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Abstract

We give necessary and sufficient conditions for a 4-manifold to be a branched covering of
CP 2, S2 × S2, S2 ×̃ S2 or S3 × S1, which are expressed in terms of the Betti numbers
and the signature of the 4-manifold. Moreover, we extend these results to include branched
coverings of connected sums of the above manifolds. This leads to some new examples of
closed simply connected quasiregularly elliptic 4-manifolds.
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1. Introduction

In [24] the first author proved that any closed orientable PL 4-manifold M is a simple
4-fold covering of S4 branched over a closed locally flat PL surface self-transversally
immersed in S4. Subsequently, in [15] the self-intersections of the branch surface were shown
to be removable once the covering has been stabilized to degree five, obtaining M as a 5-fold
covering of S4 branched over a closed locally flat PL surface embedded in S4.

On the other hand, it is a classical fact of algebraic geometry that any smooth irreducible
projective surface S ⊂ CP n is a holomorphic branched covering of CP 2 obtained by taking
a general projection, where the branch set is an irreducible nodal cuspidal algebraic curve in
CP 2. Even though this result is folklore, a proof appeared surprisingly only in a 2011 paper
by Ciliberto and Flamini [9].

Furthermore, Auroux in [3] extended this result to all closed integral symplectic
4-manifolds M , proving that, roughly, they are realizable as “symplectic” coverings of CP 2

branched over a symplectic nodal cuspidal surface in CP 2. In fact, every closed integral sym-
plectic 4-manifold (M,ω) admits a branched covering M → CP 2, such that the pullback of
the Fubini-Study form ωFS can be suitably perturbed to a symplectic form which is ambient
isotopic to kω for some sufficiently large integer k. Moreover, any symplectic form on M
is homotopic, through symplectic forms, to an integral one realizable as above. It is worth
noting that there is a subtle difference between holomorphic and symplectic singular surfaces
in CP 2: holomorphic nodal singularities are always positive, while the symplectic ones may
also be negative.

Hence, it is interesting to study the topology of branched coverings of CP 2, and a nat-
ural question is the following: which closed oriented 4-manifolds are realizable as branched

coverings of CP 2?

In this paper we give a complete answer to this question, by proving that a closed
connected orientable PL 4-manifold M is a simple branched covering of CP 2 (branched
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over an embedded locally flat surface) if and only if the second Betti number b2(M) is
positive. In addition, we also characterize the 4-manifolds M that are branched coverings of
S2 × S2, S2 ×̃ S2 and S3 × S1. Finally, we generalize these results to branched coverings of
#mCP 2#n CP

2, #n(S
2 × S2) and #n(S

3 × S1).
The proofs of all these results follow the same idea: we split M into two pieces, based

on certain submanifolds N ⊂ M , and represent them as branched coverings of standard
bounded 4-manifolds by using [25], then we glue such branched coverings together. As a
consequence of this argument, we also obtain a representation of the submanifolds N ⊂ M
as branched coverings of suitable standard submanifolds of the base spaces considered above,
see Section 4.

For the sake of convenience, we work in the PL category. Nevertheless, our results can
be easily translated into the smooth category as well, being PL = Diff in dimension four.

The following notations is used throughout the paper: CP 2 and CP 2 for the complex
projective space with the standard and the opposite orientation, respectively; S2 ×̃ S2 ∼=
CP 2 # CP 2 for the twisted S2-bundle over S2; bi(M) for the i-th Betti number of M ;

βM : H2(M)/TorH2(M)×H2(M)/TorH2(M) → Z

for the intersection form of M ; b+2 (M) (resp. b−2 (M)) for the maximal dimension of a vector
subspace of H2(M ;R) where βM is positive (resp. negative) definite; and finally σ(M) for
the signature of M (see [12], [16] or [20]). Now we state our main theorems.

Theorem 1.1. Let M be a closed connected oriented PL 4-manifold. Then, there exists

a branched covering p : M → N with:

(a) N = CP 2 ⇔ b+2 (M) ≥ 1;

(b) N = CP 2 ⇔ b−2 (M) ≥ 1;

(c) N = S2 ×̃ S2 ⇔ b+2 (M) ≥ 1 and b−2 (M) ≥ 1;

(d) N = S2 × S2 ⇔ b+2 (M) ≥ 1 and b−2 (M) ≥ 1;

(e) N = S3 × S1 ⇔ b1(M) ≥ 1.

In all cases, we can assume that p is a simple branched covering of degree d ≤ 4, whose
branch set Bp is a closed locally flat PL surface self-transversally immersed in N . Moreover,

Bp can be desingularized to become embedded in N , with the following estimates for the

degree d: d ≤ 5 in cases (a) and (b) for b2(M) ≥ 2 and βM odd, case (c) for βM odd, case

(d) for βM even, and case (e); d ≤ 6 in cases (a) and (b) for b2(M) ≥ 2 and βM even, case

(c) for βM even, and case (d) for βM odd; d ≤ 9 in cases (a) and (b) for b2(M) = 1.

Remark 1.2. If βM is indefinite, then M is a simple branched covering of all of CP 2,
CP 2, S2 ×̃S2 and S2×S2. On the other hand, if βM is positive (resp. negative) definite, then
among these manifolds CP 2 (resp. CP 2) is the only one of which M is a branched covering.

For the sake of completeness, we also state the following generalization of Theorem 1.1.
The proof is based on the same methods of that of Theorem 1.1, and we will only sketch it.

Theorem 1.3. Let M be a closed connected oriented PL 4-manifold and let m and n
be non-negative integers. Then, there exists a branched covering p : M → N with:

(a) N = #mCP 2#nCP
2 ⇔ b+2 (M) ≥ m and b−2 (M) ≥ n;

(b) N = #n(S
2 × S2) ⇔ b+2 (M) ≥ n and b−2 (M) ≥ n;

(c) N = #n(S
3 × S1) ⇔ π1(M) admits a free group of rank n as a quotient.

In all cases, we can assume that p is a simple branched covering of degree d ≤ 4, whose
branch set Bp is a closed locally flat PL surface self-transversally immersed in N . Moreover,
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Bp can be desingularized to become embedded in N , with the following estimates for the

degree d: d ≤ 5 in case (a) for b2(M) ≥ 2(m + n) and βM odd, case (b) for βM even, and

case (c); d ≤ 6 in case (a) for b2(M) ≥ 2(m + n) and βM even, and case (b) for βM odd;

d ≤ 9 in case (a) for b2(M) < 2(m+ n).

We observe that Theorem 1.3 (a) includes Theorem 1.1 (a), (b) and (c), being S2 ×̃S2 ∼=
CP 2#CP 2. Similarly, it includes the case of N = #m(S

2 × S2)#n(S
2 ×̃ S2) with n ≥ 1,

being (S2 × S2)#CP 2 ∼= (S2 ×̃ S2)#CP 2.

Remark 1.4. As a consequence of Theorem 1.3 (a) and (b), we obtain some simply
connected 4-manifolds N admitting a simple branched covering p : T 4 → N . Namely, they
are #m CP 2#n CP

2 and #n(S
2 × S2) for any m ≤ 3 and n ≤ 3. This extends the previous

result by Rickman [27] concerning the case when N is #2(S
2×S2). All such manifolds N are

quasiregularly elliptic (see Bonk and Heinonen [8] for the definition), since the composition
of the universal covering of T 4 with p is a quasiregular map R

4 → N . The question of which
closed simply connected manifolds are quasiregularly elliptic was posed by Gromov in [13, 14].
According to Prywes [26], b2(M) ≤ 6 for any closed connected orientable quasiregularly
elliptic 4-manifold M , in particular #n(S

2 × S2) is not quasiregularly elliptic for n ≥ 4.
Hence our result implies a sharp answer to the Gromov question for such connected sums,
while the cases of #mCP 2#n CP

2 with m+n ≤ 6 and max(m,n) ≥ 4, as well as the exotic
counterparts of all the above manifolds, remain still open.

