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Abstract: We propose a model of a quantum N-dimensional system (quNit) based on a quadratic
extension of the non-Archimedean field of p-adic numbers. As in the standard complex setting,
states and observables of a p-adic quantum system are implemented by suitable linear operators
in a p-adic Hilbert space. In particular, owing to the distinguishing features of p-adic probability
theory, the states of an N-dimensional p-adic quantum system are implemented by p-adic statistical
operators, i.e., trace-one selfadjoint operators in the carrier Hilbert space. Accordingly, we introduce
the notion of selfadjoint-operator-valued measure (SOVM)—a suitable p-adic counterpart of a POVM
in a complex Hilbert space—as a convenient mathematical tool describing the physical observables
of a p-adic quantum system. Eventually, we focus on the special case where N = 2, thus providing a
description of p-adic qubit states and 2-dimensional SOVMs. The analogies—but also the non-trivial
differences—with respect to the qubit states of standard quantum mechanics are then analyzed.

Keywords: ultrametric field; p-adic quantum mechanics; quantum state; p-adic probability

1. Introduction

The field of p-adic numbers Qp was introduced by K. Hensel at the end of the XIX
century, mainly in connection with pure mathematical problems. The peculiarity of this
field, in sharp contrast with the fields of real and complex numbers R and C, is its natural
ultrametric structure, that entails a non-Archimedean character of this field. It came as
a complete surprise when, at the end of the past century, some concrete applications of
p-adic numbers to physical theories began to appear. Indeed, in the late 1980s, Vladimirov,
Volovich and Zelenov [1,2] argued that the existence of a smallest measurable length—i.e.,
the so-called Planck length lP ≈ 10−35 m, predicted in quantum gravity and string theory,
see [3] and references therein—forces one to adopt a non-Riemannian model, that is, a model
in which the Archimedean property is no more valid at very small distances. In particular,
they proposed a model of quantum mechanics based on the non-Archimedean field of
p-adic numbers. Later on, different p-adic quantum mechanical models were studied [4–12],
and several applications to quantum field theory were proposed [13–18]. More or less in the
same years, other unexpected connections between p-adic numbers and theoretical physics
were revealed. E.g., it was argued that the natural fractal-like structure of this field makes it
suitable for the description of the dynamics of chaotic and disordered systems. In particular,
it was proved that the ground state of spin glasses exhibits a natural (non-Archimedean)
ultrametric structure [19–21].

More recently, new and interesting applications of p-adic numbers, not necessarily
related to foundational physics, have begun to appear. Indeed, p-adic numbers have found
a fertile ground of application in the context of algebraic dynamical systems, also in connection
with problems from computer science, image analysis, compression of information, image
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recognition and cryptography [22–25]. In particular, one of the most prominent applications
to computer science and cryptography is related to the generation of pseudorandom numbers
and uniform distribution of sequences [25–28].

A very recent research trend involves applications to quantum information theory [29],
as well. The interest for a formulation of a p-adic quantum information theory is two-fold:
On the one hand, the peculiarities of p-adic numbers may provide a new line of attack for
notoriously hard problems in quantum information theory; e.g., it has been recently argued
that p-adic numbers (or, more generally, m-adic numbers) can be profitably used in the
construction of mutually unbiased bases (MUBs), in any given Hilbert space dimension [30].
On the other hand, a p-adic model of quantum information may provide useful tools for
the study of fundamental physical theories.

Until today, it seems, however, that no general model of quantum information based
on p-adic numbers has been formulated. We believe that the main reason for this is the lack
of a well established theory of quantum states in the p-adic setting. Recently, this issue
has been addressed in [31], where it is demonstrated how the usual density operators of
complex quantum mechanics should be replaced, in the p-adic framework, by suitable
p-adic (trace class) operators in a p-adic Hilbert space. In the present contribution, on the
base of the ideas presented in the aforementioned reference, we propose a p-adic model
of a quNit. In particular, in these finite dimensional systems, we will show that the set of
p-adic linear operators has itself a structure of a p-adic Hilbert space. This turns out to be
useful for describing observables and the measurement process. The case of p-adic qubit
will be worked out explicitly.

The structure of the paper is as follows. In Section 2, we review some basic notions
concerning the field of p-adic numbers and its quadratic extensions. In Section 3, we
introduce the p-adic Hilbert spaces and the associated linear operators. We devote Section 4
to the characterization of p-adic states in a finite-dimensional quantum system. Finally,
by focusing on the case of a two-dimensional p-adic Hilbert space, we obtain an explicit
realization of a p-adic qubit. Section 5 is for concluding remarks.

2. Overview on p-Adic Numbers

In this section, we remind the reader some basic notions and results concerning p-adic
numbers that are relevant for p-adic quantum mechanics [1,2,4–7,9,15]. We also introduce
our main notations and terminology.

By a valuation (or absolute value) on Q we mean a map, | · | : Q→ R, such that, for all
x, y ∈ Q,

(V1) |x| ≥ 0, and |x| = 0 iff x = 0 (positive definiteness);
(V2) |xy| = |x| |y| (multiplicativity);
(V3) |x + y| ≤ |x|+ |y| (triangle inequality).

In particular, in the case where | · | verifies the additional condition (actually, a ‘stronger
version’ of (V3))

(V4) |x + y| ≤ max{|x|, |y|} (strong triangle inequality),

we say that | · | is a non-Archimedean valuation; otherwise, the valuation is called Archimedean.
An Archimedean valuation | · | on Q induces a distance function (or metric) defined by:

d|·|(x, y) := |x− y|. (1)

Note that, in the case where in expression (1) the valuation | · | is non-Archimedean, instead,
we still have a metric on Q, but, the strong triangle inequality (cf. (V4)) entails that the
distance d|·| verifies a stronger condition, namely,

d|·|(x, y) ≤ max{d|·|(x, z), d|·|(z, y)}, ∀x, y, z ∈ Q. (2)

In the mathematical literature, property (2) is usually referred to as ultrametricity and,
accordingly, a metric function satisfying it is called an ultrametric.



