
⊗n, (17)

with F⊗n being the n-fold Kronecker product of the matrix

F =

(
1 0
1 1

)
, (18)

and RN is a permutation matrix known as bit-reversal [3]. In particular, the second level combining
function is

G4 =


1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

 . (19)

The next step is to characterize the synthesized channels produced by the action of GN . This is the
goal of the next subsection.

3.1.2 Channel Splitting

First of all, consider two realizations of the channelW . A new input-output relation can be generated
through the channel combining procedure described before. These channels are called synthesized
since they are not real channels but new point-of-views obtained from the relations created. We
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denote this transformation by (W,W) → (W−,W+), whereW− andW+ are the synthesized chan-
nels. Fixing each input and examining the corresponding outputs, we come to the definition of the
synthesized channels below

W− : u1 ∈ Z2 7→ W−,u1(ρ) ∈ D(HB1 ⊗HB2), (20a)
W+ : u2 ∈ Z2 7→ W+,u2(ρ) ∈ D(HU1 ⊗HB1 ⊗HB2), (20b)

with
W−,u1(ρ) =

∑
u2∈Z2

pU (u2)Wu1⊕u2(ρ)⊗Wu2(ρ) (20c)

and
W+,u2(ρ) =

∑
u1∈Z2

pU (u1) |u1〉〈u1| ⊗Wu1⊕u2(ρ)⊗Wu2(ρ). (20d)

Before presenting channel splitting description for N copies of the channelW , some properties of the
2-fold case need to be given.

Proposition 5. Consider the transformation (W,W) → (W−,W+) for some channels satisfying 20. Then
the following rule holds for the rates:

I(W−)ρ + I(W+)ρ ≤ 2I(W)ρ (21)
I(W+)ρ ≥ I(W)ρ. (22)

Proof. For the first statement, it is easy to see that

I(W−)ρ + I(W+)ρ = I(U1;B1B2) + I(U2;B1B2U1) (23a)
(i)
= I(U1;B1B2) + I(U2;B1B2|U1) (23b)
(ii)
= I(X1X2;B1B2) (23c)

(iii)
= I(X1;B1) + I(X2;B2) = I(X1;B1) + I(W). (23d)

The equality in (i) follows from U1 and U2 being independent. (ii) is derived from the chain rule
for mutual information and the existence of a one-to-one function from U1, U2 to X1, X2. Lastly,
the independence between X1 and X2 is applied in (iii). Now, notice that we are dealing with a
(possibly non-uniform) Bernoulli random variable X1, which implies I(X1;B1) 6= I(W) in general.
From X1 = U1 + U2 and X2 = U2, we have that X1 is Ber(p2 + (1 − p)2) and X2 is Ber(p). Then, it is
possible to bound I(X2;B2)− I(X1;B1) by the following inequality

I(X2;B2)− I(X1;B1) ≥ − log{p2 + (1− p)2} − log{p(1− p)} − log Tr{
√
W0(ρ)

√
W1(ρ)}

−2
√

(1− F (W0(ρ),W1(ρ))2)2p(1− p)(p2 + (1− p)2). (24)

We have used the bounds

I(X2;B2) ≥ − log Tr{(pX2(0)
√
W0(ρ) + pX2(1)

√
W1(ρ))2}, (25)

from [17, Prop. 1], and

I(X1;B1) ≤ H(σ) = h
(1

2
(1−

√
1− 4(1− F (W0(ρ),W1(ρ))2)2p(1− p)(p2 + (1− p)2))

)
(26a)

≤ 2
√

(1− F (W0(ρ),W1(ρ))2)2p(1− p)(p2 + (1− p)2), (26b)

where

σ =

(
pX2(0)

√
pX2(0)pX2(1)F (W0(ρ),W1(ρ))√

pX2(0)pX2(1)F (W0(ρ),W1(ρ)) pX2(0)

)
, (27)
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from [28, Thm. 3]. Calling the RHS of Eq. 24 by f(p) and analyzing its first and second derivative,
we can conclude that f(p) ≥ 0 and, thus, I(W−)ρ + I(W+)ρ ≤ 2I(W)ρ.

The second statement is derived from

I(W+)ρ = I(U2;B1B2U1) ≥ I(U2;B2) = I(X2;B2) = I(W). (28)

Remark 6. Proposition 5 shows that the polarization phenomenon can also be derived in quantum reading
problematic. However, it is worth mention the importance of the probe state used during the process. As
explicitly shown in Section 4, there are probe states that can polarize “faster” than other, in the sense that
I(W+)ρ − I(W−)ρ > I(W+)σ − I(W−)σ for some probe states ρ and σ. Therefore, even though any probe
state generates the polarization phenomenon and, thus, can be used to achieve a nonzero communication rate
with arbitrarily low error probability, it may not be optimal. There may exist another probe state that produces
the same results but demanding a polar code with lower length.

The following proposition shown in Ref. [27] relates the reliability of the synthesized channels to
the reliability of the original one.