It is known that there are smooth 4-manifolds Xm,n homeomorphic but not diffeomorphic
to #m CP 2#n CP

2 for certainm,n ≥ 1, see for example Donaldson [10], Akhmedov and Park
[1, 2] and Park, Stipsicz and Szabó [23]. As an immediate consequence of Theorem 1.3, we
get the following corollary.

Corollary 1.5. For every smooth 4-manifoldXm,n homeomorphic to#mCP 2#nCP
2,

there exists a smooth simple covering p : Xm,n → #mCP 2#n CP
2 of degree ≤ 4 (resp. ≤ 9)

branched over a smooth self-transversally immersed (resp. embedded) surface.

2. Preliminaries

We briefly recall the notion of branched covering, in order to introduce some terminology
(see [6] or [12] for more details).

A map p : M → N between compact oriented PL manifolds having the same dimension
n is called a branched covering if it is a non-degenerate orientation preserving PL map with
the following properties: 1) there is an (n − 2)-dimensional polyhedral subspace Bp ⊂ N ,
the branch set of p, such that the restriction p| : M − p−1(Bp) → N − Bp is an ordinary
covering of finite degree d(p) (we assume Bp to be minimal with respect to this property);
2) in the bounded case, p−1(∂N) = ∂M and p preserves the product structure of a collar
of the boundaries (which implies that the restriction to the boundary p| : ∂M → ∂N is a
branched covering of the same degree of p).

Moreover, p is called simple if the monodromy of the above mentioned ordinary covering
sends every meridian around Bp to a transposition. In this case, also the restriction to the
boundary p| : ∂M → ∂N is simple.

Definition 2.1. Let M and N be compact oriented connected n-manifolds, and let
M1, . . . ,Mk ⊂ M and N1, . . . , Nk ⊂ N be compact oriented locally flat PL submanifolds
embedded in M and N , respectively. By a d-fold branched covering p : (M ;M1, . . . ,Mk) →
(N ;N1, . . . , Nk) we mean a d-fold branched covering p : M → N whose branch set is transver-
sal to all the submanifolds Ni and such that p(Mi) = Ni and pi = p|Mi

: Mi → Ni preserves
the orientation for every i = 1, . . . , k.
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We note that, if p is a (simple) d-fold branched covering as in the definition, then each
restriction pi : Mi → Ni is a (simple) di-fold branched covering for some di ≤ d.

Given two closed oriented locally flat PL surfaces F1, F2 ⊂ M in the closed oriented
PL 4-manifold M , we will denote by F1 · F2 their algebraic intersection, that is the number
βM([F1], [F2]) ∈ Z.

We also need the following technical definition. First, we remind that a properly embed-
ded locally flat PL surface S ⊂ B4 is said to be ribbon if the distance function from the
origin restricted to S, has no local maxima in IntS. In particular, a push in of a PL surface
embedded in S3 ⊂ B4 is ribbon.

Definition 2.2. A simple branched covering p : M → S3 is said to be ribbon fillable if
it can be extended to a simple branched covering q : W → B4 whose branch set Bq ⊂ B4 is
a ribbon surface (which immediately implies that M = ∂W , Bp = ∂Bq ⊂ S3 is a link, and
d(p) = d(q)). For the sake of convenience, we also call ribbon fillable any simple branched
cover p : M → S3

1 ∪ . . . ∪ S3
k that is a disjoint union of ribbon fillable coverings.

This definition is relevant in light of the following theorem, which summarises a classical
result for 4-dimensional branched coverings due to Montesinos [21] (see also [6, 7] for an
explicit direct construction, starting from a Kirby diagram), and an application of it to
3-manifolds obtained by taking into account the Lickorish-Wallace theorem [18, 29].

Theorem 2.3. Any compact connected oriented 4-dimensional 2-handlebody W is a

simple 3-fold covering of B4 branched over a ribbon surface in B4. Hence, every closed

connected oriented 3-manifold is a ribbon fillable 3-fold branched covering of S3.

The degree of a branched covering of a sphere or a ball can be arbitrarily increased by
iterating the operation of stabilisation, according to the following definition.

Definition 2.4. For any d-fold branched covering p : M → N , where N ∼= Sn or
N ∼= Bn, the covering stabilisation of p is the (d + 1)-fold branched covering M → N
obtained from p by adding to the branch set Bp a separate trivial (n − 2)-sphere in Sn

or proper (n − 2)-ball in Bn, respectively, with monodromy (d d+1) for a meridian of it.
By k subsequent applications of this operation, we get a (d + k)-fold branched covering
p′ : M → N , which we call the k-fold stabilisation of p. By construction, p′ turns out to be
a simple branched covering if p is simple. Moreover, if N ∼= S3 and p is ribbon fillable, then
also p′ is ribbon fillable.

The proofs of our results depend on the following theorem, which was established in [25].

Theorem 2.5. Let M be a compact connected oriented PL 4-manifold whose boundary

has k connected components, and let B4
1 , . . . , B

4
k ⊂ S4 be a collection of pairwise disjoint

PL 4-balls bounded by the 3-spheres S3
1 , . . . , S

3
k ⊂ S4, respectively. Any d-fold ribbon fillable

simple branched covering p : ∂M → S3
1 ∪ . . .∪ S3

k of degree d ≥ 4, extends to a simple d-fold
covering q : M → S4− Int(B4

1 ∪ . . .∪B4
k) whose branch set Bq is a locally flat self-transversal

PL surface properly immersed (embedded for d ≥ 5) in S4 − Int(B4
1 ∪ . . . ∪B4

k).

3. Branched coverings of disc bundles and their plumbings

Given a closed connected oriented surface F , we denote by ξF,e : DF,e → F the oriented
disc bundle over F with Euler number e ∈ Z. By abusing notation, we also write F ⊂ IntDF,e

to indicate (the properly embedded oriented surface image of) a PL section F → IntDF,e

of ξF,e.
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Proposition 3.1. If p : F → G is a (simple) branched covering of degree d ≥ 1 between
closed connected oriented surfaces, then the pullback p∗(ξG,e) is bundle isomorphic to ξF,de
for every e ∈ Z. Moreover, for any PL sections F ⊂ IntDF,de and G ⊂ IntDG,e, p lifts to

a fiber-preserving (simple) branched covering p̃ : (DF,de;F ) → (DG,e;G) having the same

degree d and branch set the disjoint union of fiber discs Bp̃ = ξ−1
G,e(Bp).

Proof. To prove the bundle isomorphism p∗(ξG,e) ∼= ξF,de, it is enough to consider two
sections G′, G′′ ⊂ IntDG,e of ξG,e that intersect each other transversally away from ξ−1

G,e(Bp),
and observe that the pullback sections F ′, F ′′ of p∗(ξG,e) satisfy F ′ · F ′′ = d(G′ ·G′′) = de.

Up to the above isomorphism, we obtain a lifting p̃ : DF,de → DG,e associated to the
pullback, which is a (simple) branched covering with branch set ξ−1

G,e(Bp), due to the local
product structure of the bundles. Moreover, given any two sections F and G as in second
part of the statement, we can attain p̃(F ) = G by composing p̃ with an arbitrary bundle
automorphism of ξF,de that sends F to the pullback of G. �

Proposition 3.2. For any connected simple branched covering p : F → S2 of degree

d ≥ 1, the simple branched covering p̃ : (DF,±d;F ) → (DS2,±1;S
2) given by the previous

proposition, restricts to a ribbon fillable branched covering p̃|∂ : ∂DF,±d → ∂DS2,±1
∼= S3.

Proof. By the Lüroth-Clebsch theorem (see Berstein and Edmonds [5], or Bauer and
Catanese [4] for a different approach), simple branched coverings from a closed connected
oriented genus g surface to S2 are classified by the degree. Therefore, up to covering equiva-
lence we can assume that p is the (d−2)-fold stabilisation of the hyperelliptic 2-fold covering
F → S2.

Let n = g(F )+d−1. Then Bp consists of 2n points a1, a
′
1, . . . , an, a

′
n having monodromies

(1 2), (1 2), . . . , (1 2), (1 2), (2 3), (2 3), . . . , (d−1 d), (d−1 d), with respect to a suitable Hurwitz
system. Thus, the branch set Bp̃ consists of 2n discs with those monodromies.

