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1. Introduction

The study of earthquakes is, by its nature, an interdisciplinary matter. In the
last years, our knowledge on rupture nucleation, evolution as well as earthquakes
triggering and seismicity pattern evolution, albeit far from being complete, has
gone through major steps thanks to technological advances providing a positive
combination of high resolution observational data and computational processing
capabilities.

From a general standpoint the earthquake generation, encompassing stress
accumulation on a fault plane to the final abrupt energy release, is quite well under-
stood, measured, and explained by classic elastic theory and frictional models (see
Kanamori and Brodsky, (2004) and references therein). At the same time statistical
approaches have been successfully applied to the characterization of seismicity
pattern evolution, with consistent observations around the globe and on a wide
range of scales. Widely known and adopted examples are the Gutenberg–Richter
relation (Gutenberg and Richter, 1941), which describes the expected number of
earthquakes (e.g., aftershocks) for each event with a certain magnitude in each area,
or the Omori Law (Omori, 1895), describing the frequency of aftershocks decaying
with the reciprocal of time after the mainshock occurrence. Yet, we are aware that
the mainshock-aftershock classification represents just one of the possible models
defining seismicity evolution (Mogi, 1963; Kagan and Knopoff, 1981). However,
multiple theories have been successfully developed to model the stress distribution
in the crust (Anderson, 1905), the rupture process (e.g. Dieterich, (1978)) and the
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Chapter 1. Introduction

nucleation of earthquakes (e.g. Ellsworth and Beroza, (1995)); although we are
still far from having a comprehensive view and physical models contributing to the
specific processes.

The more closely we look at a particular tectonic area or fault system, the
more we become aware of the increasing variability and complexity of the system,
with diverse elements interacting with each other, like, among others, stress values
(Stein, 1999) and their 3D distribution, mechanical properties of the different
lithologies (Trippetta et al., 2010), fluids/rocks interaction processes (Miller, 2013).
Details of fault zones are incredibly complex, as is their response to the loading
rate, non-uniform in both space and time (Hardebeck and Hauksson, 2001). Then,
the occurrence of an earthquake changes the stress and strength of nearby fault
segments (Stein, 2003; Belardinelli et al., 2003; Gomberg et al., 2001). Within
this context the presence of fluids in the crust can work for example to reduce
the friction along the fault plane promoting earthquakes (Hubbert and Rubey,
1959; Sibson, 1973). All this corroborates the idea that crustal faults are highly
heterogeneous natural systems, with physical and chemical properties varying in
time and space.

Given the complexity and multidisciplinary nature of the problem, the approach
of the work has been based on the observation of a (rather) large variety of data
derived by the combination of multiple disciplines.

The road of integration An opportunity to study earthquakes with unprece-
dented detail and with a broad range of multi-parametric instrumentation is given
by the recent implementation of Near Fault Observatories (NFO, www.epos-eu.

org/tcs/near-fault-observatories). NFO are permanent monitoring infras-
tructures composed of very dense, state of the art networks including not only
seismic but also deformation, strain, geochemical and electromagnetic equipment.

These advanced research infrastructures are built with the objective of providing
novel and diverse data to better understand the multi-scale physical/chemical
processes possibly associated with earthquakes and faulting. They can be considered
as on-field laboratories that illuminate underlying active faults by recording and
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Figure 1.1: Map of the stations and boreholes. Seismic, GNSS, geochemical
(CO2 and radon) stations are reported along with existing boreholes. Rectangle
corresponds to the TABOO area.
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Chapter 1. Introduction

analyzing multi-disciplinary signals related to the processes that occur in the subsoil,
down to very small scales. The high density of seismic networks integrated in
NFOs (interstation distances as low as 5 km) allows the detection and location of
micro-seismicity down to negative magnitudes. In this framework, small events
(with M ∼3) can be considered as local mainshocks, considerably shortening the
seismic cycle commonly involving long time scales for moderate-large earthquakes.
This provides the opportunity to test models and hypotheses on a more robust
statistical basis and to follow the pre-, co- and post-seismic phase of main faulting
episode, even if relatively small (e.g., slipping area from tens to hundreds of squared
meters). Thus, small sized earthquake sequences potentially provide much more
information, contributing to the understanding of the earthquakes preparatory
phase and related seismic hazard assessment.

Among the European NFOs operating on different tectonic regimes and areas
over Europe, one is installed and developed in central Italy: The Alto Tiberina
Near Fault Observatory Chiaraluce et al., (2014)).