Proposition 7. [27, Prop. 4] Consider the transformation (W,W)→ (W−,W+) for some channels satisfy-
ing Eq. 20. Then the following rule holds for the reliability:

Z(W+)ρ = Z(W)2
ρ (29)

Z(W−)ρ ≤ 2Z(W)ρ − Z(W)2
ρ. (30)

Now, we can extend the splitting analysis to a N -fold combining of W . Wilde and Guha have
shown how to extend the previous characterization of synthesized channels [37]. We are going to
follow a similar path but using a proper description for quantum memory cells. Let N = 2n, where
n ∈ N0. First of all, in this general case is preferable to label the synthesized channels by natural
numbers instead of {+,−}n. Let i ∈ {1, 2, . . . , N}. The i-th synthesized channel is given by the map

W(i)
N : ui 7→ W(i),ui(ρ⊗N ), (31)

where

W(i),ui(ρ⊗N ) =
∑

ui−1
1 ∈Zi−1

2

pU i−1(ui−1
1 )

∣∣ui−1
1

〉〈
ui−1

1

∣∣⊗Wui1(ρ⊗N ), (32)

Wui1(ρ⊗N ) =
∑

uNi+1∈Z
N−i
2

pUNi+1
(uNi+1)WuNGN (ρ⊗N ). (33)

From Eq. 32 we see that the description ofW(i)
N supposes the knowledge of the previous input ui−1

1 .
For a finite-length analysis, this hypothesis may hold with the use of a “genie-aided” successive
cancellation decoder similar to Refs. [3, 37]. In the asymptotic analysis, this is not needed.

Having described channel combining and splitting, and given important definitions like the
meaning of synthesized channels, our next step is to characterize the behavior of rate, reliability,
and error probability in the asymptotic scenario. See the next subsection.

3.1.3 Rate, Reliability, and Error Probability

The first result present in this section describes the connection between rate and reliability. It shows,
as expected, that the rate I(W)ρ → 0 (or I(W)ρ → h(p)) when the reliability Z(W)ρ → 2

√
p(1− p)

(or Z(W)ρ → 0).

Proposition 8. Let X ∼ Ber(p) andWx(ρ) be a quantum memory cell, where x ∈ Z2. Then the following
holds

I(W)ρ ≥ h(p)− log(1 + Z(W)ρ), (34)

I(W)ρ ≤
√

4p(1− p)− Z(W)2
ρ. (35)
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Proof. The first inequality follows from [15, Thm. C.1]. For the second one, we need to use the
following inequality derived from Theorem 3 in Ref. [28]:

I(W)ρ ≤ H(σ), (36)

where

σ =

(
p

Z(W)ρ
2

Z(W)ρ
2 1− p

)
. (37)

Thus

I(W)ρ ≤ h
(1

2
(1−

√
1− 4p(1− p) + Z(W)2

ρ)
)

(38)

≤
√

4p(1− p)− Z(W)2
ρ. (39)

Before presenting the next result, we need to introduce a new classical-quantum symmetric chan-
nel. Let Ũi ∼ Ber(1

2), Uj ∼ Ber(p) for all i, j = 1, . . . , N . Assume that the output system of the
classical-quantum channel W̃ is given by D(HZ̃ ⊗HB), where σ ∈ D(HZ̃ ⊗HB) can be written as

σ =
∑
z̃∈Z2

|z̃〉〈z̃|Z̃ ⊗ ρB. (40)

Notice that Z̃ represents the classical input system in the same way as the system Z associated with
the quantum channelW . Therefore, the associated quantum systems are the same. We keep different
notation here to emphasize that one is associated with a symmetric channel and the other with an
asymmetric channel. Now, we can properly describe the classical-quantum channel W̃ . Fix ρ ∈
D(HA) and let u ∈ Z2. Then W̃ is the map given by

W̃ : Ũ → D(HZ̃ ⊗HB)

ũ 7→ W̃ ũ(ρ) :=
∑
u∈U

pU (u) |ũ⊕ u〉〈ũ⊕ u|Z̃ ⊗Wu(ρ)B. (41)

It is easy to see that W̃ is a symmetric classical-quantum channel. Indeed, this follows from the
uniform distribution of Ũ and the construction of the HZ̃ part. The next step is to describe the syn-
thesized channels generated in polar coding on W̃ . Following the characterization given in Eq. 31,
we have that

W̃(i),ũi
N (ρN ) =

∑
ũi−1
1

1

2i−1

∣∣ũi−1
1

〉〈
ũi−1

1

∣∣⊗(∑
uN

pUN (uN )WuNGN (ρN )⊗
(∑
ũNi+1

1

2N−i
∣∣(ũN ⊕ uN )GN

〉〈
(ũN ⊕ uN )GN

∣∣ )).
(42)

With these tools, we show in the next proposition that any asymmetric classical-quantum channel
can be described via a symmetric one. Moreover, in the following, a relation between the reliabilities
of these channels is provided.

Proposition 9. Let W̃(i)
N : Ũi → D(HŨ i−1

1
⊗HBN ⊗HZ̃N ), where Ũi ∼ Ber(1

2) for all i = 1, . . . , N . Then,

W(i),ui
N (ρN ) = TrZ̃N {W̃

(i),ui
N (ρN ) |0〉〈0|Z

N

}. (43)

Proof. Let ρ̃(i) be the joint input-output density operator of W̃(i),ũi
N . Thus,

ρ̃(i) =
1

2

∑
ũi∈Z2

|ũi〉〈ũi| ⊗ W̃(i),ũi
N (ρN ) (44a)

=
∑
ũN

1

2N
∣∣ũi1〉〈ũi1∣∣⊗ (∑

uN

pUN (uN )WuNGN (ρN )⊗
∣∣(ũN ⊕ uN )GN

〉〈
(ũN ⊕ uN )GN

∣∣ ) (44b)

