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Activity-controlled clogging and unclogging of microchannels
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We propose a mechanism to control the formation of stable obstructions in two-dimensional microchannels
of variable sections taking advantage of the peculiar clustering property of active systems. Under the activation
of the self-propulsion by external stimuli, the system behaves as a switch according to the following principle:
by turning-on the self-propulsion the particles become active and even at very low densities stick to the walls
and form growing layers eventually blocking the channel bottleneck, while the obstruction dissolves when the
self-propulsion is turned off. We construct the phase diagram distinguishing clogged and open states in terms of
density and bottleneck width. The study of the average clogging time, as a function of density and bottleneck
width, reveals the marked efficiency of the active clogging that swiftly responds to the self-propulsion turning
on. The resulting picture shows a profound difference with respect to the clogging obtained through the slow
diffusive dynamics of attractive passive Brownian disks. This numerical work suggests a novel method to use
particles with externally tunable self-propulsion to create or destroy plugs in microchannels.
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I. INTRODUCTION

Several technological and industrial processes require the
control of fluid flows through channels and pores at meso-
scopic scales. In this context, it is important to find strategies
either favoring or preventing the sudden blockage (clogging)
of the channels by particle aggregates and cohesive matter
[1]. Recently, materials that spontaneously respond to envi-
ronmental changes, known as smart materials, seem to offer
new opportunities for a clever solution to this kind of problem.
Smart materials can also be used to deliver cohesive sub-
stances into specific regions to reinforce surfaces and repair
fractures or damages [2,3]. In principle, the material aggrega-
tion could be used to form obstructions capable of blocking
the passage of undesirable debris or harmful chemical and
biological agents. In this paper, we provide a proof of con-
cept that self-propelled particles [4–7], whose active force
can be controlled by external inputs [8], can be employed as
smart materials [9] able to generate removable obstructions
into channels by aggregation. Indeed, it has been recently
shown that genetically engineered Escherichia coli bacteria
[10–12] and certain Janus particles [8,13–15] can be exter-
nally controlled by a light stimulus and their activity can
be rapidly switched on/off by modulating the illumination
power that could be employed to design active rectification
devices [16]. Specifically, we suggest taking advantage of
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the self-propelled particle propensity to spontaneously form
stable aggregates and undergo motility induced phase separa-
tion (MIPS) [17–21], as experimentally observed for artificial
microswimmers [8,18,22–25] or bacteria [26–28] and repro-
duced by numerical simulations [29–40].

Our mechanism based on the clustering of active particles
is able to work as a switch to clog/unclog channels by turning
on/off the self-propulsion. Its usefulness is also suggested by
the low particle concentrations required. In fact, the cluster
formation is strongly enhanced by the presence of confining
geometries, as experimentally shown for bacteria [41–43] or
artificial microswimmers [14,44], since active particles ac-
cumulate near boundaries [45–48], wall channels [49–53],
and obstacles [54–57]. The employment of active particles,
instead of passive colloidal particles, to control the channel
occlusion leads to further advantages. Passive particles cluster
only in the presence of attractive interactions and the addition
of depletants [58,59] but, even in these cases, exhibit a very
slow dynamics. As a consequence, the clogging formation is
very slow and has been experimentally and numerically ob-
served only when accelerating the access of passive particles
into the channel, for instance, by imposing external fluid flows
[60–63]. By contrast, as we shall see, active particles block the
channel in a much shorter time than passive colloids, revealing
their prominent efficiency. This property is crucial in view of
the possibility of achieving efficient switching-like behaviors
to clog/unclog channels. We outline that the mechanism pre-
sented here differs from the experimental study of Ref. [64]
where a single active colloid is used to push aggregates of
passive particles out of a channel using the persistence of the
active dynamics.

The article is structured as follows: In Sec. II, we describe
the model numerically studied, in particular, the geometrical
setup and the equation of motion of the active particles. The
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FIG. 1. Phenomenology of the clogging process. Panels (a–d) show the snapshots of the typical time evolution of the system, with w = 20,
ρ = 0.3, Dr = 1, v0 = 25. In particular, panel (a) reports the starting homogeneous configuration in the absence of self-propulsion. Panels
(b) and (c) are obtained before and after the plug formation after the active force is turned on. Finally, in panel (d), we report a configuration
relaxing toward the homogeneous state since the active force is turned off. In panel (e), we study the particle density, p(x, t ), for different times,
where the light blue and the pink regions mark the bottleneck and the lateral boxes, respectively. Panel (f) shows the stationary distribution of
the packing fraction, P(φ), calculated in the bottleneck (blue curve) and in the lateral boxes (red curve) for the parameter setting of the other
panels.

numerical and theoretical results are reported in Sec. III, while
discussions and conclusions are presented in Sec. IV.