Seismotectonic setting TABOO is located at the Tuscany–Umbria–Marche
regions boundary within the northern Apennines (Figure 1.1), a NE-verging thrust-
fold belt undergoing NE-trending extension at a rate of about 3 mm/yr (Serpelloni
et al., 2005). The complex tectonic architecture of the crust is the result of two
phases of eastward migrating deformation: an early compression with eastward
directed thrusting and a later phase of extension (Elter, 1975; Pauselli et al., 2006).
The latter started in the upper Pliocene and is still active in the inner part of
Apennines (e.g. Elter, (1975) and Barchi, (2010), and reference therein). During
the first compressional phase, the sedimentary cover was deformed in east verging
folds and regional-scale thrusts, including a crustal doubling confirmed by borehole
data and observed in seismic reflection profiles (Mirabella et al., 2011).

Several studies (e.g. Barchi, (1998) and Boncio et al., (2000)) have documented
the presence of a 60 km long, ENE dipping low-angle normal fault (LANF), the
Altotiberina Fault (ATF). The ATF is currently the subject of several geological
and geophysical studies, being recognized as one of the rare examples of seismically
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active low-angle normal faults (Chiaraluce et al., 2007; Hreinsdottir and Bennett,
2009; Vadacca et al., 2016; Valoroso et al., 2017). The main reasons for interest
and scientific debate on LANFs is that these faults are characterized by very low
dip angles (<30◦) and according to classical fault mechanics (i.e., faults in an
elastic crust obeying Coulomb friction) these structures should not be formed
and/or develop (e.g., being active) in extensional environments characterized by
an Andersonian stress field (vertical maximum principal stress).

The ATF has potential for M7 earthquake in case of a rupture of the whole
fault length, but its hazard, similarly for the other LANFs worldwide, is still
controversial, because there is no evidence of well documented occurrence of
moderate-large magnitude events worldwide occurring on such misoriented faults.
On the same line there is the lack of evidence of moderate-large earthquakes in
the Italian historical catalog in the past 1000 years (Rovida et al., 2011). It is
also worth noting that the microseismicity nucleating on the ATF is not able to
explain the amount of deformation associated with the short- and long-term slip
rate inferred by geological (Collettini and Barchi, 2004) and geodetic studies and
data (D’Agostino et al., 2009).

On the contrary, the active role of the ATF in the ongoing extensional de-
formation across the Apennines has been clearly showed by GNSS observations
Hreinsdottir and Bennett, (2009) and Vadacca et al., (2016), suggesting creeping
below 5 km of depth as main driving mechanism. This hypothesis is so far coherent
with the continuous occurrence of micro-seismicity along the ATF plane and it is
also supported by laboratory experiments performed on fault rock samples of the
Zuccale low-angle normal fault, considered the (older) exhumed analogue of the
ATF (Collettini et al., 2009b). Unfortunately, all these lines of evidence cannot
rule out the occurrence of a large earthquake along the ATF potentially nucleating
along one of the steeper portions of the fault where along dip staircase trajectories
are observed (Valoroso et al., 2017; Mirabella et al., 2011).

Above the ATF, synthetic and antithetic deformations acting on the tectonic
pile dissected the main geological units, which, following Mirabella et al., (2011),
can be summarized in: (1) the top of the basement, mainly clastic and metased-
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Chapter 1. Introduction

imentary rocks of late Paleozoic-middle Triassic age; (2) Triassic Evaporites; (3)
a carbonate multilayer platform, lower Jurassic-Oligocene; and (4) early Miocene
foredeep turbidites. The area has been object of extensive studies with a number
of complementary techniques, thus contributing to a strong background knowledge
of the geologic and tectonic setting: e.g. high quality seismic catalogs (Valoroso
et al., 2017), seismic tomography (Piana Agostinetti et al., 2017; Moretti et al.,
2009), geological (Mirabella et al., 2011) and deterministic velocity models (Latorre
et al., 2016) built on the integration of field surveys, seismic reflection profiles and
boreholes data.

Tectonic extensional systems and fluids The extension is currently active
in a ∼ 30 km wide longitudinal zone along the chain where most of recent and
historical seismicity is located Figure 1.2. To the west of the active area, extension
was active for enough time (>3 Ma) to change the properties of the lithosphere,
producing a widespread heat flow anomaly 90 mW/m2 (Mongelli and Zito, 1991)
and a thin crust (20–25 km) (Ponziani et al., 1995). The region characterized
by tectonic extension is also affected by widespread and vigorous CO2 degassing
(Chiodini et al., 2004), whose isotopic composition suggests a deep origin due to
metasomatization of mantle rocks. CO2 presence has in fact been measured in San
Donato and Santo Stefano boreholes (reported in Figure 1.1). Here a high fluid
overpressure at 85% of the lithostatic load have been reported (Chiodini et al.,
2004) at depths of 4.8 km and 3.7 km, both within the same geological formation,
i.e. the Triassic Evaporites, suggesting that in this area fluids can accumulate in
shallow crustal traps, feed the high-CO2 flux observed at the surface and possibly
trigger seismicity.