Since the restriction to the boundary of the bundle ξS2,±1 is a Hopf fibration, the branch
set of p̃|∂, which is the boundary of Bp̃, consists of 2n Hopf fibers C1, C

′
1, . . . , Cn, C

′
n, such

that Ci and C ′
i have the same monodromy.

Now, there exist n pairwise disjoint properly embedded ribbon annuli R1, . . . , Rn ⊂ B4,
such that ∂Ri = Ci ∪ C ′

i. Indeed, these can be obtained as the push in of the preimages
by ξS2,±1 of n pairwise disjoint arcs A1, . . . , An ⊂ S2, such that each arc Ai joins ai and a′i.
By choosing these arcs so that they meet the Hurwitz system only at their end points, the
monodromy of p̃|∂ can be extended over B4− (R1∪ . . .∪Rn), yielding a ribbon filling of that
covering. �

For any disc bundles ξF1,e1 : DF1,e1 → F1 and ξF2,e2 : DF2,e2 → F2 over closed connected
oriented surfaces F1 and F2, we can form the positive n-fold plumbing Xn(ξF1,e1, ξF2,e2) of
DF1,e1 and DF2,e2 as follows. We choose two families of pairwise disjoint discs U1, . . . , Un ⊂ F1

and V1, . . . , Vn ⊂ F2, together with local trivializations ξ−1
F1,e1

(Ui) ∼= B2×B2 and ξ−1
F2,e2

(Vi) ∼=
B2 × B2 of the bundles, for i = 1, . . . , n. Then, we define the oriented PL 4-manifold

Xn(ξF1,e1, ξF2,e2) = DF1,e1 ∪ϕ1∪...∪ϕn
DF2,e2 , (1)

where the gluing homeomorphisms ϕi : ξ
−1
F1,e1

(Ui) → ξ−1
F2,e2

(Vi) are assumed to interchange
the base and the fiber up to those local trivializations. We can consider DF1,e1 and DF2,e2 as
subspaces of Xn(ξF1,e1, ξF2,e2), and we call each connected component ξ−1

F1,e1
(Ui) ∼=ϕi

ξ−1
F2,e2

(Vi)
of DF1,e1 ∩DF2,e2 a plumbing region.

Given two PL sections F1 ⊂ IntDF1,e1 and F2 ⊂ IntDF2,e2 of ξF1,e1 and ξF2,e2, respectively,
we can choose the above trivializations in such a way that all the intersections F1∩ξ−1

F1,e1
(Ui)
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and F2 ∩ ξ−1
F2,e2

(Vi) correspond to B2 × {0} ⊂ B2 × B2. In this way, we can consider

F1, F2 ⊂ IntXn(ξF1,e1, ξF2,e2) (2)

as properly embedded oriented PL surfaces which intersect transversally and positively at
n points, in such way that Xn(ξF1,e1, ξF2,e2) can be thought as a regular neighborhood of
F1 ∪ F2.

Remark 3.1. The triple (Xn(ξF1,e1, ξF2,e2);F1, F2) does not depend, up to PL homeo-
morphisms, on the choices involved in the construction.

Proposition 3.3. For any (simple) d-fold branched coverings p1 : F1 → G1 and

p2 : F2 → G2 between closed connected oriented surfaces, any disc bundles ξFi,dei and ξGi,ei,

and any PL sections Fi ⊂ ξFi,dei and Gi ⊂ ξGi,ei, for i = 1, 2, there exists a (simple) d-fold
branched covering

p̃ : (Xd(ξF1,de1, ξF2,de2);F1, F2) → (X1(ξG1,e1, ξG2,e2);G1, G2).

In addition, p̃ is fiber-preserving away from the plumbing regions and sends each plumbing

region upstairs homeomorphically to the plumbing region downstairs, and the branch set Bp̃

is a disjoint union of fiber discs, coinciding with Bp̃1 ∪Bp̃2.

Proof. Proposition 3.1 yields d-fold fiber-preserving branched coverings p̃1 : DF1,de1 →
DG1,e1 and p̃2 : DF2,de2 → DG2,e2.

Let us consider the two discs U ⊂ G1 and V ⊂ G2 that determine the plumbing region
of X1(ξG1,e1, ξG2,e2) as ξ−1

G1,e1
(U) ∼=ϕ ξ−1

G2,e2
(V ), where ϕ is the gluing homeomorphism. By

Remark 3.1, we can assume that U ∩ Bp1 = 6O and V ∩Bp2 = 6O.
It follows that p−1

1 (U) is a disjoint union of d discs U1, . . . , Ud ⊂ F1, and similarly
p−1
2 (V ) is a disjoint union of d discs V1, . . . , Vd ⊂ F2. Taking into account that p̃1 and
p̃2 are fiber-preserving, by Remark 3.1 again, we can assume that the plumbing regions
of Xd(ξF1,de1, ξF2,de2) are ξ−1

F1,de1
(Ui) ∼=ϕi

ξ−1
F2,de2

(Vi), and that the gluing homeomorphisms
ϕi : ξ

−1
F1,de1

(Ui) → ξ−1
F2,de2

(Vi) are determined by the equations

p̃2 ◦ ϕi = ϕ ◦ p̃1,

for i = 1, . . . , d. Therefore, the maps p̃1 and p̃2 can be glued together to give a map

p̃ : Xd(ξF1,de1 , ξF2,de2) → X1(ξG1,e1, ξG2,e2),

which in turn is a branched covering since the gluing is by homeomorphisms, and it is fiber-
preserving away from the plumbing regions because so are p̃1 and p̃2. Thus, Bp̃ = Bp̃1 ∪Bp̃2

is a disjoint union of fiber discs. Finally, the equalities p̃(F1) = p̃1(F1) = G1 and p̃(F2) =
p̃2(F2) = G2, and the fact that p̃ sends each plumbing region upstairs homeomorphically to
the plumbing region downstairs, are obvious by the construction. �

Proposition 3.4. Given any connected simple branched coverings p1 : F1 → S2 and

p2 : F2 → S2 of degree d ≥ 1 and any integer e ∈ Z, we have that ∂X1(ξS2,e, ξS2,0) ∼= S3 and

the simple branched covering

p̃ : Xd(ξF1,de, ξF2,0) → X1(ξS2,e, ξS2,0),

of the previous proposition, restricts to a ribbon fillable branched covering

p̃|∂ : ∂Xd(ξF1,de, ξF2,0) → ∂X1(ξS2,e, ξS2,0) ∼= S3.
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Proof. The manifold X1(ξS2,e, ξS2,0) admits a handlebody decomposition with two 2-
handles attached to B4 along the components of the Hopf link, one with framing e to give
DS2,e and the other with framing 0 to give DS2,0. In the corresponding Kirby diagram of the
boundary, the 0-framed component of the framed link can be cancelled with the e-framed
one to give a PL homeomorphism ∂X1(ξS2,e, ξS2,0) ∼= S3.

The branch set Bp̃ coincides with Bp̃1 ∪ Bp̃2 by the previous proposition, and in the
above handlebody decomposition is given by 2(g(F1) + d− 1) discs parallel to the co-core of
the 2-handle with framing e and 2(g(F2) + d − 1) discs parallel to the co-core of the other
2-handle. The discs of each family come in pairs with equal monodromies, as in the proof of
Proposition 3.2.

By looking at the boundary, we get the left side of Figure 1, which depicts Bp̃1|∂ and
Bp̃2|∂ as two families of circles linked with the corresponding framed unknots. Up to the PL
homeomorphism ∂X1(ξS2,e, ξS2,0) ∼= S3, we get the boundary link in the right side of Figure
1. To see this, we first slide the circles corresponding to Bp̃2|∂, over the unknot with framing
e, making them unlinked with the one with framing 0. Subsequently, we slide all the branch
circles over the 0-framed unknot to separate them from the framed link, which can be now
cancelled, realising the surgery that yields the PL homeomorphism with S3.

