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Abstract

Nucleic acids are highly deformable helical molecules constantly stretched, twisted and bent

in their biological functioning. Single molecule experiments have shown that double stranded

(ds)-RNA and standard ds-DNA have opposite twist-stretch patterns and stretching properties

when overwound under a constant applied load. The key structural features of the A-form RNA

and B-form DNA helices are here incorporated in a three-dimensional mesoscopic Hamiltonian

model which accounts for the radial, bending and twisting fluctuations of the base pairs. Using

path integral techniques which sum over the ensemble of the base pair fluctuations, I compute

the average helical repeat of the molecules as a function of the load. The obtained twist-stretch

relations and stretching properties, for short A- and B-helical fragments, are consistent with the

opposite behaviors observed in kilo-base long molecules.
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1. Introduction

The mechanical properties of nucleic acids molecules underlie their biological functions

as, in vivo, various binding proteins constantly bend, twist, stretch, cut and reseal the

helical chains while regulating their activities and gene expression [1–7]. Single molecule

experiments relying on optical and magnetic tweezers techniques [8–10], have probed the

mechanical response of kilo-base long double stranded (ds) DNA sequences to a tunable

load applied along the molecular axis. It has been highlighted that the DNA intrinsic

flexibility is governed by entropic elasticity up to forces of ∼ 10 pN whereas, at larger forces,

the molecule is progressively straightened with its end-to-end distance (see Fig. 1) becoming

of order of the contour length. At ∼ 65 pN, the molecule is stretched up to ∼ 1.7 times its

contour length due to structural changes of the intra-strand phosphate bonds. 1

This over-stretching transition had been first ascribed to the formation of a distinct double

helical S-state [11, 12] and then interpreted as a force induced melting of specific domains of

the chain [13, 14] whereby both processes may also co-exist [15, 16]. Importantly, it has been

shown that kilo-base ds-DNA over-winds as a function of the applied loads up to ∼ 30 pN

whereas, at larger forces, the helix unwinds. Moreover, the molecule elongates when over-

wound under a constant force which is large enough to suppress the bending fluctuations [17].

While these findings have fostered research on the peculiar twist-stretch coupling of DNA,

several theoretical methods, e.g., molecular dynamics and Monte-Carlo simulations [18] have

suggested that the helix over-twisting/untwisting pattern versus stretching may hold also

for chains of a few tens of base pairs. More recently, force extensions measurements have

become available also for dsRNA [19] thus revealing stretching and twist-stretch properties

remarkably different from ds-DNA. Markedly, stretching a RNA duplex causes it to untwist

while RNA shortens its helical extension when over-wound under a constant tension.

As ds-RNA adopts a right-handed A-type helix, with shorter rise distance and broader

diameter than the standard right-handed B-form of ds-DNA, one is led to investigate whether

structural helical properties may be at the origin of peculiar twist-stretch patterns which,

in turn, affect the nucleic acids interactions with proteins and their biological functioning.

1 This holds if, in the experimental setup, only two ends of the strands are anchored. Instead, the over-

stretching transition is shifted to ∼ 110 pN when all four ends of the strands are anchored so that the

helix is torsionally constrained.
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Indeed, it has been recognized since long that helical DNA can also exist in the A-form,

the transition from the B- to the A-form being driven by the loss of water content in the

environment [20] 2.

In this regard, all atom potential energies simulations of DNA helical conformations had

previously suggested [23] that A- and B- DNA structures may respond differently to external

perturbations with A-type and B-type fragments respectively untwisting and over-twisting

upon stretching. Molecular dynamics simulations have shed light also on the mentioned

peculiar properties of dsRNA [24] and it has been argued that such properties may be

ascribed to distinctive structural features, i.e., the base pair stacking and their inclination

with respect to the helical axis [25].

Here I focus on the interplay between form and helical conformation of nucleic acids

[26, 27], performing a quantitative analysis of their twist-stretch properties based on a

Hamiltonian model which realistically represents the forces stabilizing the double helix and

suitably incorporates the mentioned structural features as tunable microscopic parameters.

The use of a mesoscopic Hamiltonian provides a description of the helix at the level of the

base pair, a feature which is particularly appropriate at those short length scales in which

fluctuational effects are strong and the validity of the traditional worm-like-chain of polymer

physics has been questioned [28–34].