=
∑
uN

pUN (uN )WuNGN (ρN )⊗
(∑
ũN

1

2N
∣∣ũi1〉〈ũi1∣∣⊗ ∣∣(ũN ⊕ uN )GN

〉〈
(ũN ⊕ uN )GN

∣∣ ). (44c)
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Defining z̃N = (ũN ⊕ uN )GN , it is possible to rearrange the sums as

ρ̃(i) =
∑
uN

pUN (uN )WuNGN (ρN )⊗
( ∑

z̃N

[uN⊕z̃NGN ]i1=ũi1

1

2N
∣∣[uN ⊕ z̃NGN ]i1

〉〈
[uN ⊕ z̃NGN ]i1

∣∣⊗ ∣∣z̃N〉〈z̃N ∣∣ )

=
∑
z̃N

1

2N
∣∣z̃N〉〈z̃N ∣∣⊗ (∑

ũi1

pU i1
(ũi1 ⊕ [z̃NGN ]i1)

∣∣ũi1〉〈ũi1∣∣⊗W [(ũi1,0
N
i+1)GN ]i1⊕z̃i1(ρi)

⊗
(∑
uNi+1

pUNi+1
(uNi+1)W [(0i1,u

N
i+1)GN ]Ni+1(ρN−i)

))
. (45)

Now, we can see that

TrZ̃N {ρ̃
(i) |0〉〈0|Z

N

} =
∑
ui1

pU i1
(ui1)

∣∣ui1〉〈ui1∣∣⊗ (∑
uNi+1

pUNi+1
(uNi+1)WuNGN (ρN )

)
, (46)

which is the joint input-output state ofW(i),ui
N (ρN ).

Proposition 10. Let W(i)
N and W̃(i)

N be the synthesized quantum channels described in Eq. 31 and Proposi-
tion 9, respectively. Then

Z(W̃(i)
N )ρ = Z(W(i)

N )ρ. (47)

Proof. From the definition of reliability for symmetric classical-quantum channels in Ref. [37] and
Eq 45, we have that

Z(W̃(i)
N )ρ = F (W̃(i),0

N (ρN ), W̃(i),1
N (ρN )) (48)

=
∑
z̃N

∑
ũi−1
1

pU i−1
1

(ũi−1
1 ⊕ [z̃NGN ]i−1

1 )
√
pU (0⊕ [z̃NGN ]i)pU (1⊕ [z̃NGN ]i)

2N−1
F (w

(i)
0 , w

(i)
1 ),(49)

where

w
(i)
0 = W [(ũi−1

1 ,0Ni )GN ]i1⊕z̃i1(ρi)
∑
uNi+1

pUNi+1
(uNi+1)W [(0i1,u

N
i+1)GN ]Ni+1(ρN−i), (50)

w
(i)
1 = W [(ũi−1

1 ,1,0Ni+1)GN ]i1⊕z̃i1(ρi)
∑
uNi+1

pUNi+1
(uNi+1)W [(0i1,u

N
i+1)GN ]Ni+1(ρN−i). (51)

Let zN = z̃NGN and ui−1
1 = ũi−1

1 ⊕ [z̃NGN ]i−1
1 = ũi−1

1 ⊕ zi−1
1 . Since the map (z̃N1 , ũ

i−1
1 ) 7→ (zN1 , u

i−1
1 )

is a bijection, we see that

Z(W̃(i)
N )ρ =

∑
zN

∑
ui−1
1

pU i−1
1

(ui−1
1 )

√
pU (0)pU (1)

2N−1
F (W(ui−1

1 ,0)(ρi)
∑
uNi+1

pUNi+1
(uNi+1)W [(0i1,u

N
i+1)GN ]Ni+1(ρN−i),

W(ui−1
1 ,1)(ρi)

∑
uNi+1

pUNi+1
(uNi+1)W [(0i1,u

N
i+1)GN ]Ni+1(ρN−i))

= 2
√
pU (0)pU (1)

∑
ui−1
1

pU i−1
1

(ui−1
1 )F (W(ui−1

1 ,0)
(ρ⊗N ),W(ui−1

1 ,1)
(ρ⊗N ))

= 2
√
pU (0)pU (1)F (W(i),0(ρ⊗N ),W(i),1(ρ⊗N ))

= Z(W(i)
N )ρ, (52)

whereWui1(ρ⊗N ) is defined in Eq. 32.
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The next theorem shows that the asymptotically fraction of good channels is equals to the mutual
information between the classical system X and the quantum system B.

Theorem 11. LetW(i)
N be the synthesized quantum channels described in Eq. 31 and Z(X|Y ) be the reliability

of two Bernoulli random variables X and Y ; i.e., Z(X|Y ) = 2
∑

y

√
pX,Y (0, y)pX,Y (1, y). For every β <

1/2, we have

lim
n→∞

1

2n
|{i ∈ Zn2 : Z(W(i)

N )ρ ≤ 2−2nβ and Z(Ui|U i−1
1 ) ≥ 1− 2−2nβ}| = I(X;B)ρ, (53)

lim
n→∞

1

2n
|{i ∈ Zn2 : Z(W(i)

N )ρ ≥ 1− 2−2nβ and Z(Ui|U i−1
1 ) ≤ 2−2nβ}| = 1− I(X;B)ρ, (54)

Proof. Firstly, notice that

I(W̃) = I(X̃; X̃ ⊕X,B)

= H(X̃ ⊕X,B)−H(X̃ ⊕X,B|X̃)

= 1 +H(B)−H(X,B) = 1−H(X|B). (55)

Applying Eq. 55 to Proposition 1, we can deduce that

lim
n→∞

1

2n
|{i ∈ Zn2 : Z(W(i)