Figure 1.Ribbon fillability of p̃|∂ .

At this point, the ribbon fillability follows as in the last part of the proof of Proposition
3.2, by extending the monodromy over the complement in B4 of a family of g(F1) + g(F2) +
2d− 2 bands, which are the push in of the bands showed in the right side of Figure 1. �

4. Branched coverings constructions for submanifolds

We are ready to state and prove our results for branched coverings relative to certain
submanifolds, as we mentioned in the Introduction.

Theorem 4.1. Let M be a closed connected oriented PL 4-manifold and F ⊂ M be

a closed connected oriented locally flat PL surface. If d = |F · F | ≥ 4, then there exists a

simple d-fold branched covering:

(a) p : (M ;F ) → (CP 2;CP 1) if F · F is positive;

(b) p : (M ;F ) → (CP 2;CP 1) if F · F is negative.

In both cases, F = p−1(CP 1), and Bp is a closed locally flat PL surface self-transversally

immersed (embedded for d ≥ 5) in CP 2 or CP 2.

Proof. Case (b) immediately follows from case (a) by reversing the orientation of M . So,
it suffices to prove case (a), supposing d = F · F ≥ 4.

Let TF ⊂ M be a tubular neighborhood of F in M , and TCP 1 ⊂ CP 2 be a tubular neigh-
borhood of CP 1 in CP 2. Then, given any simple d-fold branched covering f : F → S2 and
taking into account the PL homeomorphisms TF

∼= DF,d and TCP 1
∼= DCP 1,1

∼= DS2,1, we can
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apply Proposition 3.1 to obtain a simple d-fold branched covering t : (TF , F ) → (TCP 1 , CP 1).
Moreover, the restriction t|∂ : ∂TF → ∂TCP 1 is ribbon fillable by Proposition 3.2.

We set W = Cl(M − TF ) and Y = Cl(CP 2 − TCP 1) ∼= B4. Then, Theorem 2.5 allows
us to extend t|∂ to a simple d-fold covering q : W → Y branched over a self-transversally
immersed (embedded for d ≥ 5) surface.

Finally, we can define the desired covering p as the union of the coverings t and q, which
share the same restriction to the boundary. Namely, p = t ∪∂ q : M = TF ∪∂ W → CP 2 =
TCP 1 ∪∂ Y . �

Theorem 4.2. Let M be a closed connected oriented PL 4-manifold and F1, F2 ⊂ M
be two closed connected oriented locally flat PL surfaces transversal to each other, whose all

intersection points are positive. If F1 ·F1 = n d, F1 ·F2 = d and F2 ·F2 = 0 for some integers

n and d ≥ 4, then there exists a simple d-fold branched covering:

(a) p : (M ;F1, F2) → (S2×S2;S2
1 , S

2
2), with S2

1 and S2
2 respectively a section with self-inter-

section n and a fiber of the trivial bundle S2 × S2 → S2, if n is even;

(b) p : (M ;F1, F2) → (S2 ×̃S2;S2
1 , S

2
2), with S2

1 and S2
2 respectively a section with self-inter-

section n and a fiber of the twisted bundle S2 ×̃ S2 → S2, if n is odd.

In both cases, Fi = p−1(S2
i ), and Bp is a closed locally flat PL surface self-transversally

immersed (embedded for d ≥ 5) in S2 × S2 or S2 ×̃ S2.

We observe that a section as specified in the above statement exists for every integer
n. In fact, given two copies of the trivial bundle B2 × S2 → B2, we can glue them along
the boundary by the map (α, x) 7→ (α, ρnα(x)), with ρα : R

3 → R
3 the rotation of α radians

around the third axis. In this way, we get the trivial bundle S2 × S2 → S2 or the twisted
bundle S2 ×̃S2 → S2, depending on the parity of n, with two natural sections deriving from
the two copies of B2 × {(0, 0,±1)}, both having self-intersection n.

Proof. For the sake of convenience, we denote by ξ : E → S2 the trivial bundle S2×S2 →
S2 or the twisted bundle S2 ×̃ S2 → S2, depending on whether n is even or odd.

We can choose tubular neighborhoods TF1
of F1 and TF2

of F2, in such a way that their
union TF1

∪ TF2
is a regular neighborhood of F1 ∪ F2 in M . It follows that there is a PL

homeomorphism
(TF1

∪ TF2
;F1, F2) ∼= (Xd(ξF1,dn, ξF2,0);F1, F2),

where Xd(ξF1,dn, ξF2,0) is the d-fold plumbing defined in Section 3.
Similarly, we can choose tubular neighborhoods TS2

1
of S2

1 and TS2
2
of S2

2 , in such a way
that their union TS2

1
∪ TS2

2
is a regular neighborhood of S2

1 ∪ S2
2 in E. As above, there is a

PL homeomorphism

(TS2
1
∪ TS2

2
;S2

1 , S
2
2)

∼= (X1(ξS2
1
,n, ξS2

2
,0);S

2
1 , S

2
2).

Now, let f1 : F1 → S2
1 and f2 : F2 → S2

2 be simple d-fold branched coverings. By Propo-
sition 3.3, we get a simple d-fold branched covering

t : (TF1
∪ TF2

;F1, F2) → (TS2
1
∪ TS2

2
;S2

1 , S
2
2),

whose restriction t|∂ : ∂(TF1
∪ TF2

) → ∂(TS2
1
∪ TS2

2
) is ribbon fillable by Proposition 3.4.

Looking at the complement of those tubular neighborhoods, we put W = Cl(M − (TF1
∪

TF2
)) and Y = Cl(E− (TS2

1
∪TS2

2
)) ∼= B4. Then, we can use Theorem 2.5 for extending t|∂ to

a simple d-fold covering q : W → Y branched over a self-transversally immersed (embedded
for d ≥ 5) PL surface, and conclude the proof by putting p = t∪∂ q : M = (TF1

∪TF2
)∪∂W →

E = (TS2
1
∪ TS2

2
) ∪∂ Y . �
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Theorem 4.3. Let M be a closed connected oriented PL 4-manifold and N ⊂ M be a

closed connected oriented (locally flat) PL 3-manifold. For any d ≥ 4 there exists a simple

d-fold branched covering:

(a) p : (M ;N) → (S4;S3) if N disconnects M ;

(b) p : (M ;N) → (S3 × S1;S3 = S3 × {∗}) if N does not disconnect M .

In both cases, N = p−1(S3), and Bp is a closed locally flat PL surface self-transversally

immersed (embedded for d ≥ 5) in S4 or S3 × S1.

Proof. According to Theorem 2.3, and up to covering stabilization, there exists a ribbon
fillable d-fold branched covering c : N → S3.

If N disconnects M , let M1,M2 ⊂ M be the closures of the two connected components of
M −N . Then, M1 and M2 are two PL compact oriented 4-manifolds with ∂M1 = ∂M2 = N ,
such that M = M1 ∪M2. By Theorem 2.5, the branched covering c extends to two simple
d-fold branched coverings p1 : M1 → S4

− and p2 : M2 → S4
+, both branched over a locally flat

PL surface self-transversally immersed (embedded if d ≥ 5) in the base space, where Sn
± ⊂ Sn

are the two hemispheres bounded by Sn−1 ⊂ Sn. Therefore, we can put p = p1∪p2 : M → S4.

In the case where N does not disconnectM , we consider the decompositionM = M1∪M2,
with M1 a collar of N in M , and M2 = Cl(M − M1). The simple d-fold covering p1 =
c×idS1

−

: M1
∼= N×S1

− → S3×S1
− is branched over the locally flat PL surface Bc×S1

−, which
is properly embedded in S3 × S1

−. The restriction of p1 to the boundary is a ribbon fillable
d-fold branched covering ∂M1 = ∂M2 → ∂(S3 × S1

−) = ∂(S3 × S1
+), which by Theorem 2.5

admits a simple d-fold extension p2 : M2 → S3 × S1
+ branched over a locally flat PL surface

self-transversally immersed (embedded if d ≥ 5) in S3 × S1
+. So, also in this case we can

conclude by putting p = p1 ∪ p2 : M → S3 × S1. �

Our last result of this section is not related to the main theorem. Still, we include it
for the sake of completeness, since it provides a representation of surfaces in 4-manifolds as
branched covering of trivial 2-spheres in S4 (cf. [22] for links in 3-manifolds).