II. MODEL

We consider a system of N interacting self-propelled disks
in two dimensions. According to the active Brownian particles
(ABP) dynamics [65,66], the self-propulsion is modeled as a
time-dependent force with fixed modulus, v0, and orientation,
ni = (cos θi, sin θi ), where the angles, θi, evolve as indepen-
dent Wiener processes. The dynamics of the particle positions,
xi, is governed by overdamped stochastic equations:

γ ẋi = Fi + Fw
i + γ v0ni, (1a)

θ̇i =
√

2Drξi, (1b)

where ξi is a white noise with unit variance and zero av-
erage. The constants γ and Dr denote the friction and the
rotational diffusion coefficients, respectively, and, in partic-
ular, the latter determines the typical persistence time of the
active force, τ = 1/Dr . The first force term, Fi = −∇iUtot,
models the steric repulsion between two disks, where Utot =∑

i< j U (|ri j |) with ri j = xi − x j and the shape of U is chosen
as a truncated and shifted Lennard-Jones potential, U (r) =

4ε[(σ/r)12 − (σ/r)6] + ε for r � 21/6σ and zero otherwise.
The constants σ and ε represent the particle diameter and the
energy scale of the interactions, respectively. The term, Fw

i ,
is the repulsion force exerted on the active particles by the
boundaries defined by the profile y = k(x). Each boundary
repels the particles crossing the curve y = k(x) outward with
a stiff harmonic force that reinjects them inside the channel.
This force is derived by a stiff truncated harmonic potential,

W (x, y) = A

2
[k(x) − y]2
[|y| − k(x)],

where 
 is the unitary step function, and A = 103 is the
strength of the potential chosen to ensure the impenetrability
of the channel walls. The force exerted by the walls can be cal-
culated as Fw

i = −∇W (x, y) that is proportional to the normal
n̂ with respect to the curve y = k(x), such that any tangential
contribution from the boundaries is neglected. Further details
about the implementation of the boundaries [and the functions
k(x)] are reported in Appendix A. In practice, the system
consists of two boxes of area L × H connected by a bottleneck
of size s × w, as schematically illustrated in Fig. 1(a). In
particular, the solid black lines define the bottleneck region,
while periodic boundary conditions are applied to the rest of
the channel.
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III. RESULTS

A. Activity-induced clogging

We study the dynamics Eq. (1) at fixed active force by
varying the density, ρ, and the bottleneck width, w. Simula-
tions started from homogeneous configurations, as shown in
Fig. 1(a), that are the typical spatial configurations of passive
colloids before the particle activation. At the initial time t0,
we turn on the self-propulsion and let the system evolve for a
final time, T = 102/Dr . A typical time evolution, at ρ = 0.3
and w = 20, is schematically illustrated in panels (b), (c),
and (d). In a first transient regime, particles accumulate in
front of the bottleneck walls forming two symmetric grow-
ing layers, as illustrated in Fig. 1(b). Subsequently, the two
layers coalesce and clog the bottleneck, Fig. 1(c), forming a
very dense and cohesive cluster as revealed by the bimodal
shape of the density distribution, plotted in Fig. 1(f). Finally,
the plug dissolves when the active force is switched off and
the system gradually recovers a homogeneous configuration,
Fig. 1(d). In this case, the dynamics is purely diffusive and
controlled by the translational diffusion coefficient that is
no more negligible after the activity turning off. Despite the
intrinsic slowness of the diffusive dynamics, the cohesive plug
dissolves rapidly since the clogged configurations are very
far from the equilibrium configurations of passive systems.
To accelerate the depletion of the clogged region, we can
raise the temperature to increase the diffusivity. Alternatively,
we can use the spatial-modulation of the light to induce
inhomogeneity that destabilizes the cluster cohesion. The sce-
nario described by Figs. 1(a)–1(d) is quantitatively confirmed
in Fig. 1(e) where the time-dependent density distribution,
p(x, t ), along the channel, is plotted at different times. Thus,
by turning the self-propulsion on/off, the system, in practice,
behaves as a switch to clog and unclog the channel. However,
for w or ρ values small enough, the system is not able to
attain a steady-state with stable bottleneck obstructions as
reported in Fig. 2(c), where the steady-state is characterized
by small clusters of particles close to the bottleneck walls
(that will be denoted as “open state” along with the rest of the
paper).

The distinction between clogged and open states can be
achieved by computing the average density in the bottleneck
region, 〈ρb〉, after the ρ trajectories have reached their plateau.
A close inspection of the configurations allows us to verify
that clogged states are those with 〈ρb〉 � 1, while open states
correspond to 〈ρb〉 � 1. Through this heuristic criterion, we
construct the phase diagram of the system as a function of ρ

and w, Fig. 2(a), where clogged and open configurations are
separated by a solid black line (clogging-line). The clogging-
line displays a monotonic growth with both ρ and w almost
saturating around ρ = 0.3, which is well below the critical
ρ-value to observe the MIPS-transition in the confinement-
free system [67–70]. The color-map encodes the values of 〈ρb〉
in the bottleneck region showing that a sharp color variation
occurs in the proximity of the clogging line and, in the clogged
states, plugs become less cohesive as w grows. This phase
diagram indicates the working operational conditions of the
“switching device” at different channel widths also showing
that the clogged states are obtained even at very small densi-
ties. The low-density working condition constitutes a strong

FIG. 2. Clogging phase diagram. Panel (a): phase diagram as
a function of bottleneck width, w, and density of the system, ρ.
Colors represent the steady-state density values in the bottleneck,
〈ρb〉. The solid black curve indicates the clogging-line numerically
obtained, separating clogged from open states. Blue and red circles
mark the lowest and the highest values of ρ at which clogged and
open states are still observed. Panels (b) and (c) report two zooms of
the bottleneck occupation above and below the clogging line, in cor-
respondence of the colored stars in the phase diagram. Simulations
are run with Dr = 1, v0 = 25, L = 100, H = 60, and s = 50.

advantage in the potential applicability of our mechanism to
real devices.