Other characteristic quantities measuring the global flexibility of the molecules such as

the persistence lengths are not addressed here as they appear substantially similar in the

two nucleic acids structures [35] and can be evaluated via models which do not require the

application of external loads [36, 37].

2. Model

To begin with, I recall the geometric features of the model for an open end chain with N

point-like base pairs, already employed to calculate the flexibility properties of DNA [38, 39].

The schematic of the model is shown in Figs. 1. On the top, (a) shows the standard one

2 As the long term stability of physiological B-DNA is required in a multitude of applications, dehydration

conditions are routinely employed e.g, in methods for digital information storage [21]. On the other

hand, dehydration may structurally transform DNA, unwind the helix and ultimately lead to unwanted

denaturation effects [22].
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dimensional model [40] in which the base pairs (green dots) of equal mass are arranged

like beads along two parallel strands set at the distance R0 which represents the bare helix

diameter. For each pair mate, only transverse fluctuations are considered and the only degree

of freedom is r
(1,2)
n . Accordingly, rn is defined as the inter-strand fluctuation between the

complementary mates of the n− th base pair. Such distance is measured with respect to the

point On which lies along the central axis of the helix. In the absence of radial fluctuations,

all rn’s would be equal to R0 and the model would reduce to a freely jointed chain made of

N − 1 bonds, all having length d. Fig. 1(b) depicts the extension of the model to the three

dimensional case which is treated in the following calculations. Here the blue dots represent

the tips of the inter-strand fluctuations rn’s while θn is the accumulated twist angle along

the helix. It is measured with respect to the twist angle for the preceding base pair in

the chain. In the presence of the twisting angles only, the rn’s would represent in-plane

fluctuations spanning the ovals in the r.h.s. drawing. In this case, the model would be a two

dimensional fixed-plane representation for the helix [41]. Adding the bending fluctuations

between adjacent planes, the model becomes three dimensional. Note that φn measures the

bending fluctuation of the n− th base pair radial displacement with respect to the preceding

one in the dimer.

If the average bending angles are close to zero, then the n−th base pair radial fluctuations

occur in a plane almost perpendicular to the molecular axis. If this feature is common to

a large number of dimers in the chain then there is no overall significant tilt of the base

pairs planes. This picture is appropriate to model the physiological B-form of ds-DNA, in

which the helix axis runs through the center of each base pair and the base pairs are stacked

perpendicular to the axis [42].

Further, d measures the fixed inter-plane distance along the molecular axis while the

distance dn,n−1 between adjacent base pairs, i.e., AB in Fig. 1(b), is obtained in terms of

the fluctuational degrees of freedom. In the absence of fluctuations, dn,n−1 would reduce to

d.

The more compact A-form helix adopted by ds-RNA 3 displays two microscopic features,

visualized in Fig. 2, whose entity is dependent on the di-nucleotide step: i) the base pair

3 The presence of a hydroxil group bound to the 2’ carbon of the ribose ring is the key reason forcing RNA

to coil into the A-form [44]
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FIG. 1: (Color online) (a) One dimensional model for an open end chain with N point-like base

pairs arranged along the two complementary strands. The transverse base fluctuations, r
(1,2)
n ,

are measured with respect to the mid-chain axis hence, the distance rn between the pair mates

is defined with respect to R0 i.e., the bare helix diameter. (b) Three dimensional model. The

global size of the chain is measured by the end-to-end distance, Re−e, shown on the l.h.s. drawing

[43]. The schematic model of one basepair step is shown on the r.h.s. The segment AB, i.e.

the separation between two adjacent fluctuations along the molecular axis (m.a.), is the distance

between the tips of the radial displacements rn, rn−1. The On’s are arranged along the molecular

axis at a constant distance d. φn is the bending angle between adjacent rn’s in a dimer; θn is the

twist accumulated along the helix whose average value is calculated via Eq. (5). In the absence of

bending degrees of freedom, the rn’s would represent in-plane fluctuations sweeping the ovals in

the r.h.s. drawing.
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FIG. 2: (Color online) (a) Base-pair inclination with respect to the helical axis. The base pair

planes are not normal to the molecular axis and the tilt angle γ (taken as positive) measures the

deviation from the perpendicular configuration. As a result the rise distance (along the molecular

axis) dγ gets shorter than d. (b) The n-th base pair slides on top of the adjacent (n-1)-th base pair

along the stack. In this case, S is taken as negative hence, the rise distance (along the molecular

axis) dS gets shorter than dγ .