N )ρ ≤ 2−2nβ}| = 1−H(X|B)ρ, (56a)

lim
n→∞

1

2n
|{i ∈ Zn2 : Z(W(i)

N )ρ ≥ 1− 2−2nβ}| = H(X|B)ρ. (56b)

Additionally, it is possible to derive Z(W(i)
N )ρ = Z(Ui|U i−1

1 ) and H(X|B) = H(X) if the output
probe state ofW is independent of X . Thus, a similar result to Eq. 56 is derived

lim
n→∞

1

2n
|{i ∈ Zn2 : Z(Ui|U i−1

1 ) ≤ 2−2nβ}| = 1−H(X), (57a)

lim
n→∞

1

2n
|{i ∈ Zn2 : Z(Ui|U i−1

1 ) ≥ 1− 2−2nβ}| = H(X). (57b)

Now, define A,B,C, and D as the sets

A = {i : Z(W(i)
N )ρ ≤ 2−2nβ}, (58a)

B = {i : Z(W(i)
N )ρ ≥ 1− 2−2nβ}, (58b)

C = {i : Z(Ui|U i−1
1 ) ≤ 2−2nβ}, (58c)

D = {i : Z(Ui|U i−1
1 ) ≥ 1− 2−2nβ}. (58d)

From Proposition 8 and H(Ui|U i−1
1 , BN ) ≤ H(Ui|U i−1

1 ), it is possible to see that B ∩ C is empty for
sufficiently large n. Furthermore,

lim
n→∞

|A|+ |B|
2n

= lim
n→∞

|C|+ |D|
2n

= 1. (59)

Therefore, the claim is derived from

lim
n→∞

|B ∪ C|
2n

= lim
n→∞

|B|+ |C|
2n

= 1− I(X;B)ρ. (60)

and
lim
n→∞

|A ∩D|
2n

= 1− lim
n→∞

|B ∪ C|
2n

= I(X;B)ρ. (61)
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As can be seen in the theorem statement and elaborated in the proof, we had to impose an addi-
tional constraint on the reliability of Ui given the previous U i−1

1 in order to derive our result. This
is because we are dealing with asymmetric quantum reading. For symmetric quantum reading, the
constrain is not needed.

Remark 12. Subsections 3.1.1 and 3.1.2, and Proposition 8 are easily applied to symmetric quantum channels
discrimination, having it as a particular case when pX(0) = pX(1) = 1

2 . For the result in Theorem 11, there
is no need to introduce the new type of channel and, furthermore, the asymptotic analysis of the rate of good
and bad channels does not impose anything on Z(Ui|U i−1

1 ). The symmetric quantum reading treatment of
Theorem 11 goes similarly to Section IV of Ref. [37].

3.2 Polar Coding and Decoding Scheme

The encoding protocol of polar codes consists of setting up the labels for information bits and frozen
bits. The former label is denoted byA and the later byAc. Thus, we use bits uA = {ui}i∈A to transmit
information. On the frozen bits, they can be fixed for the whole transmission or can depend on the
previous ui−1

1 bits. For asymmetric channels, as our case, the latter strategy is more suitable. See
Ref. [18] for more explanations.

The construction of a codeword is done as follows. The source generates a uniform sequence
u
|A|
1 . Next, the encoder determines the value ui, i ∈ Ac, of the frozen bits in the ascending order

by ui = λi(u
i−1
1 ), where λi is a function from {0, 1}i−1 to {0, 1}. Putting the sequence u|A|1 in the

information bits uA and the frozen bits in the remaining coordinates, we have the vector uN . Now,
the codeword is given by xN = uNGN . It is clear that the code rate is R = |A|/N . It remains to
describe how the set A is determined and which functions λi do we use.

Determining the set of information bits is crucial for the performance of a polar code. Firstly, for
a sufficiently large code length N , we choose the cardinality of A so that the code rate R < I(W)ρ.
Next, we have to choose coordinates to constitute the set A. A common approach is to select the
coordinates with smallest reliabilities. Formally, this selection goes as follows. Let A be the set that
for any j ∈ Ac we have Z(W(j)

N ) ≥ Z(W(i)
N ) for all i ∈ A. Additionally, because the construction

under consideration is for asymmetric channels, we also impose Z(Ui|U i−1
1 ), for all i ∈ A, to be large

when compared with the elements in Ac. Theorem 11 makes use of this constrain to characterize
the asymptotic rates in polar coding. If any of these two constrains is not satisfied, we decrease the
cardinality of A down to when they are satisfied.

The functions λi used in this paper is such that optimize the probability of frozen bit output. Let
ΛAc = {Λi}i∈Ac be random variables which are independent of each other and input and output
systems, and satisfy

pΛi [Λi(u
i−1
1 )] = pUi|U i−1

1
(1|ui−1

1 ), (62)

for all ui−1
1 ∈ {0, 1}i−1. Then, λi is a realization of the random variable Λi. There are practical

methods to generate in practice the functions λi using pseudorandom number generators [18], but
there is no need to address it in this paper.

Considering symmetric channel discrimination, a similar encoding scheme can be proposed. First
of all, the algorithm for choosing the frozen bits is exactly the one presented here without the depen-
dence of the previous bits. Thus, the encoding map is a realization of the random variable Λ̃i, where

pΛi [Λi = i] =
1

2
, (63)

for i = 1, 2. Secondly, the proposed strategy for defining the set A is applicable for symmetric chan-
nels discrimination. We only need to drop the constrain on Z(Ui|U i−1

1 ). Approximation techniques
in symmetric polar codes [34] can compose the decoding scheme in order to derive a faster encoding
scheme.