B. The dynamics of the active clogging

To work as a switching mechanism, the clogging process
needs to be sufficiently swift in the response to the turning on
of the active force. In this respect, we monitor the time behav-
ior of the local density in the bottleneck, ρb(t ). Figures 3(a)
and 3(b) illustrate the typical dynamics of the clogging pro-
cess for a bottleneck of width w = 10. In particular, Fig. 3(a)
compares the single fluctuating trajectory of ρb(t ) with its
ensemble average 〈ρb(t )〉 for two different values of ρ. All the
curves saturate at a plateau whose value indicates the clogging
degree of the stationary state. Specifically, the higher and
lower values correspond to clogged (green curves) and open
states (red curves), respectively. In addition, in the the former
case, ρb(t ) displays very small fluctuations around 〈ρb(t )〉
while, in the latter case, the ρb(t ) shows larger fluctuations,
even in the steady-state configurations, since the layers of par-
ticles attached to the walls reorganize without merging. The
dashed lines in Fig. 3(a) represent the theoretical predictions
of 〈ρb(t )〉,

〈ρb(t )〉 = 〈ρb〉ρ
ρ + (〈ρb〉 − ρ)e−t/α

, (2)

where α is a fitting parameter. Equation (2) is the solution of
the logistic equation which, for the present system, is derived
in Appendix B under suitable approximations, observing that
the increase of 〈ρb(t )〉 is mainly determined by the particles
approaching almost ballistically the bottleneck and that the
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FIG. 3. Dynamics of the plug formation. Panels (a) and (b) plot
the time evolution of the density in the bottleneck, ρb(t ), for w = 10.
Panel (a) shows single-trajectories (thin lines) and the ensemble
average, 〈ρb(t )〉 (tick lines), taken over 20 independent initial con-
figurations. The dashed grey horizontal line marks the asymptotic
value 〈ρb〉, while the dashed vertical line indicates the time at which
the asymptotics is reached. Panel (b) plots 〈ρb〉 as a function of t/τ
for three different values of ρ leading to clogging configurations. In
panels (a) and (b), dashed black lines are obtained by a fit to data
with Eq. (2). Panel (c) contains the clogging time tcl as a function
of w for different values of ρ, where solid lines are obtained from
numerical linear fits. Panel (d) reports tcl vs. ρ for different values
of w. Points are obtained from simulations, solid lines from Eq. (3)
and dotted lines are just eye-guides. Simulations are performed with
τ = 1/Dr = 1, v0 = 25, L = 100, H = 60, and s = 50.

probability to remain trapped is roughly proportional to ρb(t ).
The prediction Eq. (2) reveals also a good agreement with the
numerical results for 〈ρb(t )〉 as shown in Fig. 3(b) for several
values of ρ giving rise to clogged configurations. In these
cases, 〈ρb(t )〉 saturates at a common plateau that is determined
by the maximum packing density in the bottleneck.

The temporal delay of the switch can be estimated as the
time, tcl, needed to observe the plug formation in the chan-
nel (clogging time). Operatively, tcl is measured as the time
such that 〈ρb(t )〉 attains the asymptotic value 〈ρb〉 with an
uncertainty of 5%. To characterize the switching efficiency,
we study the dependence of tcl on the bottleneck width w

and density ρ. Figure 3(c) shows the linear scaling of tcl as a
function of w for different values of ρ (straight lines are linear
fits to data). Instead, Fig. 3(d) reports the monotonic decrease
of tcl with ρ, showing that for low values of ρ the onset of
the clogging state is prohibitive in time. However, in view of
the possible applications, it is encouraging that there exists an
extensive range of w and ρ where tcl is only of the order of a
few persistence times, τ , of the self-propulsion. An analytical
prediction of tcl can be obtained upon the assumption that the
plug formation very weakly affects the bulk average density

(large lateral boxes):

tcl ≈ sw

R
Dr

2v2
0

( 〈ρb〉
ρ

− 1

)
, (3)

where R is a geometrical factor. More details about the deriva-
tion of the prediction Eq. (3) are reported in Appendix C.
The comparison with data in Fig. 3(d) reveals a good agree-
ment except for the range of low values of ρ, where Eq. (3)
underestimates tcl because the hypothesis of almost constant
bulk-density is no longer applicable.