Theorem 4.4. Let M be a closed connected oriented PL 4-manifold and F ⊂ M be

a closed oriented locally flat PL surface with k connected components F1, . . . , Fk, such that

Fi · Fi = 0 for every i = 1, . . . , k (that is, the normal bundle νF is trivial). Then, for any

d ≥ 4 there is a simple d-fold branched covering p : (M ;F ) → (S4;Tk), with Tk ⊂ S4 the

trivial 2-link with k spherical components and Bp ⊂ S4 a closed locally flat PL surface self-

transversally immersed (embedded for d ≥ 5) in S4, which is transversal to Tk. Moreover,

p can be chosen in such a way that each restriction p|Fi
: Fi → p(Fi) ∼= S2 is equivalent to

any given simple branched covering of degree di ≤ d − 2. In particular, if F is consists of

2-spheres, we can assume Bp ∩ Tk = 6O, hence p is the trivial d-fold covering over Tk.

We note that any closed oriented locally flat PL surface F ⊂ S4 admits a branched
covering representation as in the theorem.

For the proof of Theorem 4.4 we need two lemmas.

Lemma 4.5. Let C ⊂ B3 be a properly embedded (not necessarily connected) compact

curve. Then, the surface F = C ×B1 ⊂ B3 × B1 ∼= B4 is ribbon.

Proof. Up to ambient isotopy, we can assume that the origin 0 ∈ B3 does not be-
long to C and that the image D = π0(C) ⊂ S2 of C under the radial projection
π0 : B

3 − {0} → S2 from 0 forms only transversal double points (it gives a diagram of C).
Let π(0,0) : (B

3 × B1) − {(0, 0)} → ∂(B3 × B1) = (S2 × B1) ∪ (B3 × S0) ∼= S3 the radial
projection from the origin (0, 0) ∈ B3×B1. Then, for each x ∈ C the image under π(0,0) of the

– 9 –



segment {x}×B1 is given by π(0,0)({x}×B1) = (π0({x})×B1)∪([x, π0(x)]×S0) ⊂ ∂(B3×B1),
where [x, π0(x)] ⊂ B3 denotes the segment spanned by x and π0(x). It follows that the image
π(0,0)(F ) ⊂ ∂(B3 ×B1) forms only ribbon intersections, consisting of a single double arc for
each double point of D. Hence, F is a ribbon surface. �

Remark 4.6. In the smooth category, one could argue that the surface F can be realized
in B4 as a ruled surface, not passing through the origin. Then, the distance from the origin
restricts to a function on F without local maxima in IntF , which implies that F is ribbon.

Lemma 4.7. Let N1, . . . , Nk ⊂ M be pairwise disjoint compact oriented (locally flat)
PL 3-manifolds with non-empty boundary, and let B3

1 , . . . , B
3
k ⊂ S4 be pairwise disjoint

PL 3-balls. For every i = 1, . . . , k, let ci : Ni → B3
i be a simple d-fold branched covering,

with Bci ⊂ B3
i a properly embedded compact curve and d ≥ 4. Then, c = c1 ∪ . . . ∪ ck

extends to a simple d-fold branched covering p : M → S4 with Bp a locally flat PL surface

self-transversally immersed (embedded for d ≥ 5) in S4.

Proof. We consider pairwise disjoint collars Ci = C(Ni) ⊂ M of the 3-manifolds Ni in
M and pairwise disjoint collars Di = C(B3

i ) ⊂ S4 of the 3-balls B3
i in S4. Then, we have

Ci
∼= Ni×B1 withNi canonically identified toNi×{0}, andDi

∼= B3
i ×B1 with B3

i canonically
identified to B3

i × {0}. Up to these identifications and assuming all the collars positively
oriented, the branched coverings ci extend to simple d-fold coverings c′i = ci×idB1 : Ci → Di.
By Lemma 4.5, each branch set Bc′

i
is a ribbon surface in Di

∼= B4. Now, we consider the
simple d-fold branched covering p1 = ∪ic

′
i : ∪iCi → ∪iDi, and put X = Cl(M − ∪iCi) and

Y = Cl(S4 − ∪iDi). The restriction to the boundary of p1 gives a simple d-fold branched
covering p1|∂ : ∂X → ∂Y , which is ribbon fillable by construction. Therefore, Theorem 2.5
allows us to extend p1|∂ to a simple d-fold branched covering p2 : X → Y with Bp2 a locally
flat PL surface self-transversally immersed (embedded for d ≥ 5) in Y . Thus, we can conclude
the proof by putting p = p1 ∪∂ p2. �

Proof of Theorem 4.4. Since the normal bundle νF is trivial, for every i = 1, . . . , k we
can find a 3-dimensional locally flat PL ribbon Ni

∼= Fi× [0, 1] in M such that ∂Ni = Fi∪F ′
i ,

with F ′
i ⊂ M a “parallel” copy of Fi oriented in the opposite way. We assume the Ni’s to

be pairwise disjoint. Let N ′
i ⊂ M be the 3-manifold obtained by removing the interiors of

d− di − 2 disjoint PL 3-balls from IntNi.
Each surface ∂N ′

i admits a d-fold simple branched covering fi : ∂N
′
i → S2, where Fi

consists of the sheets 1 to di, F
′
i consists of the sheets di+1 and di+2, while the boundaries

of the removed 3-balls consists of the remaining d − di − 2 ≥ 0 sheets trivially covering
S2. By Corollary 6.3 in [5], this can be extended to a d-fold simple branched covering
ci : N

′
i → B3. After having identified the base spaces of such coverings with a family of

disjoint PL 3-balls B3
1 , . . . , B

3
k ⊂ S4, we can apply Lemma 4.7 to get a simple covering

p : (M ;N ′
1, . . . , N

′
k) → (S4;B3

1 , . . . , B
3
k) of degree d, branched over a locally flat PL surface

self-transversally immersed (embedded for d ≥ 5) in S4. Then, p is the desired branched cov-
ering, since p(F ) = ∂(∪i B

3
i ) is a trivial link of k spheres. Moreover, by the Lüroth-Clebsch

classification of simple branched coverings of S2 (see [5] or [4]), the restrictions p|Fi
can be

arbitrarily chosen, up to isotopy, with the given degrees di.
If Fi

∼= S2 for every i, we set di = 1 and at the beginning of the proof we remove the
interiors of d − 2 balls from Ni (instead of d − 3) so that N ′

i has d boundary components,
all homeomorphic to a sphere. Then, by following the same argument, we obtain the desired
simple branched covering p : M → S4 such that Tk ∩Bp = 6O. �
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5. The proofs of the main theorems

In this section we prove the Theorems 1.1 and 1.3 stated in the Introduction. For that
we need some algebraic properties of the intersection forms of PL 4-manifolds, which are
stated in the next lemmas.

Lemma 5.1. Let M be a closed connected oriented PL 4-manifold. If b+2 (M) ≥ 1, there
exists a class ϕ ∈ H2(M)/TorH2(M) such that βM(ϕ, ϕ) = k for each of the followings

k =





4 in any case

6 if βM is even

9 if βM is odd

5 if βM is odd and b2(M) ≥ 2.

If in addition b−2 (M) ≥ 1, there exist two classes ϕ1, ϕ2 ∈ H2(M)/TorH2(M) whose inter-

section matrix Φ = (βM(ϕi, ϕj)) is

Φ =

(
kn k
k 0

)
,

for every n = 0, 1 and each of the followings

k =

{ 4 in any case

5 + n if βM is even

6− n if βM is odd.