Now we describe the decoding process. Suppose the sequential decoder has obtained, up to
this moment, the vector ûi−1

1 and plans to obtain ûi. Then the decoding process divides into two
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cases. For the coordinates in Ac, we apply the inverse encoding function depending on the previous
coordinates. Namely, we employ

ûi = λ−1
i (ûi−1

1 ). (64)

Notice that no measurement is implemented in this step and, for sufficiently largeN , the error proba-
bility is arbitrarily low. See Theorem 11 for the proof. Next, we deal with the information bits. Quan-
tum successive cancellation decoder is used in here. First of all, this makes our decoding strategy and
analysis totally different from any decoding method used for classical polar codes. Secondly, because
of the constructive approach adopted in here, with measurements created for our specific task, the
polar decoding strategy differs from previous works on quantum polar codes.

For characterizing the error probability decay of the polar codes constructed, we firstly show
the existence of “pretty good measurements” design to decode quantum memory cell and having
desirable error probabilities in Proposition 13.

Proposition 13. LetW : x ∈ X → ρUBx ∈ D(HUB) be a cq channel such that

ρUBx =
∑
u∈U

pU (u) |u〉〈u|U ⊗ ρBx,u, (65)

where X is a discrete random variable, and {|u〉}u∈U is an orthonormal basis of a finite-dimensional Hilbert
space. Then, there exists a POVM {ΛUBx }x∈X satisfying

1−
∑
x∈X

pX(x)Tr{Λxρx} <
1

2
Z(W). (66)

Proof. To derive our claim, we need to invoke a result from Barnum and Knill [7]. Let pU (u) be the
probability of a system to be found in the state ρu, for u ∈ U , then there exists a POVM {Λ∗u}u∈U such
that the average success probability is lower bounded as

Psucc =
∑
u∈U

pU (u)Tr{ρ⊗Mu Λ∗u} ≥ 1−
∑
u6=v

√
pU (u)pU (v)F (ρMu , ρ

M
v ). (67)

In particular, there exists a POVM {Λu}u∈U such that the probability of error follows the following
inequality

Perr = 1−
∑
u∈U

pU (u)Tr{ρuΛu} ≤
∑
u6=v

√
pU (u)pU (v)F (ρu, ρv). (68)

Now, we return to our proof. Assume thatWu : x→ ρx,u is a cq channel, where x ∈ X is a realization
of a discrete random variableX . The result in Eq. 68 says that there exist POVMs {Λx,u}x∈X satisfying

1−
∑
x∈X

pX(x)Tr{ρx,uΛx,u} <
1

2
Z(Wu). (69)

Defining, for every u ∈ U , the POVM

Λx :=
∑
u∈U

Λx,u ⊗ |u〉〈u| , (70)
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we have that

1 −
∑
x∈X

pX(x)Tr{Λxρx}
(i)
= 1−

∑
x∈X

pX(x)
∑
u∈U

pU (u)Tr{Λx,uρx,u} (71)

=
∑
u∈U

pU (u)
∑
x∈X

pX(x)
(

1− Tr{Λx,uρx,u}
)

(72)

(ii)
<

∑
u∈U

pU (u)
1

2
Z(Wu) (73)

(iii)
=

∑
x,x′∈X
x 6=x′

√
pX(x)pX(x′)F

(∑
u∈U

pU (u) |u〉〈u| ⊗ ρx,u,
∑
u∈U

pU (u) |u〉〈u| ⊗ ρx′,u
)

(74)

(iv)
=

∑
x,x′∈X
x 6=x′

√
pX(x)pX(x′)F

(
ρx, ρx′

)
(75)

=
1

2
Z(W). (76)

The equality in (i) follows from the definitions of ρx and Λx in Eq. 65 and 70, respectively. The
inequality in Eq. 69 is used to obtain (ii). The item (iii) is just the computation of the reliabil-
ity for Wu. Lastly, we use in (iv) the fact that F (

∑
x pX(x) |x〉〈x| ⊗ σx,

∑
x qX(x) |x〉〈x| ⊗ τx) =∑

x

√
pX(x)qX(x)F (σx, τx).

Analyzing a quantum successive cancellation decoder employing the measurements in Proposi-
tion 13 needs the use of a quantum union bound. Lemma 14 introduces the one used in this paper.
As it is shown in the proof of Theorem 15, the inequality in Lemma 14 allows us to derive a bound
for the error probability in accordance to what is expected using polar codes.

Lemma 14. [21, Lemma 4.1] Let ρ be a positive semi-definite operator acting on a separable Hilbert spaceHB ,
let {Λi}Li=1 denote a set of positive semi-definite operators such that 0 ≤ Λi ≤ I for all i ∈ {1, . . . , L}, and let
c > 0. Then the following quantum union bound holds

Tr{ρ} − Tr{ΠΛL · · ·ΠΛ1(ρ⊗
∣∣0〉〈0∣∣

PL
)ΠΛ1 · · ·ΠΛL} ≤ (1 + c)Tr{(I − ΛL)ρ}

+(2 + c+ c−1)
L−1∑
i=2

Tr{(I − Λi)ρ}+ (2 + c−1)Tr{(I − Λ1)ρ}, (77)

where
∣∣0PL〉 ≡ |0P1〉⊗ · · ·⊗ |0PL〉 is an auxiliary state of L qubit probe systems and ΠΛi is a projector defined

as ΠΛi := U †i PiUi for some unitary Ui and projector Pi such that Tr{ΠΛi(ρ ⊗
∣∣0〉〈0∣∣

PL
)} = Tr{Λiρ}. In

particular, for any set of positive semi-definite operators, there exists a set of projectors satisfying Eq. 77.