The above results are very promising from a practical
perspective to design real switching devices based on the
active clogging. One can argue that the same process could
be obtained through the coarsening of passive attractive col-
loids upon the introduction of wall-attractive interactions via
chemical coating of the bottleneck walls. This possibility can
be tested by replacing active with attractive passive particles
in the presence of attractive bottleneck walls. The details of
the passive numerical study and the corresponding results are
discussed in Appendix D. However, our simulations do not
show any bottleneck obstruction within the typical times taken
by the active system to approach the clogged state. Indeed, the
simple self-diffusion alone constitutes a very slow transport
mechanism, as supported by direct simulations reported in
Appendix F, where a system of independent passive particles
escape a box across two lateral holes, mimicking the presence
of the bottleneck. To get a qualitative idea of the tcl-scaling
with the bottleneck width in the passive clogging process, we
resort to Monte Carlo simulations of an equilibrium attractive
lattice gas within the channel considered so far. Appendix E
shows the scaling tw ∝ w2 independently of the temperature
that, in comparison with the linear scaling of the active tcl,
corroborates the idea that the formation of plugs in passive
systems is less efficient. As a conclusion, passive colloids can-
not be considered as good candidates for the implementation
of switches similar to those suggested in this work.

C. Steady-state properties of the plug

To fully understand the active clogging mechanism, we
also need to characterize the steady-state properties of the plug
in a typical clogged configuration and, in particular, its dy-
namical properties. Future investigations will aim to address
the question of the stability of the clogging mechanism.

We study the typical configuration of a clogged bottle-
neck, which is reported in Fig. 4(a), where the particles are
colored according to the orientations of their self-propulsion,
θi. Since the angles θi’s evolve independently [see Eq. (1b)],
colors are randomly distributed in the whole system. However,
the particle velocities, vi = ẋi, tend to spontaneously align
with each other, revealing the emergence of large aligned
domains [29,30,71], whose particles have a common veloc-
ity orientation, βi, with respect to the x̂-axis [Fig. 4(b)].
Near the bottleneck boundaries, the velocity orientations be-
come preferentially parallel to the walls, as revealed by the
symmetric peaks in (0, π ) of the steady-state distribution
P(β ), Fig. 4(c). Moving toward the middle of the bottleneck,
the peaks broaden as shown in Fig. 4(c) for two sections
placed at the wall and the middle of the bottleneck (for com-
parison we report also the P(β ) in the bulk of the lateral boxes,
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FIG. 4. Panel (a) illustrates a snapshot configuration realized
with w = 20 and ρ = 0.3 at time T = 50τ , while panel (b) is a zoom
of the area delimited by the dashed black line in panel (a). Colors
encode the orientations of the particle self-propulsion with respect
to the x̂ axis, while black arrows represent the velocity vectors.
Panel (c) shows P(β ), the steady-state distributions of the velocity
orientation. The blue distribution is in a small layer of width H/5
attached to the walls while the green one in a layer of width H/5
placed at the center of the bottleneck. Finally, the red P(β ) is given
by averaging the velocity in a square region in the bulk of the lateral
boxes. In panel (d), we report P(|v|), i.e., the steady-state distribution
of the velocity modulus, where blue and red curves are obtained
averaging the velocities in the bottleneck and bulk regions of the
lateral boxes. Simulations are run with Dr = 1, v0 = 25, L = 100,
H = 60, and s = 50.

which is completely flat due to the absence of preferential
orientations). Figure 4(d) compares the distribution of the
single-particle velocity modulus in the bottleneck and lateral
boxes. In the latter case, the distribution is peaked around v0,
coinciding with the velocity modulus of a free independent
self-propelled particle. Instead, in the bottleneck, the distribu-
tion is peaked at a value of |v| � v0.

As a conclusion of this section, we remark that the forma-
tion of velocity aligned domains could, in principle, suggest
the hindering of the plug stability (with the creation of frac-
ture lines), while the slow particle motion in any clustered
configuration should play the opposite role. In future studies,
we will check the stability of the mechanism proposed in
this paper, testing if the activity-induced obstruction is able
to really block the passage of large colloidal tracers.

IV. CONCLUSION

In conclusion, we have presented a mechanism to control
the plug formation in channels by turning on/off the self-
propulsion. The working principle relies on the spontaneous
formation of particle clusters preferentially near the walls. The
advantage of the method is the rapidity of the plug formation,
even using very small densities of self-propelled particles.
This controlled clogging could be in practice achieved by
exploiting the light-sensitivity of certain self-propelled parti-
cles, such as Janus colloids or genetically engineered E. coli
bacteria. Furthermore, we expect the switching-mechanism
to be more efficient in experimental devices than our simu-
lated systems since Janus particles usually make clustering at
smaller densities with respect to numerical simulations [8].

In addition, a proper design of wall geometries [72–76] or
the introduction of pillars in the bottleneck region [77] can
optimize the clogging process taking advantage of enhanced
trapping mechanisms [75,78–80].