planes are tilted by the angle γ respect to the vertical helical axis and ii) the base pairs

forming a dimer, slide by a distance S past each other. For simplicity it is hereafter assumed

that, for a single simulation, γ and S are average values distinctive of the chain although

local variations are expected in specific sequences [24]. The occurrence of tilt and slide has

the direct consequence to shorten the rise distance along the helical axis, a feature which

affects the helix stretching flexibility [45]. Accordingly, for the A-form helix, dn,n−1 would

reduce to dS in the absence of fluctuations.

Moreover, since adjacent base pairs along the stack are also twisted, due to the slide

their center is shifted outwards and displaced to the side of the helical axis [46]. Thus, the

width of the stack gets larger and the A-form helix has a broader average diameter than the

B-form. As the average twist angle is smaller, the A-form helix has a higher helical repeat

(i.e., the number of base pairs per helix turn, defined hereafter as h ) than the B-form.
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3. Hamiltonian

One can assume to stretch the helical molecules, both the B- and A-form, applying a

force Fex to one end of the chain while the opposite end is fixed. As the molecule is not

torsionally constrained it may change its average helical repeat upon stretching. While

different pulling schemes can be devised [47], the model corresponds to an experimental

setup in which both helical strands are stretched and the force is tuned in a range of values

well below the over-stretching transition [10]. Also, taking (Fex)max < 30pN , I consider

tensions which cause a kilo-base long DNA fragment to over-twist [17]. As the force opposes

the bending fluctuations, the molecular axis is straightened along the pulling direction. It

is also assumed that the strength exerted by the load is uniform for all nucleotides arranged

along the chain.

Then, the Hamiltonian for a molecule with N base pairs of reduced mass µ, stacked in a

helical conformation and stretched by a force Fex, is:

H = Ha[r1] +
N
∑

n=2

Hb[rn, rn−1, φn, θn] ,

Ha[r1] =
µ

2
ṙ21 + V1p[r1] ,

Hb[rn, rn−1, φn, θn] =
µ

2
ṙ2n + V1p[rn] + V2p[rn, rn−1, φn, θn]− FexdS cos

(

φn

)

.

(1)

dS is defined in Fig. 2. In the absence of tilt and slide, dS ≡ d.

Ha[r1] is taken out of the sum as the first base pair is coupled only to the successive base

pair along the stack. The angular contributions to the kinetic energy are not considered in

Eq. (1) as explained in Section 4. V1p[rn] is one-particle potential modeling the inter-strand

forces at the n-th site. V2p[rn, rn−1, φn, θn] is the two-particle stacking term which accounts

for the covalent bonds between adjacent base pairs and incorporates the model dependence

on the angular degrees of freedom. Their explicit expressions are:
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V1p[rn] = VM [rn] + VSol[rn] ,

VM [rn] = Dn

[

exp(−bn(|rn| − R0))− 1
]2
,

VSol[rn] = −Dnfs
(

tanh((|rn| −R0)/ls)− 1
)

,

V2p[rn, rn−1, φn, θn] = Kn,n−1 ·
(

1 +Gn,n−1

)

· dn,n−1
2
,

Gn,n−1 = ρn,n−1 exp
[

−αn,n−1(|rn|+ |rn−1| − 2R0)
]

.

(2)

The Morse potential VM [rn], depending on the base pair dissociation energy Dn and on

the inverse length bn, is usually taken to model hydrogen bonds. It features a hard core

accounting for the repulsive interaction between the charged phosphates on complementary

strands, a stable minimum and a dissociation plateau. Thus, for base pair fluctuations such

that, |rn| −R0 ≫ b−1
n , the pair mates would sample the flat part of the Morse potential and

could go infinitely apart with no energy cost. Accordingly VM [rn] does not describe those

strand recombination events which instead take place in solutions, i.e. hydrogen bonds with

the surrounding solvent, whose rate depends on the proton concentration.