Entropy 2023, 25, 86 3 of 15

Example 1 ([1,32–34]). Recall that, according to the unique factorization theorem, every rational
number x ∈ Q can be expressed as x = pkq, where p ∈ N is a fixed prime number, k some integer
in Z, and q a rational number whose numerator and denominator are not divisible by p [32,35]. The
p-adic absolute value is then defined as the map | · |p : Q→ R, such that |0|p ≡ 0, and

|x|p := p−k, ∀x 6= 0. (3)

It is easily shown that | · |p is a non-Archimedean valuation on Q, since it is strictly positive on
Q∗ ≡ Q \ {0}, it factorizes under the product of two elements in Q, and verifies the strong triangle
inequality (V4). Therefore, if we consider the associated metric function

d|·|p(x, y) := |x− y|p, (4)

we obtain an ultrametric on Q.

Consider the pair (Q, d|·|p), where d|·|p is the ultrametric associated with the p-adic
valuation (see Example 1). It is a metric space that, by means of a standard procedure, can
be completed [36]. The resulting complete field is usually called the field of p-adic numbers
Qp. This is a standard (through rather abstract) way to define p-adic numbers. A more
concrete characterization is given as follows. Let x ∈ Q∗p ≡ Qp \ {0}. It is possible to prove
that x admits a unique decomposition of the form

x =
∞

∑
i=0

xi pi+k, k ∈ Z, xi ∈ {0, 1, . . . , p− 1}, x0 6= 0, (5)

and, conversely, every series of this form converges to some non-zero element of Qp [32].
Therefore, we see that the decomposition (5) provides a representation of any p-adic number
by means of a suitable converging series. In particular, this is reminiscent, to some extent,
of the usual decimal expansion of a real number x ∈ R, namely,

x = ±10k(x0 + x110−1 + x210−2 + . . .), k ∈ Z, xi = 0, 1, . . . , 9, x0 6= 0. (6)

The p-adic valuation on Q can be extended—in a unique way—to a non-Archimedean
valuation on Qp which, still using the same symbol (with a slight abuse of notation), is
given by

|x|p =
∣∣∑∞

i=0xi pi+k∣∣
p = p−k, ∀x ∈ Q∗p. (7)

Clearly, by a similar reasoning, also the ultrametric (4) can be extended to an ultrametric on
Qp. The ultrametricity condition satisfied by this ultrametric reflects in some topological
peculiarities of Qp that, ultimately, justify the use of p-adic numbers when describing
physics on length scales comparable to Planck’s length lP [1,2,4,5,10,11]. Just to mention
the most relevant ones [37,38], we list the following points:

(P1) Every point in an open (closed) ball is a centre.
(P2) Two open (closed) balls are either disjoint or one is contained in the other.
(P3) Every ball in Qp is both closed and open (in short, clopen) in the ultrametric topology of

Qp.
(P4) All triangles are isosceles in Qp.

As a topological space, Qp is completely regular (being a metric space) and totally disconnected;
namely, the only connected subsets of Qp are the singletons [37].

We devote the last part of this section to a brief discussion of the quadratic extensions
of Qp. The opportunity of switching to a quadratic extension is related to the lack of a
non-trivial involution on Qp [25,33]. This is analogous to the formulation of standard
quantum mechanics relying on the field C of complex numbers, with C regarded as a
quadratic extension of the reals, and endowed with its natural involution (the complex
conjugation).
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The definition of a quadratic extension of Qp closely mimics the one given for the field
of complex numbers C. Indeed, let µ ∈ Qp be a non-quadratic element in Qp, i.e., µ /∈ (Q∗p)2.
Introducing the symbol

√
µ (which plays a role analogous to the one played by the imaginary

unit in C), the quadratic extension Qp,µ of Qp induced by µ is defined as the set

Qp,µ := {x +
√

µy | x, y ∈ Qp}. (8)

It is easily verified that Qp,µ is a field extension of Qp. Indeed, Qp,µ is a two-dimensional
vector space on Qp, its elements can be added and multiplied following the usual rules,
and any non-null element admits a unique inverse, which is given by

(x + y
√

µ)−1 =
x

x2 − µy2 −
√

µ
y

x2 − µy2 , (9)

where the denominator x2 − µy2 is not zero (otherwise µ should be a square in Qp). On the
field Qp,µ, it is possible to define a conjugation, namely, the mapping

z = x +
√

µy 7→ z := x−√µy, (10)

so that
zz = x2 − µy2 ∈ Qp. (11)

Moreover, the p-adic absolute value | · |p can be extended—in a unique way—to a non-
Archimedean valuation | · |p,µ on Qp,µ, which is given by

|z|p,µ =
√
|zz|p. (12)

For the sake of conciseness, henceforth we will simply denote this valuation by | · |. How-
ever, differently from the real case, there exist various inequivalent quadratic extensions of
Qp. In fact, we have [1,31]:

(1) If p 6= 2, there are precisely three non-isomorphic quadratic extensions of Qp, i.e.,
Qp,µ, with µ ∈ {η, p, ηp}, and where η ∈ Qp is a non-quadratic unit, i.e., η /∈ (Q∗p)2,
and |η|p = 1;

(2) if p = 2, there are precisely seven non-isomorphic quadratic extensions of Qp, i.e.,
Qp,µ, with µ ∈ {2, 3, 5, 6, 7, 10, 14}.