An important attribute of polar codes is the error probability decay when the length of the code
grows. We show in Theorem 15 that error probability decays exponentially fast in the code length.
This result motivates the use of polar codes in practical protocols devoted to discriminate quantum
memory cell.

Theorem 15. Let {Wx}x∈X be a quantum memory cell and γ ∈ R a positive constant. Then there exists a
polar code with parameters (N,K,A) such that the error probability is bounded above by

Pe(N,K,A) ≤ γ
∑
i∈A

Zρ(W(i)). (78)

In particular, for any fixed R = K/N < I(W ) and β < 1/2, block error probability for polar coding under
sequential decoding satisfies

Pe(N,K) = o(2−N
β
), (79)

where o(·) is the little-O notation from complexity theory.
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Proof. First of all, suppose we have access to an auxiliary system
∣∣0PN 〉 = |0P1〉⊗· · ·⊗|0PN 〉. Lemma 14

guarantees the existence of projective measurements obtained by extending the pretty good mea-
surements of Proposition 13. We denote the projective and pretty good measurements by the sets
{ΠΛi}Ni=1 and {Λi}Ni=1, respectively. Then, using these projective measurements on a quantum suc-
cessive cancellation strategy for the information bits, a bound for the error probability is obtained as
follows

Pe(N,K,A) = 1−
∑
uN

pUN (uN )Tr{ΠΛ
uN
WuN (ρN )⊗

∣∣0PN 〉〈0PN ∣∣} (80)

= 1−
∑
uN

pUN (uN )Tr{ΠBN

Λ
uN−1
1 uN

· · ·ΠBN

Λu1
WuN (ρN )⊗

∣∣0PN 〉〈0PN ∣∣ΠBN

Λu1
· · ·ΠBN

Λ
uN−1
1 uN

}(81)

≤
∑
uN

pUN (uN )
(

(1 + c)Tr
{

(I − ΛB
N

uN−1
1 uN

)WuN (ρN )
}

+ (2 + c+ c−1)
N−1∑
i=2

Tr
{

(I − ΛB
N

ui−1
1 ui

)WuN (ρN )
}

+ (2 + c−1)Tr
{

(I − ΛB
N

u1 )WuN (ρN )
})
, (82)

where the second inequality is obtained from the definition of a quantum successive cancellation
decoder and the inequality from Lemma 14. Distributing and rearranging the sums, the following
equality holds

RHS of Eq. 82 = (1 + c)
∑
uN

pUN (uN )Tr
{

(I − ΛB
N

uN−1
1 uN

)WuN (ρN )
}

+ (2 + c+ c−1)
N−1∑
i=2

pU (ui)
∑
ui−1
1

pU i−1
1

(ui−1
1 )Tr

{
(I − ΛB

N

ui−1
1 ui

)
∑
ui−1
1

pUNi+1
(uNi+1)WuN (ρN )

}
+ (2 + c−1)

∑
u1

pU (u1)Tr
{

(I − ΛB
N

u1 )
∑
ui−1
2

pUN2
(uN2 )WuN (ρN )

}
. (83)

Continuing,

RHS of Eq. 83 = (1 + c)
∑
uN

pUN (uN )Tr
{

(I − ΛB
N

uN−1
1 uN

)WuN1 (ρN )
}

+ (2 + c+ c−1)

N−1∑
i=2

pU (ui)
∑
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1

pU i−1
1

(ui−1
1 )Tr

{
(I − ΛB

N

ui−1
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)Wui1(ρN )
}

+ (2 + c−1)
∑
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pU (u1)Tr
{

(I − ΛB
N

u1 )Wu1(ρN )
}

(84)

= (1 + c)
∑
uN

pUN (uN )Tr
{( ∑

uN−1
1

∣∣∣uN−1
1
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1
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1 uN
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1
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∑
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u1 )Wu1(ρN )
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, (85)
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where the first equality follows from Eq. 33. For the second equality, we have used the fact that [37]∑
x

pX(x)Tr{Axρx} = Tr
{(∑

x

|x〉〈x| ⊗Ax
)(∑

x′

pX(x)
∣∣x′〉〈x′∣∣⊗ ρx′)}. (86)

Now, from the definition of synthesized channels present in Eq. 32 the next equality is produced

RHS of Eq. 85 = (1 + c)
∑
uN

pUN (uN )Tr
{( ∑

uN−1
1

∣∣∣uN−1
1

〉〈
uN−1

1

∣∣∣⊗ (I − ΛB
N

uN−1
1 uN
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W(N),uN (ρN )

}

+ (2 + c+ c−1)

N−1∑
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pU (ui)Tr
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1

∣∣ui−1
1

〉〈
ui−1

1

∣∣⊗ (I − ΛB
N

ui−1
1 ui

)
)
W(i),ui(ρN )

}
+ (2 + c−1)

∑
u1

pU (u1)Tr
{

(I − ΛB
N

u1 )W(1),u1(ρN )
}
. (87)

Now, the number of terms in the previous sum can be reduced by means of a simple observation.
Since the frozen bits are obtained by using a classical function, there is no need to make a measure-
ment on the frozen bits position; i.e., ΛB

N

ui−1
1 ui

= I for any i ∈ Ac. This leads to

RHS of Eq. 87 <
(1 + c+ c−1)

2

∑
i∈A

Zρ(W(i)) = o(2−N
β
), (88)

where the definition of reliability for synthesized channels have been applied. The fact that this sum
equals to o(2−N

β
) is a consequence of Proposition 1.