The neglect of the environment was a shortcoming of the one-dimensional ladder model

[48] affecting mostly the DNA dynamics, e.g. the estimate of the lifetimes of the base pairs

open states [49]. Later on the model has been improved by adding a one-particle solvent

potential, VSol[rn], that introduces a hump whose width is tuned by ls and whose maximum

sets the energy threshold around which a base pair may first temporarily open and then

either re-close or fully dissociate [50, 51]. Then, the statistical properties of the model can

be studied by taking a solvent term which stabilizes the pair interactions enhancing by

fsDn the height of the energy barrier over the Morse plateau. Instead, to account for

the environment in the DNA dynamics, other methods directly add a viscous force to the

nonlinear equation of motion, derived from the 1D ladder model, for the base pair breathing

fluctuations [52].

V2p contains both the elastic force constant Kn,n−1 for the n−th dimer and the nonlinear

parameters ρn,n−1, αn,n−1 which account for the cooperativity effects, i.e. formation of

local bubbles, observed in the denaturation regime [53]. While, for Kn,n−1, the range of

appropriate values has been analyzed both experimentally and theoretically at least in DNA

[33, 54, 55], less information is available as for the nonlinear parameters [56].
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For αn,n−1, the condition αn,n−1 < bn should hold in order to ensure that the range of the

stacking potential is broader than that of the Morse potential. This is consistent with the

fact that covalent bonds along the stack are stronger than inter-strand base pair hydrogen

bonds. The physical meaning behind the specific choice for V2p is understood by observing

that, when all base pairs are closed, |rn| −R0 ≪ α−1
n,n−1 for all n. Under these conditions, it

is noticed from Eq. (2) that the effective coupling is ∼ Kn,n−1(1 + ρn,n−1).

However, because of a large amplitude fluctuation at the n−th site, the inequality |rn| −
R0 > α−1

n,n−1 may be fulfilled. When this occurs the hydrogen bonds between pair mates are

disrupted and the base moves out of the stack. Accordingly also the interaction between

neighboring bases along the strand weakens, due to a reduced π electrons overlap, and the

effective coupling drops to ∼ Kn,n−1. As a consequence, also the adjacent base moves out

of the stack thus propagating the fluctuational opening. This explains the relation between

non-linearity and cooperativity which causes bubble formation and eventually denaturation

of the double helix in the model of Eq. (2). Then, taking small αn,n−1 values, it is assumed

that large fluctuations are required to disrupt a base pair and consistently lower the stacking

energy while the ρn,n−1 parameters weigh the energy difference between a closed and open

base pair conformation.

V2p also incorporates the dependence on the angular degrees of freedom through the base

pair distance dn,n−1 shown in Fig. 1(b) [57]. In the A-form helix, dn,n−1 is shortened as the

rise distance contracts due to the tilt and slide.

4. Partition function

The Hamiltonian in Eqs. (1), (2) can be treated by path integral techniques [58] to

extract information on the thermodynamical and structural helical properties as described

in previous works [59]. The computational method is based on the idea that the radial

fluctuations rn are trajectories and, accordingly, can be mapped onto the time scale: rn →
|rn(τ)| whereby τ is the imaginary time varying in a range [0, β] and β is the inverse

temperature. The partition function ZN is expressed as an integral over closed trajectories,

rn(0) = rn(β) , running along the τ -axis. Details of the method are found in ref.[60].

Importantly, the closure condition for the fluctuations is imposed on the time axis whereas

the chain maintains the open ends in real space. This avoids to set boundary conditions
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which close a chain into a loop as usually done in Transfer Integral methods for simplified

one-dimensional DNA Hamiltonian models [61–64]. Such a procedure however may not be

adequate to deal with short open fragments for which boundary effects are relevant.

Then, taking in Eq. (1) the radial fluctuations as paths, ZN reads:

ZN =

∮

Dr1 exp
[

−Aa[r1]
]

N
∏

n=2

∫ φM

−φM

dφn

∫ θM

−θM

dθn

∮

Drn exp
[

−Ab[rn, rn−1, φn, θn]
]

,

Aa[r1] =

∫ β

0

dτHa[r1(τ)] ,

Ab[rn, rn−1, φn, θn] =

∫ β

0

dτHb[rn(τ), rn−1(τ), φn, θn] , (3)

where φM and θM are the maximum amplitudes for the bending and twisting fluctuations

hereafter set to π/15 and π/2 respectively [65, 66].