The clogging phase-diagram reported in Sec. III is ob-
tained as a function of the density and the bottleneck width
at fixed active force and, thus, persistence length, v0/Dr . We
expect that the picture remains unchanged since the process is
controlled by the ratio between the bottleneck width and the
persistence length. The larger is the latter, than much favored
is the clog formation. For very small values of v0/Dr , active
systems behave as passive [81,82] and, thus, clustering does
not occur [69].

Possible interesting improvements of this work toward a
more realistic system would be: (i) studying the effects of a
solvent through the inclusion of hydrodynamic interactions
and (ii) implementation of the flow. (i) In our coarse-grained
approach, the role of the solvent is only described as a thermal
bath; however, it would be interesting to understand how the
inclusion of the explicit solvent and the consequent hydro-
dynamic interactions would change the phase diagram and
the dynamical properties of the clogging process. We expect
that the switching mechanism is robust to the presence of hy-
drodynamics; indeed, it is known that the accumulation near
obstacles and the clustering occur for both pushers and pullers
microswimmers [83,84]. The presence of the explicit solvent
opens new challenging questions like the role of hydrody-
namic pressure or osmotic pressure [85,86] in the clogged
states. (ii) The explicit presence of a flow field pushing objects
or debris in the channel is common in many microfluidic
applications. This is not taken into account in this study, that is
restricted to regimes of swim velocities where the fluid flow is
negligible and does not consistently affect the active particle
dynamics. The addition of fluid flow and movable debris is a
relevant issue that will be the subject of future investigation
to test the stability and resistance of the obstructions made by
clustered active particles.
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APPENDIX A: GEOMETRICAL SETUP

The container employed in the numerical study is formed
by two lateral boxes of size L × H and a bottleneck of size
s × w, as shown in Fig. 1(a). The numerical setup is obtained,
by fixing H = 60, L = 100 and s = 50 and varying w in
the range [5,30]. The two lateral boxes, satisfying periodic
boundaries conditions, are connected to each other by soft-
walls whose shapes reproduce a narrow bottleneck. The top
bottleneck profile in the plane x, y is described by a piecewise
function:

k(x) = H − w

2π
arctan

[
K

(
x2 − s2

4

)]
+ H + w

4
,

for 0 � x � s and 0 elsewhere. The bottom profile is a re-
flection around y-axis, k(x) → −k(x). With this choice the
bottleneck lies in the interval (−s/2, s/2), while the left
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and right lateral boxes are placed in (−L − s/2,−s/2) and
(s/2, s/2 + L), respectively. K is the parameter which deter-
mines the sharpness of the corners formed by the lateral boxes
and the bottleneck. Since the larger is K the sharper are the
corners, we chose K = 10 in our numerical study. The walls
exert on the particles the force Fw directed along the normals
with respect to the wall profiles. This direction is given by

n̂ = (k′(x),−1)√
1 + k′(x)

,

where the prime denotes the derivative with respect to x. The
amplitude of the force is the derivative of a harmonic potential
truncated at its minimum

W (r) = A
r2

2

(r), (A1)

where A = 103 is the strength of the repulsive force chosen
large enough to prevent the penetration of particles into the
wall-regions.

APPENDIX B: DERIVATION OF EQ. (2)

During the clogging, the density of the bottleneck region
increases because of the particle flow from the lateral boxes
toward the bottleneck region. Self-propelled particles remain
trapped in the bottleneck because of the interactions with the
other particles which hinder their exit on the opposite side.
Because the self-propulsion forces change direction after a
persistence time, 1/Dr , we expect that the particles reaching
the bottleneck are those contained in a square box of size
given by the persistence length, λ = v0/Dr . We define νλ(s)
as the rate of this process (number of particles per unit time).
Accordingly, the number of particles arriving at the bottleneck
in a time interval [0, t] is

Q(t ) =
∫ t

0
dsνλ(s) ≈

∫
dsDrλ

2ρλ(s)R, (B1)

where ρλ(t ) is the density in one of the two square regions of
size λ near the bottleneck and the factor R counts the fraction
of particles able to reach the bottleneck region with velocity
v0 determined by the self-propulsion. This factor depends only
on λ and w and will be estimated hereafter.

Since we took lateral boxes much larger than the bottleneck
region (L � s), we can assume that ρλ(t ) remains nearly
constant to its initial value, ρ. In other words, the large size of
the lateral boxes render negligible the loss of particles due to
the flow into the bottleneck. With this approximation, we get

Q(t ) ≈ ρ Rλ2Drt . (B2)

Now, we compute the clogging-time, tcl, requiring that,
in the clogged state, the maximal number of particles in
the bottleneck is given by Nm = 〈ρb〉ws, where 〈ρb〉 is
the maximal density admitted by the bottleneck region.
Neglecting the particles leaving this region, we get

2Q(t = tw ) + wsρ = Nm. (B3)

Using the explicit expressions for Q(t ) and Nm, we estimate
tcl as

tcl = ws(〈ρb〉 − ρ)

2DrRλ2ρ
. (B4)

tcl assumes always positive values because 〈ρ〉 > ρ = 〈ρ(t =
0)〉, a condition which always occurs because of the particle
accumulation at the walls. We remark that the validity of this
prediction requires the main hypothesis, ρλ(t ) ≈ ρλ(0) = ρ.