Proof. We start by proving the first part, where b+2 (M) ≥ 1. If βM is odd, then it is
diagonalizable. This follows by a theorem of Donaldson for definite intersection forms of
closed oriented PL 4-manifolds [11], and by the Serre classification theorem of indefinite
unimodular integral forms [28, 20]. Hence, there exists δ1 ∈ H2(M)/TorH2(M) such that
βM(δ1, δ1) = 1, and for b2(M) ≥ 2 there exists also δ2 ∈ H2(M)/TorH2(M) such that
βM(δ1, δ2) = 0 and βM(δ2, δ2) = ±1.

Otherwise, if βM is even, then, again by Donaldson’s theorem [11], it is indefinite, and so
it contains a hyperbolic direct summand (see [20], [12] or [16]). This is a sublattice having a
basis η1, η2 ∈ H2(M)/TorH2(M), such that βM(η1, η1) = βM(η2, η2) = 0 and βM(η1, η2) = 1.

In both cases, odd and even, there exists ϕ ∈ H2(M)/TorH2(M) such that βM(ϕ, ϕ) = 4,
with ϕ = 2δ1 for βM odd, and ϕ = η1 + 2η2 for βM even. For the remaining cases, we
take: ϕ = η1 + 3η2, giving k = 6, if βM is even; ϕ = 3δ1, giving k = 9, if βM is odd;
ϕ = (2− βM(δ2, δ2)) δ1 + 2δ2, giving k = 5, if βM is odd and b2(M) ≥ 2.

Next, we prove the second part, where b+2 (M) ≥ 1 and b−2 (M) ≥ 1. If βM is odd, then
it is diagonalizable and so there exist δ1, δ2 ∈ H2(M)/TorH2(M) such that βM(δ1, δ1) = 1,
βM(δ1, δ2) = 0, and βM(δ2, δ2) = −1. Then, we get: k = 4 and n = 0, for ϕ1 = δ1 + δ2 and
ϕ2 = 2(δ1 − δ2); k = 4 and n = 1, for ϕ1 = 2δ1 and ϕ2 = 2(δ1 − δ2); k = 6 and n = 0, for
ϕ1 = δ1 + δ2 and ϕ2 = 3(δ1 − δ2); k = 5 and n = 1, for ϕ1 = 3δ1 + 2δ2 and ϕ2 = δ1 − δ2.

If instead βM is even, there exists a hyperbolic pair η1, η2 ∈ H2(M)/TorH2(M), as in
the analogous case of the previous part of the proof. Then, we get: k = 4 and n = 0, for
ϕ1 = η1 and ϕ2 = 4η2; k = 4 and n = 1, for ϕ1 = η1 + 2η2 and ϕ2 = 4η2; k = 5 and n = 0,
for ϕ1 = η1 and ϕ2 = 5η2; k = 6 and n = 1, for ϕ1 = η1 + 3η2 and ϕ2 = 6η2. �

Lemma 5.2. Let M be a closed connected oriented PL 4-manifold with b2(M) ≥ 1.
Then, for every non-negative integers m ≤ b+2 (M) and n ≤ b−2 (M) there exists a sublattice

Λm,n(k) ⊂ (H2(M)/TorH2(M), βM) such that

Λm,n(k) ∼= ⊕m〈k〉 ⊕n〈−k〉,
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for each of the followings

k =






4 in any case

6 if βM is even

9 if βM is odd

5 if βM is odd and b2(M) ≥ 2(m+ n)

where 〈k〉 is the integral rank 1 lattice of determinant k.

Proof. If βM is odd, arguing as in the proof of Lemma 5.1, we have that the lattice
(H2(M)/TorH2(M), βM ) is isomorphic to

⊕b+
2
(M)〈1〉 ⊕b−

2
(M)〈−1〉.

Thus, Λm,n(4) and Λm,n(9) can be obtained by taking the doubles of some generators in the
former case, and the triples in the latter. Moreover, we can obtain Λm,n(5) if b2(M) ≥ 2(m+n)
by the same argument as in the proof of Lemma 5.1 applied to pairs of generators.

If βM is even, then the lattice (H2(M)/TorH2(M), βM ) is isomorphic to ⊕a(±E8)⊕bH
for a = |σ(M)|/8 and b = b∓2 (M) ≥ 1, where E8 is the symmetric rank 8 positive definite
indecomposable unimodular lattice and H is the unimodular hyperbolic rank 2 integral
lattice. With respect to a suitable basis, E8 can be represented by the matrix

A8 =




2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2




.

In this basis, the sublattice of E8 spanned by the columns g1, . . . , g8 of the matrix

G =




0 0 0 0 0 0 0 −2
1 0 0 0 0 1 1 3
0 0 0 0 0 −2 −2 −4
0 1 0 0 1 2 3 5
0 0 0 0 −2 −2 −4 −6
0 0 1 0 1 1 3 4
0 0 0 0 0 0 −2 −2
0 0 0 1 1 1 2 3




is isomorphic to ⊕8〈2〉. We then obtain ⊕8〈4〉 ⊂ E8 as the sublattice spanned by all vectors
of the form g2i−1 ± g2i for i ∈ {1, 2, 3, 4}.

Moreover, we obtain ⊕8〈6〉 ⊂ E8 as the sublattice spanned by all vectors of the form

gi+1 + gi+2 − gi+3, gi+1 − gi+2 + gi+4,
gi+1 + gi+3 − gi+4, gi+2 + gi+3 + gi+4,

for i ∈ {0, 4}.
On the other hand, we can find sublattices 〈k〉 ⊕ 〈−k〉 ⊂ H , for k = 4, 6. Therefore, the

lattice (H2(M)/TorH2(M), βM ) with βM even, contains a sublattice isomorphic to

⊕b+
2
(M)〈k〉 ⊕b−

2
(M)〈−k〉

for k = 4, 6, from which we get a sublattice Λm,n(k) for k = 4, 6. �
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Lemma 5.3. Let M be a closed connected oriented PL 4-manifold. Let n be an integer

such that 1 ≤ n ≤ min(b+2 (M), b−2 (M)). Then, the lattice (H2(M)/TorH2(M), βM) contains
a sublattice isomorphic to ⊕nkH if βM is even, and sublattice isomorphic to ⊕n2kH if βM is

odd, for every integer k ≥ 1, where H is the unimodular hyperbolic rank 2 integral lattice.

If in addition n < max(b+2 (M), b−2 (M)), there is a sublattice isomorphic to ⊕nkH for every

integer k ≥ 1 also when βM is odd.

Proof. If βM is even, then there is a sublattice of (H2(M)/TorH2(M), βM) which is
isomorphic to ⊕nH . Then, chosen a basis of this sublattice formed by hyperbolic pairs
η1, η

′
1, . . . , ηn, η

′
n such that βM(ηi, ηi) = βM(η′i, η

′
i) = 0 and βM(ηi, η

′
i) = 1 for every i =

1, . . . , n, we can take the sublattice spanned by all vectors of the form ηi, kη
′
i, for i = 1, . . . , n.

If instead βM is odd, then the intersection form is diagonalisable, hence it contains a
sublattice isomorphic to ⊕n(〈1〉 ⊕ 〈−1〉). Let {ϕ1, ϕ

′
1, . . . , ϕn, ϕ

′
n} be an orthogonal basis of

this sublattice such that βM(ϕi, ϕi) = −βM(ϕ′
i, ϕ

′
i) = 1, for every i = 1, . . . , n. Then, it is

enough to take the sublattice spanned by all vectors of the form ϕi + ϕ′
i, k(ϕi − ϕ′

i), for
i = 1, . . . , n.

For the last part of the statement, suppose βM odd and n < max(b+2 (M), b−2 (M)). Let
a = b+2 (M)− n and b = b−2 (M)− n. Then, by Serre’s classification [28, 20], the intersection
lattice of M is isomorphic to ⊕nH ⊕a 〈1〉 ⊕b 〈−1〉, since this last form is indefinite, has the
same rank and signature of M , and it is odd because a or b is non-zero. Hence, we get a
sublattice isomorphic to ⊕nkH for every integer k ≥ 1. �

We are now ready to prove Theorems 1.1 and 1.3, which we state again here below for
the reader convenience.