Consistently with the closure condition, the base pair paths can be expanded in Fourier

series, rn(τ) = (r0)n +
∑∞

m=1

[

(am)n cos(
2mπ
β

τ) + (bm)n sin(
2mπ
β

τ)
]

[67] whereby a set of

coefficients corresponds to a specific configuration for the n-th base pair and provides a

measure of the fluctuational distance between the pair mates. The expansion also defines

the integration measure
∮

Drn over the space of the Fourier coefficients [68, 69] :

∮

Drn ≡ 1√
2λcl

∫ Λ0
n(T )

−Λ0
n(T )

d(r0)n

∞
∏

m=1

(mπ

λcl

)2
∫ Λn(T )

−Λn(T )

d(am)n

∫ Λn(T )

−Λn(T )

d(bm)n ,

(4)

where λcl is the classical thermal wavelength [70], Λ0
n(T ) and Λn(T ) are the temperature

dependent cutoffs for the radial fluctuations of the n − th base pair. While the latter can

be generally estimated by the formal condition, associated to the finite temperature path

integral method, that the measure in Eq. (4) normalizes the free particle action [71], I

use hereafter the values obtained via a physically grounded argument recently devised to

determine the cutoffs for a molecule in a specific twist conformation with a given set of

model potential parameters [72].

Note that the Fourier series and the associated integration measure have been taken

only for the radial coordinate whereas there is no path expansion for the angular variables.

Accordingly, the latter do not depend on τ and are integrated in a conventional way in
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Eq. (3). This avoids to introduce arbitrary temperature dependent cutoffs for the angular

variables and, a posteriori, explains why the kinetic energy in Eq. (1) contains only radial

contributions.

5. Twist-stretch

To address the twist-stretch relations, the average helical repeat is computed by per-

forming integrations over the ensemble of base pair configurations defined by Eq. (3). The

idea behind the computational method is the following: the n−th twist fluctuation θn is

measured with respect to the ensemble averaged twist, < θn−1 >, obtained for the preced-

ing base pair in the chain and augmented by 2π/h to account for the right-handedness of

both the A- and B-forms. h is assumed to vary within a physically meaningful range, say

hj ∈ [hmin, hmax], (j = 1, ..., J) and, for each hj in the range, the ensemble averaged twist

angles < θn > are recursively computed by integrating over a twist fluctuation θfln around

the value < θn−1 > +2π/hj .

Setting, < θ1 >= 0 for the first base pair in the chain, the explicit formula for < θn >

reads:

< θn >(n≥2)=< θn−1 > +
2π

hj

+

∫ θM

−θM
dθfln · (θfln )

∫ φM

−φM

dφn

∮

Drn exp
[

−Ab[rn, rn−1, φn, θn]
]

∫ θM

−θM
dθfln

∫ φM

−φM

dφn

∮

Drn exp
[

−Ab[rn, rn−1, φn, θn]
]

,

(5)

and, from Eq. (5), the average helical repeat is obtained as:

< h >j=
2πN

< θN >
. (6)

Since the calculation is repeated for any input value hj , the program generates a set

of ensemble averaged values {< h >j } which define different twist conformations for the

molecule subjected to a load. For any < h >j, the corresponding free energy is calculated

from Eq. (3) as, F = −β−1 lnZN . By minimizing F over the set of J values, one finally

selects the equilibrium twist conformation, denoted hereafter by < h >j∗, for a given load.

By tuning Fex, the twist profiles are derived for a specific helical molecule.
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Furthermore, for any twist < h >j, one calculates the average dimer distance < d >j by

summing over the ensemble averaged intra-strand base pairs distances i.e.,

< d >j=
1

N − 1

N
∑

n=2

< dn,n−1 > ,

< dn,n−1 >=

∮

Drn
∫ θM

−θM
dθfln

∫ φM

−φM

dφn · dn,n−1 exp
[

−Ab[rn, rn−1, φn, θn]
]

∫ θM

−θM
dθfln

∫ φM

−φM

dφn

∮

Drn exp
[

−Ab[rn, rn−1, φn, θn]
]

,

(7)

whereby the equilibrium average distance < d >j∗ corresponds to the equilibrium < h >j∗

conformation. This permits to evaluate the size of the stretching induced by the external

load both for the A- and B- type helical molecules.