Example 2. For p ≡ 3 (mod 4), as a non-quadratic element in Qp, one can take η = −1. For
p ≡ 5 (mod 8), or p ≡ 3 (mod 8), η = 2 is non-quadratic in Qp [1].

3. p-Adic Hilbert Spaces and Operators

This section is devoted to introduce a suitable notion of a p-adic Hilbert space and
the associated p-adic linear operators [31] (compare with [39,40], where different notions
of non-Archimedean Hilbert spaces are introduced, and with [41], where orthogonal and
symmetric operators in the non-Archimedean setting are studied).

3.1. p-Adic Hilbert Spaces

As is well known, complex Hilbert spaces are defined as (complex) Banach spaces
endowed with a suitable inner product, namely, the one inducing the relevant norm. It
turns out that this familiar picture keeps some of its main futures—but also requires some
essential modification—when switching to the field of p-adic numbers. We start by setting
the following:

Definition 1. Let Qp,µ be a quadratic extension of the field of p-adic numbers Qp. By a p-adic
normed space, we mean a pair (X, ‖·‖), where X is a vector space over Qp,µ, while ‖·‖ : X → R+

is an ultrametric norm, i.e., a map satisfying the following conditions:
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(N1) ‖x‖ = 0 iff x = 0;
(N2) ‖αx‖ = |α| ‖x‖;
(N3) ‖x + y‖ ≤ max{‖x‖, ‖y‖},
for all x, y ∈ X and α ∈ Qp,µ. A p-adic normed space which is complete w.r.t. the ultrametric
associated with ‖·‖, is called a p-adic Banach space.

Remark 1. The explicit definition of a p-adic Banach space is motivated by the fact that the strong
triangle inequality (N3) differs significantly w.r.t. the standard (real or complex) case, where the
usual triangle inequality holds.

Let (X, ‖·‖) be a p-adic normed space. Our first concern is to provide a suitable notion
of a basis for this space [31,34,37,42]. To this end, let us start by recalling that two vectors x, y
in a p-adic normed space X are said to be (mutually) norm-orthogonal if, for any α, β ∈ Qp,µ,
we have that ‖αx + βy‖ = max{‖αx‖, ‖βy‖}. Moreover, an arbitrary subset B of X is
norm-orthogonal if any finite subset of B is such; namely, if for every set {x1, . . . , xn} of
elements in B, and every set {α1, . . . , αn} in Qp,µ, we have that∥∥∥∥∥ n

∑
i=1

αixi

∥∥∥∥∥ = max
1≤i≤n

|αi| ‖xi‖. (13)

We say that a subset B of X is normal, if it is norm-orthogonal and, additionally, ‖x‖ = 1,
for all x ∈ B. Let now (X, ‖·‖) be a p-adic Banach space, and let B = {bi}i∈I ⊂ X \ {0} be
a countable subset of X (i.e., we set I = {1, . . . ,N}, for some N ∈ N, in the case where this
set is finite; otherwise, I = N). We say that B is a norm-orthogonal (normal) basis, if B is a
norm-orthogonal (normal) set, and every x ∈ X can be expressed—in a unique way—as

x = ∑
i∈I

αibi, α1, α2, . . . ∈ Qp,µ. (14)

In such a case, we define the dimension of X—in symbols, dim(X)—to be the (countable)
cardinality of any norm-orthogonal basis in X, i.e., we set dim(X) = card(I). In the
following, we call a p-adic Banach space X admitting a normal basis a normal p-adic Banach
space.

Example 3. Let us consider the space c0(I,Qp,µ), of zero-converging sequences in Qp,µ:

c0(I,Qp,µ) := {x = {xi}i∈I | xi ∈ Qp,µ, lim
i
|xi| = 0}. (15)

(In the case where I = {1, . . . ,N} is finite, we set limi |xi| ≡ 0). This set is a vector space over
Qp,µ, and it becomes a p-adic Banach space once it is endowed with the so-called ‘sup-norm’, which
is defined as

‖x‖∞ := sup
i∈I
|xi| = max

i∈I
|xi|, ∀x ∈ c0(I,Qp,µ). (16)

A normal basis for c0(I,Qp,µ) is given by the set B = {bi}i∈I (the so-called standard basis of
c0(I,Qp,µ)), where

b1 = (1, 0, 0, . . .), b2 = (0, 1, 0 . . .), b3 = (0, 0, 1, . . .), . . . . (17)

As in the standard complex case, also in the p-adic setting an essential step in the
definition of a p-adic Hilbert space is the introduction of a suitable notion of inner product.
In particular, we set the following:

Definition 2. Let (X, ‖·‖) be a p-adic Banach space over Qp,µ. By a non-Archimedean inner
product we mean a map 〈 · , · 〉 : X× X → Qp,µ such that, for all x, y ∈ X and α, β ∈ Qp,µ,

(a) 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉 (linearity in the second argument);



Entropy 2023, 25, 86 6 of 15

(b) 〈x, y〉 = 〈y, x〉 (Hermitianity);
(c) |〈x, y〉| ≤ ‖x‖‖y‖ (Cauchy-Schwarz inequality).

We call the triple (X, ‖·‖, 〈 · , · 〉) where 〈 · , · 〉 is a non-Archimedean inner product, an inner-
product p-adic Banach space.

From conditions (a) and (b) of Definition 2, it is clear that the inner product 〈 · , · 〉 is
conjugate-linear in its first argument, i.e., it is a sesquilinear form. Also note that, from the
Hermitianity condition (b), and the sesquilinearity of 〈 · , · 〉, it follows that 〈0, x〉 = 0 =
〈x, 0〉, for all x ∈ X; in particular, 〈0, 0〉 = 0. We also say that the inner product 〈 · , · 〉 is
non-degenerate if the condition 〈x, y〉 = 0, for all y ∈ X, implies that x = 0.