Theorem 1.1. Let M be a closed connected oriented PL 4-manifold. Then, there exists

a branched covering p : M → N with:

(a) N = CP 2 ⇔ b+2 (M) ≥ 1;

(b) N = CP 2 ⇔ b−2 (M) ≥ 1;

(c) N = S2 ×̃ S2 ⇔ b+2 (M) ≥ 1 and b−2 (M) ≥ 1;

(d) N = S2 × S2 ⇔ b+2 (M) ≥ 1 and b−2 (M) ≥ 1;

(e) N = S3 × S1 ⇔ b1(M) ≥ 1.

In all cases, we can assume that p is a simple branched covering of degree d ≤ 4, whose
branch set Bp is a closed locally flat PL surface self-transversally immersed in N . Moreover,

Bp can be desingularized to become embedded in N , with the following estimates for the

degree d: d ≤ 5 in cases (a) and (b) for b2(M) ≥ 2 and βM odd, case (c) for βM odd, case

(d) for βM even, and case (e); d ≤ 6 in cases (a) and (b) for b2(M) ≥ 2 and βM even, case

(c) for βM even, and case (d) for βM odd; d ≤ 9 in cases (a) and (b) for b2(M) = 1.

Proof. First of all, we recall the well known fact that in a closed connected oriented
PL 4-manifold M any homology class α ∈ H2(M) can be represented by a closed oriented
locally flat PL surface F ⊂ M (see [12] or [16]). Moreover, F can be easily made connected
by embedded surgery. Similarly, any homology class α ∈ H3(M) can be represented by a
closed oriented locally flat PL 3-manifold N ⊂ M , but in this case N can be made connected
only if α is primitive (see [19]).

(a). Given any d-fold branched covering p : M → CP 2, we can assume up to PL isotopy
that Bp ⊂ CP 2 meets CP 1 transversally. Then, F = p−1(CP 1) ⊂ M is a closed oriented
locally flat PL surface, which represents a non-zero element ϕ ∈ H2(M)/TorH2(M) such
that βM(ϕ, ϕ) = d > 0. Hence, b+2 (M) ≥ 1.
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For the converse, assume that b+2 (M) ≥ 1. By the first part of Lemma 5.1, there exists
a class ϕ ∈ H2(M)/TorH2(M) such that βM(ϕ, ϕ) = 4. Then, the desired 4-fold branched
covering p : M → CP 2 can be obtained by applying Theorem 4.1 (a) in the case d = 4 to any
closed connected oriented locally flat PL surface F ⊂ M representing the homology class ϕ.
In this way, the branch set Bp turns out to be a closed locally flat PL surface self-transversally
immersed in CP 2.

To obtain a non-singular branch surface according to the cases stated in the theorem, we
apply Theorem 4.1 (a) with d ≥ 5 to any closed connected oriented locally flat PL surface
F ⊂ M representing the homology class ϕ provided by the corresponding cases of the first
part of Lemma 5.1 with k = d, taking into account that βM is necessarily odd if b2(M) = 1.

(b). This case immediately follows from case (a), by reversing the orientations.

(c) and (d). As in the proof of Theorem 4.2, denote by ξ : E → S2 the bundle S2×S2 →
S2 or S2 ×̃S2 → S2, depending on the case, and let S2

1 , S
2
2 ⊂ E be any PL section and fiber

of ξ, respectively.

Given a branched d-fold covering p : M → E, we can assume up to PL isotopy that
Bp ⊂ E meets both the surfaces S2

1 and S2
2 transversally. Then, F1 = p−1(S2

1) ⊂ M and
F2 = p−1(S2

2) ⊂ M are closed oriented locally flat PL surfaces such that F1 ·F2 = d > 0 and
F2 · F2 = 0. It follows that the homology class ϕ ∈ H2(M)/TorH2(M) represented by F2 is
non-zero and βM(ϕ, ϕ) = 0. Therefore, βM is indefinite, hence b+2 (M) ≥ 1 and b−2 (M) ≥ 1.

Conversely, assuming b+2 (M) ≥ 1 and b−2 (M) ≥ 1, let ϕ1, ϕ2 ∈ H2(M)/TorH2(M) be the
homology classes given by the second part of Lemma 5.1 with n = 0 for E = S2×S2 or n = 1
for E = S2 ×̃ S2, and k = d depending on the case of the statement that we want to realize.
We represent ϕ1 and ϕ2 by closed connected oriented locally flat PL surfaces F1, F2 ⊂ M ,
respectively, which can be assumed to be transversal to each other. Then, we can perform an
embedded surgery, without changing the homology classes of the surfaces but increasing the
genus of one of them, to eliminate each pair of opposite intersection points (if any) between
F1 and F2. This determines new surfaces F1 and F2 with d transversal positive intersection
points. At this point, the wanted branched covering p : M → E can be obtained by applying
Theorem 4.2 to (M ;F1, F2).

(e). Given any d-fold branched covering p : M → S3 × S1, we can assume up to PL
isotopy that Bp ⊂ S3×S1 meets S3×{∗} transversally and is disjoint from {∗}×S1. Then,
N = p−1(S3 × {∗}) ⊂ M and C = p−1({∗} × S1) ⊂ M are closed oriented locally flat
PL submanifolds of dimensions 3 and 1, respectively, such that N · C = d > 0. Then, C
represents a non-trivial homology class in H1(M)/TorH1(M), and so b1(M) ≥ 1.

Conversely, if b1(M) ≥ 1, and hence b3(M) ≥ 1, let N ⊂ M be a closed connected
oriented locally flat 3-manifold representing a primitive non-trivial element of H3(M). Then
N does not disconnect M and we can apply Theorem 4.3 (b) to get the desired branched
covering p : M → S3 × S1. �

Theorem 1.3. Let M be a closed connected oriented PL 4-manifold and let m and n
be non-negative integers. Then, there exists a branched covering p : M → N with:

(a) N = #mCP 2#nCP
2 ⇔ b+2 (M) ≥ m and b−2 (M) ≥ n;

(b) N = #n(S
2 × S2) ⇔ b+2 (M) ≥ n and b−2 (M) ≥ n;

(c) N = #n(S
3 × S1) ⇔ π1(M) admits a free group of rank n as a quotient.

In all cases, we can assume that p is a simple branched covering of degree d ≤ 4, whose
branch set Bp is a closed locally flat PL surface self-transversally immersed in N . Moreover,

Bp can be desingularized to become embedded in N , with the following estimates for the

degree d: d ≤ 5 in case (a) for b2(M) ≥ 2(m + n) and βM odd, case (b) for βM even, and
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case (c); d ≤ 6 in case (a) for b2(M) ≥ 2(m + n) and βM even, and case (b) for βM odd;

d ≤ 9 in case (a) for b2(M) < 2(m+ n).

Proof. We only sketch the proof, because it follows the same ideas of the proof of The-
orem 1.1. For items (a) and (b) the implications to the right are straightforward, so we only
discuss the implications to the left.

(a). We consider the proper sublattice Λm,n(d) ⊂ H2(M)/TorH2(M) given by Lemma
5.2, according to the particular case of item (a) that we want to prove, and represent the base
of Λm,n(d) by disjoint embedded oriented connected locally flat PL surfaces F1, . . . , Fm+n ⊂
M . We also consider CP 1

1, . . . , CP
1
m+n ⊂ N , where CP 1

i is a projective line in the i-th
connected summand of N = #mCP 2#n CP

2.
Next, we construct d-fold simple branched coverings ti : (TFi

;Fi) → (TCP 1
i

;CP 1
i ) between

tubular neighborhoods, based on Proposition 3.1 as in the proof of Theorem 4.1, whose
restrictions on the boundary are ribbon fillable by Proposition 3.2. Now, we put

t = ∪iti : ∪i(TFi
;Fi) → ∪i(TCP 1

i

;CP 1
i ),

W = Cl(M − ∪iTFi
),

Y = Cl(N − ∪iTCP 1
i

) ∼= #
m+n

B4 ∼= S4 − Int(B4
1 ∪ . . . ∪ B4

m+n).