The simplest estimate of R is R = 1/4, assuming that
particles move homogeneously in four directions, ±x̂, ±ŷ. A
more refined approximation consists in assuming that all the
particles are placed in the middle of the square of size λ, at
distance λ/2 from the center of the bottleneck. In this case,
the fraction of particles which can move toward the bottleneck
can be obtained by geometrical arguments:

R =
∫ θmax

−θmax

dθ

2π
= θmax

π
= 1

π
arctan

w

λ
.

APPENDIX C: SHAPE OF ρ(t )

Here, we derive the time behavior of ρb(t ). Equation (B2)
prescribes a nonphysical unbounded growth of ρb(t ). While
such a simplified argument is sufficient to predict the clogging
time tcl, as discussed in the previous section, it cannot account
for the behavior of ρb(t ) which, instead, stops increasing when
the bottleneck is completely clogged. To account for this
saturation, we develop a differential equation to describe the
time-evolution of ρb(t ). As already mentioned, the increase
of ρb(t ) is due to the particles coming from the two lat-
eral squares of size λ × λ (near the bottleneck). Basically, in
Eq. (B4), we are assuming that all the particles coming in the
bottleneck remain trapped. However, the probability to remain
trapped depends on the occupation degree of the bottleneck
region (low occupation implies no trapping). Thus, we expect
that the probability of remaining trapped in the bottleneck is
proportional to ρb(t ). Additionally, when clusters are formed
at the walls of the bottleneck, self-propelled particles behave
as if the wall-width was weff < w. The shape of weff depends
on the density and can be estimated as

weff = w

(
1 − ρb(t )

〈ρb〉
)

.

As a result, we have

ρ̇b(t ) ∝ ρ0Rλ2Drρb(t ) ∝ ρb(t )

(
1 − ρb(t )

〈ρb〉
)

,

with the initial condition ρb(0) = ρ. The above differential
equation admits a sigmoid solution which reads

ρb(t ) = 〈ρb〉ρ
ρ + (〈ρb〉 − ρ)e−t/α

, (C1)

where the characteristic time α is treated as a fitting parameter.

APPENDIX D: THE CASE OF PASSIVE COLLOIDS

The clogging-process shown in the channel geometry of
Appendix A works only employing suspensions of self-
propelled particles, while a similar scenario cannot be
observed using suspensions of pure repulsive passive colloids,
at least waiting for a reasonable time. In Sec. II, we have
already shown that when the active force is turned off, the
channel obstruction disappears because equilibrium repulsive
colloids do not undergo clustering and the plug becomes un-
stable. However, one can expect that, by introducing attractive
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FIG. 5. Snapshot configurations obtained by simulations of particles in a channel of bottleneck width w = 10 and density ρ = 0.2 at
different times: t/τ = 1 for panels (a, d, g), t/τ = 10 for panels (b), (e), (h) and t/τ = 102 for panels (c, f, i). Here, the time is normalized
by the persistence time, τ , of the active dynamics to make clear the comparison between passive and active cases. Panels (a–f) are obtained
using attractive passive colloids following the dynamics (D1), at T = 0.1 for panels (a–c) and T = 0.4 for (d–f). Finally, panels (g–i) refer to
self-propelled particles, evolving with Eqs. (1), using v0 = 25 and Dr = 1. In the active and passive systems, simulations are run employing
the same geometry, by setting L = 100, H = 60 and l = 50.

interactions among particles and between particles and walls,
a steady clogged state can be yet achieved. Its formation
clearly will depend on the interplay between density and tem-
perature.

To show that, even with attraction, passive colloids cannot
clog the channel in reasonable times, we performed passive-
particle simulations at density, ρ, in the geometrical setup
used so far. Particles interact with the attractive version of the
potential used for the active particles:

Ulen(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
,

with ε = σ = 1, like for the active system. Additionally, also
the walls of the bottleneck are attractive, and the dynamics is
given by

γ ẋi = −∇iUtot + Fw
i +

√
2T ηi, (D1)

where η is a white noise with zero average and unitary vari-
ance, and T is the temperature of the thermal bath. The
potential Utot = ∑

i< j Ulen(|xi − x j |) while Fw
i models the at-

tractive force exerted by the walls. The latter has the same
form discussed in Appendix A, with the only exception that it
is not truncated at its minimum, r = 0. In practice, we replace
W (r) with Watt(r), given by