Example 4. Let (X, ‖·‖) be a normal p-adic Banach space, and let B ≡ {bi}i∈I be a normal
basis in X. The canonical inner product associated with B is defined as the—non-degenerate,
Hermitian—sesquilinear form

X× X 3 (x, y) 7→ 〈x, y〉 ≡ 〈x, y〉B := ∑
i∈I

xiyi, (18)

where x = ∑i∈I xibi and y = ∑i∈I yibi are the (norm converging) expansions of the vectors x and
y w.r.t. the fixed normal basis B. One can easily check that this sesquilinear product verifies all the
defining conditions of a non-Archimedean inner product.

Remark 2. The notion of non-Archimedean inner product naturally leads us to a notion of inner-
product orthogonality, which is distinct from the—previously introduced—norm orthogonality.
Explicitly, we say that two vectors x, y, in an inner-product p-adic Banach space X, are inner-
product orthogonal (IP-orthogonal, in short) if 〈x, y〉 = 0.

The notion of inner-product orthogonality, introduced in Remark 2, entails the follow-
ing natural extension of the notion of normal basis:

Definition 3. Let (X, ‖·‖, 〈 · , · 〉) be a normal inner-product p-adic Banach space. We say that a
(finite or countable) sequence of vectors Ψ ≡ {ψi}i∈I in X is an orthonormal basis, if Ψ is a
normal basis in X, and its elements are mutually IP-orthogonal, namely, 〈ψi, ψj〉 = δi,j, ∀i, j ∈ I.

We stress that the existence of an orthonormal basis in an inner-product p-adic Banach
space X is, in general, not guaranteed. On the other hand, when X is a normal p-adic
Banach space—where the existence of a normal basis is assumed—it is always possible
to turn any given normal basis into an orthonormal one by making a suitable choice of
the inner product. Indeed, it suffices to consider the canonical inner product associated
with this normal basis in X (recall Example 4). Therefore, we have the following natural
definition of Hilbert space in the p-adic setting:

Definition 4. A p-adic Hilbert space is a triple (H, ‖·‖, 〈 · , · 〉), where (H, ‖·‖) is a normal p-adic
Banach space, and 〈 · , · 〉 ≡ 〈· , · 〉B is the canonical inner product associated with the normal basis
B in X.

From the previous definition, it is clear that a p-adic Hilbert space may be thought
of as a normal p-adic Banach space endowed with a distinguished normal basis and with
the associated canonical inner product. It is then not difficult to check the following two
properties of a p-adic Hilbert space:

(H1) Every vector x ∈ H can be uniquely expanded w.r.t. any orthonormal basis Ψ ≡
{ψi}i∈I inH, namely,

x = ∑
i∈I
〈ψi, x〉ψi. (19)
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(H2) The non-Archimedean Parseval identity holds true:

‖x‖ = max
i∈I
|〈ψi, x〉|, ∀x ∈ H. (20)

Example 5. Let us consider the set c0(I,Qp,µ) introduced in Example 3. We have already observed
that it is a normal p-adic Banach space once endowed with the sup-norm ‖·‖∞ and with the standard
basis (17). Then, introducing the canonical inner product in c0(I,Qp,µ) of Example 4, we obtain a
p-adic Hilbert space. In the literature [41,43], this Hilbert space is sometimes called coordinate
p-adic Hilbert space, and denoted by H(I). It plays a role analogous to the role played by `2(I) for
(separable) complex Hilbert spaces. There exists an isomorphism of p-adic Banach spaces between
H and H(I) (dim(H) = card(I)); see [34].

As in the complex setting, also in the p-adic case one can define a convenient notion of
isomorphism of Hilbert spaces (or unitary operator, defined as a bounded operator mapping an
orthonormal basis into another) [31]. Let us briefly outline this notion. Let (H, ‖·‖, 〈 · , · 〉B)
be a p-adic Hilbert space, where 〈 · , · 〉B is the canonical inner product associated with a
given normal basis B. Denote by N (H) the collection of all the normal bases in H and
by N (H,B) ⊂ N (H) the class of all normal bases that are orthonormal w.r.t. 〈 · , · 〉B.
A Hilbert space automorphism of (H, ‖·‖, 〈 · , · 〉B) is a bounded linear map transforming a
basis in N (H,B) into another normal basis in the same set; equivalently, a surjective
norm-isometry ofH onto itself that preserves the inner product 〈 · , · 〉B. This notion admits
a straightforward generalization to a notion of isomorphism relating two Hilbert spaces
over Qp,µ (of the same dimension). Interestingly, if C ∈ N (H) is such that C /∈ N (H,B)—
i.e., N (H,B) 6= N (H,C)—then (H, ‖·‖, 〈 · , · 〉B) and (H, ‖·‖, 〈 · , · 〉C) are different, but
mutually isomorphic, p-adic Hilbert spaces. The p-adic Hilbert spaces stemming from the
same p-adic Banach space (H, ‖·‖) are in a natural one-to-one correspondence with the
classes of normal bases of the type N (H,B), that form a partition of the set N (H).

Remark 3. It is worth stressing that the analogies between complex and p-adic Hilbert spaces
cannot be pursued too far. Indeed, quite generally, in a p-adic Hilbert space,H, the norm does not
stem directly from the inner product; i.e., in general, ‖x‖ 6=

√
|〈x, x〉|. Moreover, note that a

p-adic Hilbert space may contain isotropic vectors, i.e., non-zero vectors x such that 〈x, x〉 = 0.
E.g., for p ≡ 1 (mod 4), taking into account the fact that−1 is a square in Qp [1], let x be a vector
in the p-adic Hilbert spaceH (dim(H) ≥ 2), and let {ψ1, ψ2, . . .} be an orthonormal basis inH.
Then, setting x = ψ1 +

√
−1ψ2, we have that 〈x, x〉 = 0.