While, for kilo-base B-DNA in solution under physiological condition, the experimental

average helical repeat is estimated as hexp ∼ 10.5 [73], short DNA chains may have twist

conformations which differ significantly from those of long chains. To account for these

effects I first sample a broad range of J ∼ 70 twist conformations around hexp in the absence

of applied forces and then repeat the sampling procedure for any Fex. The forces are in the

pico-Newton regime hence, they can oppose the bending and kinking caused by the buffeting

of the solvent bath and ultimately straighten the helix. In fact, at the nano-scale, the room

temperature thermal energy per nano-meter is kBT/nm ∼ 4pN .

6. Results and Discussion

The theory is tested on a short chain of N = 21 base pairs which suffices to allow for

about two turns of the helix. Despite the stacking potential in Eq. (2) contains only two

particles interactions, the helical conformation leads to base pairs correlations along the

molecule backbone. I take the chain as homogeneous i.e., D ≡ Dn, b ≡ bn, K ≡ Kn,n−1,

ρ ≡ ρn,n−1, α ≡ αn,n−1 and set the potential parameters as usually done in mesoscopic

Hamiltonian investigations of the DNA properties [56, 74]. Moreover, as short chains are

subjected to sizeable end fraying effects [75], I assume that the stacking parameters for the

end dimers containing the terminal base pairs, are one half of the value taken for the internal

dimers.
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The same parameter values are used to model both the A- and B-type chains although

earlier parametrization studies carried out with a one-dimensional mesoscopic model suggest

that the RNA force constants may differ from those appropriate to DNA [76]. However, as

this study intends to highlight the effects brought about by the type of helical structure on

the flexibility properties, I deem appropriate to ignore those details which may be ascribed

to different choices of model potential parameters.

I first focus on the standard B-form helix with neither tilt nor slide and an average

diameter R0 = 20 Å. To emphasize the role of terminal base pairs, Fig. 3 displays the

ensemble averaged equilibrium helical repeat versus the applied load in two cases: a) the

full open ends (O.E.) chain made of N − 1 dimers and b) the bulk of the chain made of

N − 3 dimers. In the former case, < h >j∗ is significantly larger signaling that the terminal

base pairs strongly affect the overall helix untwisting thus yielding an enhanced flexibility.

This holds both in the absence of loads and for moderate loads up to about 20 pN whereas,

for strong Fex, the chain end effects tend to vanish as the over-twisting is more pronounced.

The inset shows the equilibrium twist angles calculated for each < h >j∗ both for the a)

and the b) case.

The general picture changes drastically once the A-form helix (with R0 = 24 Å) is con-

sidered as shown in Fig. 4. For the open ends chain, the ensemble averaged < h >j∗ is

plotted versus Fex assuming a base pair inclination γ = 15o with respect to the helical axis

consistent with X-ray diffraction data and molecular dynamics simulations [35, 46]. Both

the conformation with zero slide and three conformations with finite slide values are dis-

played. All plots show that < h >j∗ grows under the effect of the stretching load revealing

that the base pair inclination is the primary cause of the helix untwisting. The effect of the

slide is superimposed to that of the inclination: by increasing |S|, the helix untwisting is

larger for all Fex suggesting that the structural features of the dimers determine the overall

flexibility of the chain. Similarly to Fig. 3, also for the A-form helix, the bulk helical repeat

(not displayed) is generally smaller than the open end helical repeat calculated for the same

parameters set. Likewise, the equilibrium twist angles can be straightforwardly calculated

for each < h >j∗.

In fact, the opposite twist-stretch patterns obtained in Fig. 3 and Fig. 4 should generate

distinct stretching properties for the two helical forms. This is precisely seen in Fig. 5

wherein the average stretching between the base pairs in a dimer is calculated versus the
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FIG. 3: (Color online) Ensemble averaged helical repeat versus external load for the B- form helix.