Watt(r) = A
r2

2

(r − σ ),

which attracts particles at r = 0 in a layer of width σ .
We run several simulations for different values of T and ρ,

fixing the bottleneck width w = 10, for simplicity. In this way,
we consider a couple (ρ,w) for which self-propelled particles
clog the channel, as indicated by the clogging phase diagram,
shown in Fig. 2(a). Figure 5 reports the spatial particle distri-
bution in the channel at three successive times, for different
cases: attractive passive-particles evolving with Eq. (D1) for
two different values of the temperature, T = 0.4 [Figs. 5(a)–
5(c)] and T = 0.1 [Figs. 5(d)–5(f)], and, for comparison, we
show also the spatial distribution of self-propelled particle
at the same times [Figs. 5(g)–5(i)]. While the self-propelled
particles clog the channel, passive attractive colloids are not

able to perform a similar task in both cases, at least in the
same time. As shown by the first stage of their evolution,
see Figs. 5(a) and 5(c), passive particles form narrow layers
near the walls of the bottleneck because of the particles-wall
short-range attraction. The two temperature values are chosen
to show the two different scenarios occurring by varying the
temperature: for low value of T , particles in the lateral boxes
form many small clusters due to the attractive components
of the interaction, while, for larger T , clusters in the lateral
boxes disappear being destroyed by thermal fluctuations. Even
in the former case, particles starting from the homogeneous
distribution attain a metastable state with many small clusters
in the lateral boxes which cannot easily diffuse toward the
bottleneck. We are not able to state whether the passive system
could eventually reach the clogged configuration, we can only
state that a clogged process will require a time much longer
than the time taken by the active counterpart. In fact, passive
colloids can approach the bottleneck only by diffusion, that
is a process intrinsically too slow to compete with the self-
propelling dynamics.

As a conclusion, passive systems cannot be really useful to
develop a clogging mechanism that can be used as a relatively
fast switch.

APPENDIX E: LATTICE GAS MODELING OF CHANNEL
CLOGGING

Despite the system of passive particles interacting through
Lennard-Jones potentials do not show clogged states in rea-
sonable times, studying the dynamical features distinguishing
thermal and active clogging could still represent an interesting
issue. To shed light on this point, we consider a lattice gas on
a triangular grid over the channel geometry employed so far.
By imposing periodic boundary conditions every site has six
neighbors and the total Hamiltonian is given by

Hlg = −J
∑
〈i, j〉

nin j, (E1)

where J is the coupling constant, set to 1 for convenience, and
ni is the occupancy of the ith site which assumes the values 0
or 1. We have implemented simulations of a large system com-
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FIG. 6. Dynamics of a quenched lattice gas in a narrow channel. Panels (a, b, c) show snapshots of the final configurations reached in MC
simulations at fixed bottleneck width w = 10 after a quench at different inverse temperatures: below βc (a), at βc (b), and above βc (c). Panels
(d, e, f) display the zoom of the bottleneck region of panels (a, b, c), respectively. In panels (g, h, i), the average bottleneck occupancy is
reported as a function of time for different w and different β. The colored circles are the data from simulations, while the full lines are fits with
exponential functions. The horizontally-aligned open circles mark the levels where the occupancy reaches the threshold value 0.7 (chosen as
the clogging density). The abscissa of the interception between this threshold and the curve identifies the clogging time. Panels (j, k, l) show
the clogging time as a function of w for the β of panels (g, h, i), respectively. Here, the points are the clogging times from MC simulations, the
dashed and solid lines are linear and quadratic fits of the data.

posed by N = Nx × Ny sites (with Ny = 64, Nx = 64 × 4 and
N = 16384). These sites are enclosed in a rectangular box of
size (0, L) × (0, H ) with L = a Nx and H = a

√
3Ny/2, where

a = 1 is the lattice spacing. The simulations conserve the
total occupancy (i.e.,

∑
i ni = const) by using the Kawasaki

dynamics in which a site can exchange its occupancy only
with its neighboring sites [87]. After this switch, a standard
Monte Carlo (MC) metropolis rule is applied and the new
configuration is accepted or rejected according to the energy
change. All the numerical results are obtained starting from
random configurations (i.e., at infinite temperature) with fixed
total occupancy

∑
i ni = 6553, corresponding to an average

occupancy 1
N

∑
i ni ≈ 0.4 which is below the critical one. To

simulate the presence of an attractive channel wall, we freeze
to ni = 1, the sites placed at the positions (x, y) such that
|y − H/2| > w/2 and |x − L| < s/2, that are never updated
in the MC simulation. In one MC step, we pick N random
sites and we attempt to switch the occupancy of each site with
the occupancy of one of its neighbors.

The transformation ni = (1 + σi )/2 maps the model
Eq. (E1) onto the Ising model on the triangular lattice, hav-
ing critical temperature Tc = 4/ ln 3 ≈ 3.641 (for J = 1 and
kB = 1) [88]. As a consequence, the critical temperature of
the lattice gas model turns to be Tc = (ln 3)−1 (i.e., an inverse
critical temperature βc = Tc