When one considers this decoding scheme for symmetric quantum reading, the same result as in
Theorem 15 is obtained. Thus, the strategy used is the same, and there is only the need to properly
design the pretty good measurement for the symmetric channels under consideration.

4 Probe State Analysis

We are going to analyze how reliability and rate depend on the probe state used. The comparison
will be between pure and entangled probe states. In both cases, a parameter of the probe states is
maximized to give the optimal value of the quantity under consideration.

First of all, we adopt
|ψ〉 =

√
1− q |0〉+ e−iφ

√
q |1〉 (89)

as the pure probe state, where q ∈ [0, 1] and φ ∈ [0, 2π). Because of the symmetric action of the AD
channel with respect to the z-axis in the Bloch sphere representation, we can assume, without loss of
generality, that φ = 0. Secondly, the entangled state used as probe is given by

|Ψxz〉 = (ZzXx ⊗ I) |Φ〉 , (90)

where z, x ∈ Z2, and |Φ〉 =
√

1− q |00〉 +
√
q |11〉, with q ∈ [0, 1]. Notice that for q = 1/2, we

have all four Bell states. Using these pure and entangled states, we can compare their goodness for
quantum reading assisted by polar codes. This comparison is made by optimizing the quantity under
consideration with respect to q and q.

Lets start considering pure probe states. Substituting Eq. 89 into Eq. 8, it is possible to see that

Wu0(|ψ〉〈ψ|) =

(
1− (1− u0)q

√
(1− u0)q(q − 1)√

(1− u0)q(q − 1) (1− u0)q

)
, (91)

Wu1(|ψ〉〈ψ|) =

(
1− (1− u1)q

√
(1− u1)q(q − 1)√

(1− u1)q(q − 1) (1− u1)q

)
. (92)
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Now, the minimal value of reliability with respect to q can be computed. We are going to study a
normalized version of reliability given by

Z(W)|ψ〉〈ψ| = max
q

Z(W)|ψ〉〈ψ|

2
√
p(p− 1)

= max
q
F (Wu0(|ψ〉〈ψ|),Wu1(|ψ〉〈ψ|)). (93)

For the current probe state, it is shown in Fig. 6 the minimal values of Z(W)|ψ〉〈ψ| and the correspond-
ing q. An important fact can be seen in Fig. 6, the optimal pure probe state is given by the excited
state |1〉.

(a) Minimal value of fidelity w.r.t. q. (b) Distribution of q giving the minimal value of fidelity.

Figure 6: Analysis of fidelity for the pure probe state.

Considering mixed probe states, the same analysis can be done. There is a difference now on how
to probe the channel. Since we have a bipartite entangled state, it can be used to probe the channel
once or twice. The channel output in both of these situations is given by

Wui ⊗ idA2(|Ψxz〉〈Ψxz|) =
[(

(1− q)δ0x |0〉〈0|A2
+ qδ1x |1〉〈1|A2

)
+ ui

(
(1− q)δ1x |0〉〈0|A2

+ qδ0x |1〉〈1|A2

)]
|0〉〈0|A1

+ (δ0z − δ1z)
√

(1− ui)q(1− q)
[
δ0x |0〉〈1|A2

+ δ1x |1〉〈0|A2

]
|0〉〈1|A1

+ (δ0z − δ1z)
√

(1− ui)q(1− q)
[
δ1x |0〉〈1|A2

+ δ0x |1〉〈0|A2

]
|1〉〈0|A1

+ (1− ui)
[
(1− q)δ1x |0〉〈0|A2

+ qδ0x |1〉〈1|A2

]
|1〉〈1|A1

, (94)

where i = 0, 1 and δab is the Kronecker delta, and

Wu0 ⊗Wu1(|Ψxz〉〈Ψxz|) = [(1− q)δ0x + u0(1− q)δ1x] |0〉〈0|A1
⊗ |0〉〈0|A2

+ q(u0δ0x + δ1x) |0〉〈0|A1
⊗ [u1 |0〉〈0|A2

+ (1− u1) |1〉〈1|A2
]

+ (−1)z
√

(1− u0)(1− u1)q(1− q)[δ0x |0〉〈1|A1
+ δ1x |1〉〈0|A1

]⊗ |0〉〈1|A2

+ (−1)z
√

(1− u0)(1− u1)q(1− q)[δ0x |1〉〈0|A1
+ δ1x |0〉〈1|A1

]⊗ |1〉〈0|A2

+ (1− u0)qδ0x |1〉〈1|A1
⊗ [u1 |0〉〈0|A2

+ (1− u1) |1〉〈1|A2
]

+ (1− u0)(1− q)δ1x |1〉〈1|A1
⊗ |0〉〈0|A2

. (95)

For each value of x, z, we minimize the fidelity with respect to q considering these two cases, which
we call half-probed and full-probed cases. The first one corresponds to Eq. 94 and the second to
Eq. 95. Our first description is over the half-probed case. See Figs. 7 and 8 below. Notice that we
have shown just the instance z = 0, since it gives the same results as for z = 1.