The molecule is considered both with (Open Ends) and without (bulk) terminal base pairs. The

inset shows the average twist angle for both cases. The base pair planes are taken perpendicular

to the helical axis.

applied load both for the B- form and A-form helices. In the latter case, I take the largest

among the slide values in Fig. 4. While the average dimer distance is enhanced in both

helices by increasing the load, the A-form helix stretches more than the B-form at any force

and the relative stretching is found to grow almost linearly with Fex. This result is in line

with optical tweezers measurements yielding a ds-RNA stretch modulus almost twofold lower

than that of ds-DNA, albeit for kilo-base long molecules [77].

Finally, I simulate an experimental setup in which the helix is over-twisted under a

constant load, e.g. Fex = 6 pN , as shown in Fig. 6. This is done in magnetic tweezers assays

[78] in which a tethered molecule is stretched at constant force while rotating magnets add

a torsional strain thereby changing the twist number with respect to the equilibrium value

i.e., (Tw)j∗ = N/ < h >j∗. This generates a superhelical density σ(∗) = (∆Tw)j∗/(Tw)j∗

whereby (∆Tw)j∗ measures the applied torsional strain i.e., the number of turns added to

the helical twist, at fixed force. Under this conditions, the average intra-dimer distance

is calculated by varying σ(∗) for the two helical forms. It is found that the behavior is
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FIG. 4: (Color online) Ensemble averaged helical repeat versus external load for the A- form helix.

γ is the inclination of the base pair planes with respect to the helical axis. Both the zero slide

configuration and three configurations with finite |S|/d values are considered. See Fig. 2.
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FIG. 5: (Color online) Relative average elongation of the intra-dimer distance as a function of the

load both for the B- form and A-form helices. The calculated relative stretching is precisely:
[

< d >j∗ (Fex)/ < d >j∗ (Fex = 0)
]

− 1. For the A-form, the inclination angle is γ = 15o.
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FIG. 6: (Color online) Assuming a fixed load Fex, the helix over-twisting with respect to the

equilibrium configuration is simulated for (a) the B- form and (b) A-form helix. The percentage

relative stretching (a) and relative shrinking (b) of the intra-dimer distance is plotted versus the

superhelical density σ(∗).

opposite: while the extension of the B-form helix increases, the A-form shrinks when over-

twisted. The calculated stretching and shrinking in Fig. 6 are not monotonous functions as,

for any added turn, the characteristic functions < h > of the A- and B-forms differ from

the respective < h >j∗ hence, the intra-dimer distances do not correspond to a free energy

minimum in our computational method. This also causes the small oscillations observed

at σ(∗) slightly larger than zero. Nevertheless the general trend, stretching of the B-form

and shrinking of the A-form, is evident once the helices are markedly over-twisted hence,

their average helical repeat values < h >j become significantly smaller than the equilibrium

value < h >j∗. Taking the specific (Tw)j∗ for the cases in Figs. 6(a),(b), I obtain that: (a)

the over-winding of the B-form lenghtens the helix by an average slope of 1.67nm per helix

turn and (b) the over-winding of the A-form shortens the helix by an average −1.61nm

per turn. Although these figures are larger (in absolute value, by about a factor two and

four respectively) than those reported for ds-DNA and ds-RNA [19] with a similar range of

stretching forces (around 6pN), it should be noticed that our fragments are much shorter
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(N = 21) than the kilo base long sequences taken in single-molecule magnetic tweezers

experiments. While it is plausible that such short fragments may be stretched more than

kilo base long molecules, quantitative comparison with available experimental data seems

premature at this stage.

7. Conclusions

The main conclusion of this study is that the opposite twist-stretch patterns of ds-RNA

and standard ds-DNA, together with their stretching properties under constant tension, can

be ascribed to specific structural differences in their di-nucleotide steps, piled along the

helical axis. Incorporating these structural features in a 3D mesoscopic Hamiltonian model

with angular degrees of freedom, I have used a method based on path integral techniques

to compute the average helical repeat, both for the A- and B- form, of short fragments.