−1 ≈ 1.099) while the critical av-
erage occupancy is nc = 1/2. Using this information, we can
simulate the triangular lattice gas undergoing condensation in
a channel geometry analogous to that of the active system, by
varying the inverse temperature around βc. By quenching this
system slightly above βc at βc and below βc, after 218 MC
steps, we observe that the sites in the channel are preferen-
tially occupied (i.e., the channel is clogged). This is shown in
Fig. 6 where the occupied and empty sites are drawn in yellow
and in violet, respectively, for a quenching: below [Fig. 6(a)],
at [Fig. 6(b)], and above [Fig. 6(c)] βc, respectively (note that,
for graphical reasons, the sites in the channel walls are col-
ored in violet instead of being yellow). The clustering in the
channel is significantly more compact for β � βc as shown by
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FIG. 7. Panel (a): sketch of the channel employed in the nu-
merical study. Panel (b): rearrangement of the channel geometry to
map the bottleneck filling of the original problem into the emptying
process of the bulk reservoirs. In both panels, solid black lines repre-
sent repulsive walls, while their absence denotes periodic boundary
conditions, except for the two segments of panel (b) of width w,
which are absorbing.

the zoomed channel configuration reported in Figs. 6(d)–6(f)
(note that, here, the sites of the channel walls are not plotted).
We monitor the clogging process by measuring the average
occupancy in the bottleneck,

nch = 1

Nch

′∑
i

ni,

as a function of time, where the prime indicates that the sum
includes only the Nch sites within the bottleneck region. The
behavior of nch versus time is plotted in Figs. 6(g)–6(i) for
various values of the channel width w and quench temperature

FIG. 8. Clogging time, tcl, as a function of the bottleneck width,
w, for three values of the diffusion coefficient D, in Eq. (F1), and
density ρ = 0.4. Each point is the result of an average over M = 100
independent initial configurations corresponding to a homogeneous
particle distribution in the box 2L × H .

β (the data points represent the average result of 128 indepen-
dent runs). It is clear that, during the channel clogging, the
occupancy grows from the initial value 0.4 to values close to
the full occupancy. However, for quenches below βc, we find
that the final occupancy depends sensitively on the channel
width [see Fig. 6(g)]. It is also evident that larger channels
need more time to be clogged by the lattice gas (the points
progressively shift toward higher times as w increases at fixed
β). We also note that, at least for large w and large times, the
data points are always well-fitted by exponential functions.

We define the clogging time as the time where nch

reaches the (arbitrarily) threshold nch = 0.7 [open circles in
Figs. 6(g)–6(i)]. In Figs. 6(j)–6(l), we report the clogging time
as a function of w for quenches above βc, at βc, and below
βc, respectively. From the linear and quadratic fits of the data
in these figures, we conclude that the clogging time grows
faster than linear with the channel width w. This quadratic
behavior is in contrast with the linear w-scaling observed for
self-propelled particles, reported in Fig. 3, supporting again
the statement that passive clogging is less efficient than the
active one.

APPENDIX F: DIFFUSION MODEL FOR PASSIVE SYSTEM

To explain why the passive clogging has not been observed
for passive systems, we study the diffusive dynamics of an
assembly of noninteracting particles and mimic the clogging
process studied in this paper by using a suitable restricted
geometry. This test provides a lower bound for the clogging
time obtained with a passive system with attractive interac-
tions because attraction reduces the effective diffusion of the
single-particle.

Since we are interested in the emptying dynamics of the lat-
eral reservoirs, it is useful to shift the system of L + s/2 along
the x axis. In this way, due to the periodic boundary conditions
along x, the system appears as a single box with two small
lateral apertures of width w (trace of the bottleneck presence)
see Fig. 7. In what follows, we refer as box to denote the
reservoirs of the original problem. The emptying process of
the box (responsible for the clogging) is simulated by replac-
ing the bottleneck by two symmetric absorbing boundaries of
width w placed at ±L. Therefore, the absorbed particles are
virtually those clustered in the bottleneck region. In this way,
we are neglecting any coarsening process occurring in the box
assuming that any particle absorbed into the bottleneck cannot
come back.

More specifically, the box initially contains an ensemble of
2LHρ particles uniformly distributed with density ρ, evolving
according to a diffusive dynamics

ẋ =
√

2γ Dζ, (F1)

where γ is the friction due to the solvent and D the diffusion
coefficient. The term ζ is a white noise with zero average and
unit variance. The parameters are chosen to reproduce the ex-
perimental conditions corresponding to room temperature. To
account for the clogging phenomenology, we choose mixed
boundary conditions along the box perimeter, i.e., they are
periodic on the two edges of size 2L, and reflecting on the H
sides, except for the two apertures (that mimic the bottleneck)
of width w, which are absorbing [as shown in Fig. 7(b)].
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We run simulation of the escaping process from the box to
get an estimate of the clogging time, tcl. Since the absorbed
particles correspond to the particles migrating to the bottle-
neck of the original problem, tcl will be the first time at which
the number of absorbed particles equals the maximal number
of particles contained in the bottleneck (roughly, at packing
density ρp = 1.2). Figure 8 displays the clogging time, tcl, as

a function of the bottleneck width, w, showing that, even in
the noninteracting passive case, the time needed to clog the
bottleneck is at least two or three orders of magnitudes longer
than the time required by the active clogging. This explains
why the passive Brownian system with attractive interactions
(Appendix D) does not exhibit the clogging process in reason-
able times.
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