Then, we extend the ribbon fillable branched covering t|∂ : ∂W → ∂Y ∼= ∪m+nS
3 to a

simple branched covering q : W → Y by means of Theorem 2.5, and finally we obtain the
wanted branched covering by putting p = q ∪ t : M → N .

(b). By Lemma 5.3, we can find a sublattice of (H2(M)/TorH2(M), βM) which is iso-
morphic to ⊕ndH , where d can be chosen according to the specific case that we want to
obtain. For each direct summand dH , we choose a basis ηi, η

′
i of it such that βM(ηi, ηi) =

βM(η′i, η
′
i) = 0 and βM(ηi, η

′
i) = d, for i = 1, . . . , n.

Such homology classes can be represented by pairwise transversal closed connected ori-
ented locally flat PL surfaces Fi, F

′
i ⊂ M such that their geometric intersections equal the

algebraic ones, for i = 1, . . . , n.
Then, we can find a simple d-fold branched covering as desired by repeating the argument

used in case (a) (see also the proof of case (d) of Theorem 1.1), with the following setting

t = ∪iti : ∪i(TFi
∪ TF ′

i
;Fi, F

′
i ) → ∪i(TS2

1i
∪ TS2

2i
;S2

1i, S
2
2i),

W = Cl (M − ∪i(TFi
∪ TF ′

i
)),

Y = Cl (N − ∪i(TS2
1i
∪ TS2

2i
)) ∼= #

n

B4 ∼= S4 − Int(B4
1 ∪ . . . ∪ B4

n).

(c). Suppose that there is a d-fold branched covering p : M → N = #n(S
3×S1) for some

d ≥ 1. Let γ1, . . . , γn ∈ π1(N) ∼= Fn be the free generators, where Fn is the free group of rank
n. By lifting loops, we can find elements γ̃1, . . . , γ̃n ∈ π1(M) such that p∗(γ̃i) = γai

i for certain
ai ∈ {1, . . . , d} and for all i = 1, . . . , n, where p∗ : π1(M) → π1(N) is the homomorphism
induced by p. Then, p∗(π1(M)) contains the subgroup 〈γa1

1 , . . . , γan
n 〉 of Fn. It follows that

p∗(π1(M)) is free of rank at least n, implying that it admits Fn as a quotient.
For the converse, we observe that for every epimorphism ϕ : π1(M) → Fn there exists

a PL embedding h : ∨nS
1 → M such that h∗ : π1(∨nS

1) → π1(M) is a right inverse of ϕ.
We want to define a PL map g : M → ∨nS

1, which is a left inverse of h, and such that
g∗ = ϕ : π1(M) → π1(∨nS

1) ∼= Fn. To define g, we consider a handlebody decomposition of
M with only one 0-handle H0 centered at h(∗), where ∗ is the join point of ∨nS

1, and such
that H0∪H1

1 ∪ . . .∪H1
n is a regular neighborhood of h(∨nS

1), for some 1-handles H1
1 , . . . , H

1
n.
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At this point, the construction of g is as follows: over H0 ∪H1
1 ∪ . . .∪H1

n, the map g is a PL
collapsing retraction over h(∨nS

1) composed with h−1 : h(∨nS
1) → ∨nS

1; over the remaining
1-handles it is defined according to ϕ; then g can be extended over the 2-handles, thanks
to the compatibility with ϕ over the generators of π1(M); finally, there is no obstruction to
further extend g over the higher index handles.

For every i = 1 . . . , n, let yi be a point in the i-th component of ∨nS
1 − {∗}, over which

g is transversal (yi is a regular value), and let Yi be the connected component of g−1(yi) that
contains h(yi). Then, Yi is a connected orientable locally flat PL 3-manifold in M .

Let M ′ be M cut open along Y1, . . . , Yn. By construction, M ′ is a connected 4-manifold
with 2n boundary components Y1, Y 1, . . . , Yn, Y n and there are identifications Yi

∼= Y i

coming from the cuts. By Theorem 2.5 there exists a simple d-fold branched covering
q : M ′ → S4 −∪n

i=1 Int(B
4
i ∪B4

i ) such that the coverings q|Yi
: Yi → ∂Bi and q|Y i

: Y i → ∂B4
i

match with respect to the above identifications, where B4
i and B4

i are disjoint 4-balls in S4,
for i = 1, . . . , n. We can assume that Bq is a locally flat self-transversally immersed compact
PL surface if d ≥ 4, and that it is embedded if d ≥ 5. Then, we can glue back Yi with
Y i, as well as ∂B

4
i with ∂B4

i , by means of the identifications needed to reconstruct M and
#n(S

3 × S1) respectively. Then we get a simple branched covering p : M → #n(S
3 × S1) as

desired. �

6. Final remarks

In Theorem 1.1 (a), the simple branched covering p : M → CP 2 can be constructed such
that p∗(w2(CP

2)) = w2(M) if w2(M)2 6= 0 in H4(M ;Z2). Indeed, in the proof it is enough
to take as ϕ ∈ H2(M)/TorH2(M) the Poincaré dual (modulo TorH2(M)) of any integral
lift of w2(M) with positive (odd) square. An analogous fact holds for Theorem 1.1 (b).

In Theorem 1.3 (b), for βM odd and n < max(b+2 (M), b−2 (M)), we can also obtain a
5-fold simple covering p : M → #n(S

2 × S2) branched over a non-singular PL surface, by
using the last part of Lemma 5.3 and taking d = 5 in the proof.

In Theorem 4.3 we can take p such that its restriction p|N coincides with any given
ribbon fillable d-fold branched covering c : N → S3. Indeed, in the proof the choice of c as
such a covering is arbitrary.

The following Corollary to Theorem 4.3 is immediate but possibly interesting for the PL
or smooth Schoenflies Conjecture in S4.

Corollary 6.1. Let Σ3 ⊂ S4 be a PL embedded 3-sphere and let d ≥ 4. Then, there
exists a d-fold simple covering p : (S4; Σ3) → (S4;S3) branched over a locally flat PL self-

transversally immersed surface, which can be taken embedded for d ≥ 5. Moreover, the

restriction p|Σ3 : Σ3 → S3 can be arbitrarily chosen among d-fold ribbon fillable branched

coverings.

Moreover, for a PL 3-manifold N ⊂ M , one can prove that there is a simple branched
covering p : (M ;N) → (S4;S3) even though N does not disconnect M . In this case, we obtain
an arbitrary degree d ≥ 6 and a locally flat PL embedded branch surface. The proof goes
as follows: following the proof of Theorem 4.3 (b), we begin with a ribbon fillable branched
covering c : ∂M1 → S3 of degree d ≥ 6, with M1 a collar of N in M . This is possible because
∂M1 has two connected components homeomorphic to N . Then, by Theorem 2.5, there are
two extensions of c as simple d-fold branched coverings p1 : M1 → S4

− and p2 : M2 → S4
+,

both branched over a locally flat properly embedded PL surface. Their union provides the
desired branched covering p : (M ;N) → (S4;S3).
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In Theorem 4.4, for k ≥ 2, we can take S2 ⊂ S4 instead of Tk, with d = 4k. Thus, there
exists a simple branched covering p : (M ;F ) → (S4;S2) even though F is not connected.
The proof is essentially the same, the only difference consisting in the identification of the
base of ci : Ni → B3 with a single copy of B3 ⊂ S4 instead of k copies of it.

The singularities of the branch surfaces of all the 4-dimensional simple branched coverings
we have constructed, namely the transversal self-intersections, originate from the application
of Theorem 2.5, which was proved in [25]. In the construction therein, such singularities
appear in pairs, so one can investigate to what extent they can be eliminated, without
increasing the covering degree. Then, we conclude by asking the following question (cf.
Problem 4.113 (A) in Kirby’s list [17]).

Question 6.2. Can the simple branched covering p : M → N in Theorem 1.1 be always

chosen with a locally flat PL embedded branch surface even for d = 4?
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