Hereafter, borrowing the terminology from the standard (complex) quantum me-
chanics, we shall call a quantum system with associated p-adic Hilbert space H of finite
dimension N a p-adic quNit.

3.2. Linear Operators

In [31], it is demonstrated that some fundamental classes of operators used in the
standard formulation of quantum mechanics—e.g., bounded and trace class operators in a
complex Hilbert space—can be suitably introduced in the p-adic framework as well, with
some non-trivial differences w.r.t. the standard complex setting.

Since our main concern is to consider applications to quantum information theory,
we will actually focus our attention to linear operators acting in a finite-dimensional p-
adic Hilbert space. In this case, we only need to consider the space L(H) of all linear
operators in H, and the distinction between the various classes of operators mentioned
above becomes irrelevant.
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Then, let H be a finite-dimensional p-adic Hilbert space, with dim(H) = N, and let
Ψ ≡ {ψi}Ni=1 be an orthonormal basis in H. Every L ∈ L(H) can be represented—w.r.t.
Ψ ≡ {ψi}Ni=1—as a matrix operator, namely,

L =
N

∑
i=1

N

∑
j=1
〈ψi, Lψj〉|ψi〉〈ψj| ≡

N

∑
i=1

N

∑
j=1

Lij|ψi〉〈ψj|, (21)

where (Lij := 〈ψi, Lψj〉) ∈ MN(Qp,µ) is the matrix associated with the operator L and
the fixed orthonormal basis Ψ (here MN(Qp,µ) denotes the set of N×N matrices on Qp,µ).
Conversely, every matrix (Mij) ∈ MN(Qp,µ) defines a linear operator M ∈ L(H) by putting

M :=
N

∑
i=1

N

∑
j=1

Mij|ψi〉〈ψj|. (22)

On the space L(H), we can define a (ultrametric) norm—namely, the operator norm—which
is given by

‖L‖ := sup
0 6=φ∈H

‖Lφ‖
‖φ‖ = max

1≤i,j≤N
|〈ψi, Lψj〉|. (23)

Then, by means of a standard argument (cf. Theorem 6.2.1 in [33]), it is not difficult to
show that the space (L(H), ‖·‖) is complete w.r.t. the (ultra-)metric associated with (23);
i.e., (L(H), ‖·‖) is a p-adic Banach space.

Remark 4. Let us explicitly note that, by using the Dirac notation, the operator |ψi〉〈ψj| appearing
in the matrix representation of L ∈ L(H) should be understood as the linear operator 〈ψi, ·〉|ψj〉,
whose action on a generic element φ ∈ H is given by (〈ψi, ·〉|ψj〉)(φ) := 〈ψi, φ〉|ψj〉.

For every L ∈ L(H), the adjoint L∗ of L is given by

L∗ =
N

∑
i=1

N

∑
j=1
〈ψj, Lψi〉|ψi〉〈ψj|; (24)

i.e., L∗ is the operator in L(H) with matrix coefficients given by L∗ij := 〈ψi, L∗ψj〉 =

〈ψj, Lψi〉 = Lji. As in the standard complex setting, the adjoining operation so defined is
easily seen to be an involutive automorphism of L(H); that is, the map L(H) 3 L 7→ L∗ ∈
L(H) verifies the following conditions:

(αA + βB)∗ = αA∗ + βB∗, (AB)∗ = B∗A∗, (A∗)∗ = A, ‖A‖ = ‖A∗‖, (25)

for all A, B ∈ L(H), α, β ∈ Qp,µ. Therefore, we get to the conclusion that the p-adic Banach
space (L(H), ‖·‖), equipped with the adjoining operation (24), has a natural structure of
a p-adic Banach ∗-algebra. In fact, in the next section, the set L(H) will be regarded as the
Banach ∗-algebra of physical observables of a (finite-dimensional) p-adic quantum system.

Remark 5. As in the complex setting, also in the p-adic case it is possible to single out the subset
L(H)sa ⊂ L(H) of selfadjoint elements of L(H), namely, the linear operators for which the
additional condition

L∗ij = 〈ψj, Lψi〉 = 〈ψi, Lψj〉 = Lij, (26)

is verified.

To conclude this section, we will now argue that L(H) turns out to be a p-adic Hilbert
space. Indeed, let us first observe that given L ∈ L(H), we can define its trace, tr(L)—w.r.t.
any fixed orthonormal basis Ψ ≡ {ψi}Ni=1 inH—in the usual way as
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tr(L) :=
N

∑
i=1
〈ψi, Lψi〉 =

N

∑
i=1

Lii. (27)

This definition does not depend on the choice of the orthonormal basis Ψ, and it is further
possible to prove that the map tr(·) : L(H)→ Qp,µ is a linear functional—namely, the trace
functional—on L(H), which satisfies the usual properties as in the standard complex case.
Let us now introduce the sesquilinear form

L(H)×L(H) 3 (A, B) 7→ 〈A, B〉HS := tr(A∗B) ∈ Qp,µ. (28)

This form is Hermitian, because

〈A, B〉HS= tr(A∗B) = tr(B∗A) = 〈B, A〉HS. (29)

We call this Hermitian sesquilinear form the p-adic Hilbert-Schmidt product. Next, note that,
for all A, B ∈ L(H), we have:

|〈A, B〉HS| = |tr(A∗B)| =
∣∣∣∣∣ N∑i=1
〈Aψi, Bψi〉

∣∣∣∣∣ ≤ max
1≤i≤N

|〈Aψi, Bψi〉| ≤ ‖A‖ ‖B‖; (30)

i.e., 〈 · , · 〉HS satisfies the Cauchy-Schwarz inequality. Hence, we conclude that 〈 · , · 〉HS is
a non-Archimedean inner product, and L(H), endowed with this sesquilinear form, is an
inner-product p-adic Banach space.