Two conclusions can be obtained from Figs. 7 and 8. Firstly, the shape of the fidelity of half-
probed state

∣∣Ψ10
〉

is exactly the same as for the pure probe state case. This is clear from the fact that
the value of q giving maximal fidelity is q = 0, which turns the probe state to be |1〉. As the second
point, we see in Figs. 7 and 8 that half-probing with the state

∣∣Ψ00
〉

can give some improvement in
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(a) Minimal value of fidelity w.r.t. q. (b) Distribution of q giving the minimal value of fidelity.

Figure 7: Analysis of fidelity for the half-probed state
∣∣Ψ1,0

〉

(a) Minimal value of fidelity w.r.t. q. (b) Distribution of q giving the minimal value of fidelity.

Figure 8: Analysis of fidelity for the half-probed state
∣∣Ψ0,0

〉
.

the channel discrimination task. This improvement is obtained where q 6= 1. However, the difference
is not so significant, making the use of

∣∣Ψ00
〉

justified only if entanglement cost is negligible.
The subsequent analysis is over a full-probed state. In opposition to what has been shown in

the half-probed case, there is no improvement in using full-probed
∣∣Ψ00

〉
. Fig. 10 shows that q = 1

gives the minimal value of fidelity in this case. This leads to the fidelity having values equal to the
square of the pure probe state. Thus, optimizing full-probed strategy using

∣∣Ψ00
〉

leads to the same
strategy for pure probe state. Lastly, we consider full-probed strategy using

∣∣Ψ10
〉
. We have q = 0

giving the optimal value of fidelity. A consequence of this is that now we probe the quantum channel
twice using the state |0〉 and |1〉 in each round. Since for pure probe, we are using the state |1〉, then
the round probing with |0〉 contribute degrading the fidelity. Therefore, the optimal fidelity obtained
using full-probed

∣∣Ψ10
〉

is much higher than using full-probed
∣∣Ψ00

〉
, as can be seen in Fig. 12.

The previous results can be extended to the mutual information between the classical system X
and the quantum channel output system B. In Proposition 8 we have seen that rate and reliability
are connected in a way that when the rate is close to its maximum, then the reliability is close to
its minimum, and vice versa. Thus, we can conclude the following. For channels with values of u0

and u1 close, the mutual information will be close to zero. On the other hand, when one of the ui,
i = 0, 1, is close to unit and the other is close to zero, the mutual information attains its maximum
value possible. Furthermore, probing the quantum memory cell using the half-probed

∣∣Ψ00
〉

strategy
is again the optimal procedure for quantum reading.

5 Final Remarks

We have demonstrated a new polar coding scheme for quantum memory cell discrimination. To
achieve this goal, we had to introduce new definitions on the rate and reliability of a quantum chan-
nel. The polarization phenomenon produced by channel combining and analyzed in the channel
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Figure 9: Fidelity of pure state minus fidelity of half-probed state
∣∣Ψ0,0

〉
.

(a) Minimal value of fidelity w.r.t. q. (b) Distribution of q giving the minimal value of fidelity.

Figure 10: Analysis of fidelity for the full-probed state
∣∣Ψ0,0

〉
.

(a) Minimal value of fidelity w.r.t. q. (b) Distribution of q giving the minimal value of fidelity.

Figure 11: Analysis of fidelity for the full-probed state
∣∣Ψ1,0

〉
splitting part has been shown for these two quantities. This was established due to an inequality con-
necting both of them. In the channel splitting part, we have also introduced the synthesized channels
created by the polar coding. It had been shown that when the number of channels is arbitrarily large,
the set of synthesized channels can be divided in two groups, good and bad channels. Additionally,
the fraction of such channels is related to the mutual information of the original quantum channel in
consideration. This result has motivated us to construct an optimal encoding scheme for quantum
reading. A decoding scheme was introduced and analyzed, as well. Using an existence proof of
pretty good measurements given in this paper and a previous quantum union bound from the liter-
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Figure 12: Fidelity of full-probed state
∣∣Ψ1,0

〉
minus fidelity of full-probed state

∣∣Ψ0,0
〉
.

ature, we have shown that our decoding scheme has error probability that decays exponentially fast
with respect to the code length. At the end, optimizations over probe states are investigated, leading
to the conclusion of half-probed states as the best choice, in general, of probe states to be used.

This paper has given some future investigation topics. A question that can be stated is how to
apply polar coding to more general classical and quantum systems. First of all, we can extend the
binary discrimination to a d-ary discrimination task. The mathematical equivalence of this is consid-
ering a classical system with a larger alphabet. Some classical polar codes have been proposed in the
literature and, with the proper adjustments, applied here. Secondly, we can consider the set of quan-
tum memory cells to be composed of generalized amplitude damping channel. This class of channel
can be seen as a second-order approximation of classical digital memory, where the model takes the
environment temperature into consideration. In this open question, the task would be to find the
optimal probe state for channel discrimination. Third, and more important, how can one construct
efficient polar codes for Gaussian bosonic channel discrimination. This still a research topic even for
classical Gaussian channel. Gaussian bosonic channel is the ultimate goal as quantum channel model
for classical digital memories. Because this class of channels is defined over continuous variables, at-
tacking it needs to be two-fold. The polar code scheme has to take into account the channel to prove
the polarization phenomenon. Additionally, an optimization over the probe states is necessary under
energy constrain. These two approaches are not independent, which makes the task even more diffi-
cult. Lastly, we do not know if there exists a provable optimal probe state in the contexts mentioned.
Uniqueness also needs to be verified.
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