Mesoscopic approaches are advantageous at such short length scales, whereas it has been

pointed out that the elastic properties of nucleic acids are poorly described by the worm-

like-chain models of polymer physics which are instead traditionally applied to kilo-base long

molecules. The path integral method permits to derive significant twist-stretch relations as

a function of the structural parameters after selecting the equilibrium helical conformation

by free energy minimization. Moreover, keeping the external load at a fixed value, I have

applied a torsional strain to the molecule, studied the stretching response in a range of

over-twisted configurations and performed quantitative estimates both for the lengthening

of B-DNA and the shortening of RNA homogeneous short fragments. The computational

method can be further applied to test the elastic response of heterogeneous (and longer)

sequences to external loads.
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[24] Faustino I, Pérez A, Orozco M, (2010) Toward a Consensus View of Duplex RNA Flexibility.

Biophys J 99: 1876-1885

[25] Bao L, Zhang X, Jin L, Tan Z J, (2016) Flexibility of nucleic acids: From DNA to RNA. Chin

Phys B 25: 018703

[26] Olsen K, Bohr J, (2011) The geometrical origin of the strain-twist coupling in double helices.

AIP Advances 1: 012108

[27] Noy A, Golestanian R, (2012) Length Scale Dependence of DNA Mechanical Properties. Phys

Rev Lett 109: 228101

[28] Cloutier T E, Widom J, (2004) Spontaneous Sharp Bending of Double-Stranded DNA. Mol

Cell 14: 355-362

[29] Yuan C, Rhoades E, Lou X W, Archer L A, (2006) Spontaneous sharp bending of DNA: role

of melting bubbles. Nucleic Acids Res 34: 4554-4560

[30] Wiggins P A, Heijden T V D, Moreno-Herrero F, Spakowitz A, Phillips R, Widom J, Dekker

19



C, Nelson P C, (2006) High flexibility of DNA on short length scales probed by atomic force

microscopy. Nat Nanotechnol 1: 137

[31] Vafabakhsh R, Ha T, (2012) Extreme Bendability of DNA Less than 100 Base Pairs Long

Revealed by Single-Molecule Cyclization. Science 337: 1097-1101

[32] Garai A, Saurabh S, Lansac Y, Maiti P K, (2015) DNA Elasticity from Short DNA to Nucle-

osomal DNA. J Phys Chem B 119: 11146-11156

[33] Zoli M, (2016) J- factors of short DNA molecules. J Chem Phys 144: 214104

[34] Lam P M, Zhen Y, (2017) Cyclization of short DNA fragments. Physica A 482: 569

[35] Liebl K, Drsata T, Lankas̆ F, Lipfert J, Zacharias M, (2015) Explaining the striking difference

in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis.

Nucleic Acid Res 43: 10143-10156

[36] Zoli M, (2018) Short DNA persistence length in a mesoscopic helical model. EPL - Europhysics

Letters 123: 68003

[37] Zhang Y, He L, Li S, (2023) Temperature dependence of DNA elasticity: An all-atom molec-

ular dynamics simulation study. J Chem Phys 158: 094902

[38] Zoli M, (2019) DNA size in confined environments. Phys Chem Chem Phys 21: 12566

[39] Zoli M, (2020) Stretching DNA in hard-wall potential channels. EPL - Europhysics Letters

130: 28002

[40] Peyrard M, Bishop A R, (1989) Statistical mechanics of a nonlinear model for DNA denatu-

ration. Phys Rev Lett 62: 2755

[41] Barbi M, Cocco S, Peyrard M, (1999) Helicoidal model for DNA opening. Phys Lett A 253:

358

[42] Zoli M, (2022) Non-linear Hamiltonian models for DNA. European Biophys J 51: 431-447

[43] Zoli M, (2016) Flexibility of short DNA helices under mechanical stretching. Phys Chem Chem

Phys 18: 17666

[44] Fohrer J, Hennig M, Carlomagno T, (2006) Influence of the 2’-hydroxyl group conformation

on the stability of A-form helices in RNA. J Mol Biol 356: 280-287

[45] Calladine C R, Drew H R, (1992) Understanding DNA, (Academic Press, San Diego)

[46] Dickerson R E, (1983) The DNA Helix and How It Is Read. Scientific American 249: 94-111

[47] Romano F, Chakraborty D, Doye J P K, Ouldridge T E, Louis A A, (2013) Coarse-grained

simulations of DNA overstretching. J Chem Phys 138: 085101

20



[48] Dauxois T, Peyrard M, Bishop A R, (1993) Entropy driven DNA denaturation. Phys. Rev. E

47: R44-R47
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