Now, let Ψ ≡ {ψi}Ni=1 be an orthonormal basis in H. We can introduce a family of
linear operators {ijEΨ}Ni,j=1 defined by

ijEΨ :=
N

∑
m=1

N

∑
n=1

ijEΨ
mn |ψm〉〈ψn|, where ijEΨ

mn = δimδjn; (31)

namely, in the usual Dirac notation, ijEΨ = |ψi〉〈ψj|.

Remark 6. Let L ∈ L(H). It is clear that

〈ijEΨ, L〉HS= tr(|ψj〉〈ψi|L) =
N

∑
k=1
〈ψk, ψj〉〈ψi, Lψk〉 = Lij. (32)

From this fact, we deduce that the product 〈 · , · 〉HS is non-degenerate, i.e.,

〈ijEΨ, L〉HS= 0, ∀i, j = 1, . . . ,N =⇒ L = 0. (33)

We now prove that the set {ijEΨ}Ni,j=1 is an orthonormal basis in L(H). To this end,

first note that {ijEΨ}Ni,j=1 in a normal set of vectors in L(H). In fact, consider that, for every

finite subset {αjk}Nj,k=1 in Qp,µ, we have:∥∥∥∥∥ N

∑
j=1

N

∑
k=1

αjk
jkEΨ

∥∥∥∥∥ = max
1≤j,k≤N

|αjk|. (34)

Moreover, we also have that

〈ijEΨ, rsEΨ〉HS= tr(|ψj〉〈ψi| |ψr〉〈ψs|) = 〈ψs, ψi〉〈ψj, ψr〉 = δsiδjr; (35)

i.e., {ijEΨ}Ni,j=1 is an IP-orthogonal set w.r.t. the Hilbert-Schmidt product. Finally, by noting

that any L ∈ L(H) is written—w.r.t. the orthonormal basis Ψ ≡ {ψi}Ni=1—as (cf. (21))
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L =
N

∑
i=1

N

∑
j=1
〈ψi, Lψj〉|ψi〉〈ψj| =

N

∑
i=1

N

∑
j=1
〈ψi, Lψj〉ijEΨ, (36)

we see that {ijEΨ}Ni,j=1 is an orthonormal basis in L(H).
Summarizing, we have the following result:

Theorem 1. Given an N-dimensional p-adic Hilbert space H, the p-adic Banach space L(H)—
endowed with the p-adic Hilbert-Schmidt product 〈 · , · 〉HS—becomes an inner-product p-adic Ba-
nach space. In particular, the triple (L(H), ‖·‖, 〈 · , · 〉HS) is a p-adic Hilbert space and, for every
orthonormal basis Ψ ≡ {ψi}Ni=1 inH, {ijEΨ}Ni,j=1 is an orthonormal basis in this space.

4. Physical States and Observables

As is well known, the most general and abstract description of quantum mechanics
is provided by the so-called algebraic formulation. This formulation essentially relies on
two fundamental assumptions; namely, that every quantum system can be described
by means of two main classes of objects—i.e., states and observables—mutually related
by means of a natural pairing map. Specifically, the observables can be identified with
the selfadjoint elements of an abstract non-commutative unital C∗-algebra, whereas the
states are normalized positive functionals on the C∗-algebra. In particular, in the case
of ordinary quantum mechanics, the C∗-algebra of observables is realized by the non-
commutative unital C∗-algebra of bounded operators B(K) in a complex Hilbert space K.
The associated states are realized by trace-one positive trace class operators, the so-called
density or statistical operators [44–49].

Following the same route, it has been recently argued that, in p-adic quantum me-
chanics, physical states should be defined as (normalized) involution-preserving bounded
functionals on the unital Banach ∗-algebra B(H) of bounded operators [31]. It has been
further shown that the role played by the density operators in the complex case is played,
in the p-adic setting, by the class of the so-called p-adic statistical operators, defined as a
suitable subclass of the selfadjoint trace class operators in a p-adic Hilbert spaceH [31]. The
properties, as well as the conditions, that must be satisfied by these states are ultimately
ruled by a suitable model of p-adic probability theory [6,7,50,51].

Remark 7. Since p-adic probability theory is a rather non standard topic, for reader’s convenience,
we now briefly sketch its main features. Let us first observe that both p-adic and classical probability
theory arise in a natural way from a common conceptual background. In fact, in both theories,
one starts by considering the set OQ = {q ∈ Q | 0 ≤ q ≤ 1} ⊂ Q of the (relative) frequencies
of experimental outcomes. Then, the set where all experimental statistical distributions take their
values should coincide with the closure cl(OQ) of OQ, where the closure is relative to some suitable
topology. In classical probability theory, one assumes that this topology is the one induced by the
standard valuation on Q, so obtaining cl(OQ) = [0, 1] ⊂ R. In the p-adic case, instead, we should
consider the topology induced by the p-adic valuation, which now yields cl(OQ) = Qp. This means
that, all possible normalized (i.e., summing up to 1) sequences in Qp provide legitimate (discrete)
p-adic probability distributions [6,7,50,51]. The consequences of this fact are noteworthy. Just to
mention the most relevant ones, we observe that p-adic probability theory naturally involves affine—
rather than convex—structures. Moreover, certain (say, rational) values of p-adic probability
that, when considered in the standard real setting, would be greater than 1 or negative (therefore,
inconsistent), are actually allowed in this model. E.g., the set {1,−1,−6, 7} is a legitimate p-adic
probability distribution, even if it is not a standard probability distribution.
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Definition 5. LetH be an N-dimensional p-adic Hilbert space. By a p-adic statistical operator
we mean a linear operator ρ ∈ L(H), such that ρ = ρ∗ and tr(ρ) = 1. Equivalently, ρ is a
trace-one selfadjoint linear operator inH. We denote by

S(H) := {ρ ∈ L(H) | ρ = ρ∗, tr(ρ) = 1}, (37)

the set of p-adic statistical operators inH.

It is convenient, at this point, to better clarify the statistical interpretation of p-adic
quantum mechanics. To begin with, we need to introduce a suitable notion of observable
in the p-adic setting. In particular, as argued in [31], a convenient mathematical tool
for the description of a quantum measurement in the p-adic setting is provided by the
so-called (discrete) selfadjoint operator valued measures (SOVMs) in H. A SOVM may be
regarded as a suitable p-adic counterpart of a POVM in a complex Hilbert space. In
the finite-dimensional setting we are considering, a discrete SOVM can be defined as a
familyM≡ {Mi}i∈I—where I is a finite index set—of selfadjoint operators inH such that
∑i∈I Mi = Id.

Remark 8. We remark that, as for a discrete POVM, a discrete SOVM should actually be defined
as an additive measure on the algebra of subsets of the index set I (the power set of I), by putting,
e.g., for j 6= k, M{j,k} = Mj + Mk. The definition of SOVM on a general measurable space is
beyond the aims of the present contribution.

Remark 9. We stress that, in p-adic quantum mechanics, there is no straightforward counterpart
of a POVM of standard (complex) quantum mechanics. In fact, the field of p-adic numbers Qp is
not ordered. As a consequence, there is no natural notion of positivity in Qp. Accordingly, there is
no natural way to define positive operators in a p-adic Hilbert space.

As a further step, we need to specify the pairing between states (i.e., p-adic statistical
operators) and observables. To this end, similarly to the standard complex case, by means
of the trace functional tr(·) : L(H)→ Qp,µ we can associate, with any fixed ρ ∈ S(H), the
linear functional ωρ on L(H) defined by

L(H) 3 B 7→ ωρ(B) := tr(ρB) ∈ Qp,µ. (38)

Now, taking into account the defining conditions ρ = ρ∗ and tr(ρ) = 1, one can easily
check that the following two conditions of ωρ hold true:

ωρ(B∗) = ωρ(B), ∀B ∈ L(H), ωρ(Id) = 1. (39)

That is, for every ρ ∈ S(H), ωρ is a normalized involution-preserving linear functional on
L(H). Then, we reach the following two conclusions:

• The trace functional tr(·) provides a well defined pairing between p-adic statistical
operators and observables.

• For every ρ ∈ S(H), and every SOVM M ≡ {Mi}i∈I ⊂ L(H)sa, relations (39)
guarantee that the sequence {ωρ(Mi) = tr(ρMi)}i∈I is a p-adic probability distribution.

We have then obtained a complete description of the statistical content of the theory.
We next turn our attention to the characterization of a suitable p-adic counterpart

of the complex qubit. To this end, let us first note that, since H is finite-dimensional, by
considering the matrix representation—w.r.t. a fixed orthonormal basis Ψ ≡ {ψi}Ni=1 in
H—of any linear operator inH, it is clear that L(H) ∼= MN(Qp,µ); i.e., one can identify the
set L(H) with the set MN(Qp,µ) of N-dimensional matrices in Qp,µ. In particular, the set
S(H) can be identified with the following set of N×N matrices:

SN(Qp,µ) := {Q = (Qrs) ∈ MN(Qp,µ) | tr(Q) = 1, Qrs = Qsr}. (40)
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Namely, we identify S(H) with the set SN(Qp,µ) of trace-one p-adic Hermitian N×N matrices.
Let us focus on the particular case where N = 2. We can give a complete characterization of
S(H) ≡ S2(Qp,µ) as follows. Let

Q =

(
x1 +

√
µy1 x2 +

√
µy2

x3 +
√

µy3 x4 +
√

µy4

)
(41)

be a matrix in M2(Qp,µ). We first consider the most general form of a traceless p-adic
Hermitian matrix. In particular, the conditions tr(Q) = 0 and Q = Q∗ immediately yield
the following relations for Q:

x4 = −x1, x3 = x2, y3 = −y2, y1 = y4 = 0. (42)

From these conditions, we deduce that a two-dimensional p-adic Hermitian matrix, with
zero trace, is given by:

Q =

(
x1 x2 +

√
µy2

x2 −
√

µy2 −x1

)
. (43)

Next, let us introduce the p-adic Pauli matrices σ1, σ2, σ3 ∈ M2(Qp,µ), defined by

σ1 :=
(

1 0
0 −1

)
, σ2 :=

(
0 1
1 0

)
, σ3 :=

(
0

√
µ

−√µ 0

)
. (44)

Exploiting these matrices, we can rewrite Q in a more compact form:

Q = x1σ1 + x2σ2 + x3σ3. (45)

(Here we have set y2 ≡ x3). It is then clear that

ρ =
1
2
(Id2 + Q) =

1
2
(Id2 + x1σ1 + x2σ2 + x3σ3) (46)

—where Id2 denotes the identity matrix in M2(Qp,µ)—gives the most general form a two-
dimensional trace-one p-adic Hermitian matrix in M2(Qp,µ). Therefore, we conclude that
the set of all states of a two-dimensional p-adic quantum systems is

S2(Qp,µ) =
{

ρ ∈ M2(Qp,µ) | ρ =
1
2
(Id2 + x1σ1 + x2σ2 + x3σ3), x1, x2, x3 ∈ Qp

}
, (47)

where σ1, σ2, σ3 are the p-adic Pauli matrices defined in (44). In particular, we find out that
a qubit state can be represented, in the p-adic setting, as

ρ =
1
2

(
1 + x1 x2 +

√
µx3

x2 −
√

µx3 1− x1

)
. (48)

From the matrix representation (48), we observe that the p-adic qubit shares some
analogies with the qubit states of standard quantum mechanics. In particular, the matrix
representation of a p-adic qubit is essentially the same as in the complex case, the main
formal difference consisting in the presence, in the p-adic case, of

√
µ. However, there are

two substantial differences between the p-adic and the complex case.
As a first point, note that S2(Qp,µ) is a norm-unbounded subset of M2(Qp,µ). Moreover,

let us compute the eigenvalues of the p-adic qubit (48). As is easily verified, they are given by

λ± = 1∓
√

x2
1 + x2

2 − µx2
3, (49)

where one should require that x2
1 + x2

2 − µx2
3 is a quadratic element of Qp,µ. On the other

hand, it is a well known fact that the field of p-adic numbers (and its quadratic extensions)
is not algebraically closed, namely, not every non-constant polynomial admits a root in Qp.
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Let us clarify this point by means of an explicit example. Take p = 2, and consider the
quadratic extension of Q2 by

√
2, i.e., the field Q2,2 (see Section 2). Now, consider the qubit

state associated with the parameters (x1, x2, x3) = (4, 4, 3). Then, from its characteristic
polynomial, we obtain the following two formal eigenvalues

λ± = 1∓
√

x2
1 + x2

2 − µx2
3 = 1∓

√
14 = 1∓

√
7
√

2. (50)

However, 7 in not a quadratic element of Q2; that is, the characteristic polynomial of the
matrix (48) does not admit any root in the quadratic extension ofQ2 just considered. Otherwise
stated, we have constructed an example of a 2-adic qubit state that is not diagonalizable.
Actually, it is not difficult to construct examples of non-diagonalizable qubit states also
for all other quadratic extensions of Q2 (as classified in Section 2). The same fact holds
true also for p > 2. Namely, for suitable values of x1, x2, x3 ∈ Qp, it is possible to construct
p-adic qubit states that cannot be diagonalized, for every quadratic extension Qp,µ of Qp.

Example 6. We now provide an explicit example of a SOVM for a two-dimensional p-adic quantum
system. Let us consider the family of linear (matrix) operatorsM = {M1, M2, M3, M4, M5}, where

M1 :=
(

1 0
0 1

)
, M2 :=

(
−1 0
0 1

)
, M3 :=

(
0 −1
−1 0

)
,

M4 :=
(

0 −√µ√
µ 0

)
, M5 :=

(
1 1 +

√
µ

1−√µ −1

)
. (51)

It is clear that the matrices Mi, i = 1, . . . , 5, are Hermitian. Moreover,

5

∑
i=1

Mi = M1 + M2 + M3 + M4 + M5 =

(
1 0
0 1

)
= Id2. (52)

Therefore,M is indeed a SOVM. The statistical output of a measurement associated withM, when
the physical system is in the p-adic qubit state (48), is

{tr(ρMi)}5
i=1 = {1, −x1, −x2, µx3, x1 + x2 − µx3}, (53)

with x1, x2, x3 ∈ Qp. Since ∑5
i=1 tr(ρMi) = 1, we have that {1, −x1, −x2, µx3, x1 + x2− µx3}

is a p-adic probability distribution.

5. Conclusions

As a first step towards a quantum information theory based on a quadratic extension
of the non-Archimedean field of p-adic numbers, we have proposed a model of QuNit on
the field Qp,µ, where µ is a non-square element of Qp.

We started by introducing a notion of p-adic Hilbert space and, restricting to the case
whereH is finite-dimensional, the associated space of linear operators L(H). Then, we have
described various properties of the ultrametric Banach space L(H). We have argued that
L(H), endowed with the operator norm and the adjoining operation, turns out to be a p-adic
Banach ∗-algebra. Then, we have proved that the linear spaceL(H) itself has a natural structure
of a p-adic Hilbert space, once it is endowed with the p-adic Hilbert-Schmidt inner product.

Owing to the distinguishing features of p-adic probability theory, we have argued that
the states of an N-dimensional p-adic quantum system are implemented by p-adic statistical
operators, i.e., trace-one selfadjoint operators in the carrier Hilbert space. In particular, it
turns out that the set of p-adic statistical operators, S(H), is a Qp-affine subset of L(H)—
coherently with the affine structure of p-adic probability theory—hence, it is an unbounded
subset of L(H).
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We have next introduced the notion of (discrete) selfadjoint-operator-valued measure
(SOVM)—a suitable p-adic counterpart of a POVM in a complex Hilbert space—as a conve-
nient mathematical tool describing the physical observables of a p-adic quantum system.

Eventually, focusing on the special case where N = 2, we have provided a description
of p-adic qubit states and of two-dimensional SOVMs.

We close by outlining some potential extensions of this work, especially focusing on
those ones that are relevant for our (final) program aimed at developing a p-adic model
of quantum information theory. Tensor products and entanglement play a central role in
quantum information theory, and we expect that they will play a central role in the p-adic
setting too. Therefore, as a first step, we plan to investigate tensor products of p-adic Hilbert
spaces and the associated classes of entangled states. Our next concern is the description
of dynamical maps and dynamical (semi-)groups in p-adic quantum mechanics. This will
provide a suitable p-adic counterpart to quantum channels. Another interesting prospect
concerns the possibility of defining typical entropic quantities, such as the von Neumann
and the Rényi entropies—which are relevant in standard quantum information theory—in
the p-adic framework too.
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