The main mechanism relating fluids and earthquakes is that high pressure
fluids trapped in the lithosphere can escape primarily by large-scale and transient
changes in permeability accompanying local fracture and crustal scale earthquakes.
If earthquakes provide a trigger for fluid escape, then the pathway taken by the
fluids will influence aftershock sequences because the high fluid pressure reduces the
effective normal stress while fluid pressure gradients introduce pore-elastic stresses
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on the system (see Miller, (2013), where the argument is extensively treated along
with the whole geodynamical cycle of fluids in the lithosphere). The hypothesis that
high pressure fluids act as an important tectonic driver suggests that lithospheric
deformation, and the earthquake cycle, is substantially controlled by the mechanical,
chemical, and time-varying hydraulic behavior of high pressure fluids trapped at
depth.

In the context of the Apennines, several authors suggest that fluids play a
major role in seismogenesis (Chiodini et al., 2004) and in the spatiotemporal
evolution of seismicity (Miller et al., 2004). On this line of research there is an
increasing evidence, reported by multiple authors, of fluids involvement in recent
seismic sequences that occurred in the northern-central Apennines: Umbria-Marche
1997 (Miller et al., 2004; Antonioli, 2005; Lombardi et al., 2010), L’Aquila 2009
(Terakawa et al., 2010; Lucente et al., 2010; Di Luccio et al., 2010; Malagnini et al.,
2012), Central Italy 2016 (Chiarabba et al., 2018; Malagnini et al., 2022).

Given the aforementioned large flux of CO2 from deep source and the overpres-
sure measured in boreholes, several authors suggest that fluids can affect seismic
activity in the TABOO area (Valoroso et al., 2017; Marzorati et al., 2014; Pi-
ana Agostinetti et al., 2017). This specific area presents indeed a very favorable
lithologic and tectonic setting for channeling and trapping CO2 rich crustal fluids:
the presence of the Triassic Evaporites, composed of dolostones and anhydrite layers,
suggest a perfect combination of reservoir (dolostones) and sealing (anhydrites)
horizons for CO2 crustal fluids (Trippetta et al., 2013). The primary role of this
geological unit in hosting fluids traps is corroborated by laboratory tests, which
confirm the very low permeability of the anhydrides, even during deformation
(De Paola et al., 2009; Collettini et al., 2009a; Trippetta et al., 2010).

ATF and seismic activity The vast majority of seismic activity is located in
the ATF hanging wall, nucleating on minor synthetic and antithetic normal faults
(4–5 km along-strike length) and giving rise to seismic sequences with multiple
Mw3+ mainshocks (Valoroso et al., 2017), while the ATF footwall is almost aseismic
(Chiaraluce et al., 2007).
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Chapter 1. Introduction

From 2010 up to now the seismicity occurred in the area (Figure 1.2) can be
summarized in three seismic sequences: 1) the Pietralunga sequence, acting with
bursts of seismicity over multiple years (2010, 2013 and 2014); 2) the Città di
Castello sequence (April and May 2013); 3) Gubbio sequence, active mainly in
2013-2014, but reactivating in the the following years, up to the most recent activity
occurred in May 2021. Previous seismic activity recorded in this sector of the
Apennines include the 1997 Colfiorito MW 6.0 earthquake, a few kilometers SE
of the study area, 1998 Gualdo Tadino MW 5.1 and 1984 Gubbio MW 5.1 events.
All these earthquakes activated SW-dipping normal fault systems, thus antithetic
to the ATF. The historical earthquakes catalog of the area (Rovida et al., 2011)
reports 8 MW ≥ 5.5, three of which had MW ≥ 6.0 (see Figure 1.2).

1.1 Scientific questions and motivation

The Upper Tiber Valley area presents a compelling seismotectonic setting, with
many open questions to be investigated, along with an optimal scientific background
and monitoring environment to study such topics with a broad perspective and a
high level of detail. The complex seismotectonic setting of the Northern Apennines
offers a unique and large combination of ingredients, all potentially showing key
signatures of the earthquake’s nucleation and preparatory phases. Here there is
a constant and high rate of microseismic release, evidence of fluids overpressure
at depth, well- and mis-oriented normal faults (respect to the regional extensional
stress field), marks of seismic and aseismic activity along them and a state-of-the-art
multidisciplinary network monitoring all these components at high resolution in an
area whose lithological distribution in 3D is very well constrained. Thus, here there
is the potential to investigate a wide range of key topics in modern seismology and
fault mechanics, by the integration of seismic with non-seismic data.

That is why this thesis is based on the idea that the joint analysis of all
this information can contribute to shed light on earthquake initiation and the
mechanisms driving the recurrence and evolution of the seismic sequences. The
main questions that I intend to investigate concern signals of various nature and
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Figure 1.2: Historical and recent instrumental seismicity of the TABOO area.
Epicentral location of the earthquakes occurred between 2010-2022 (from INGV
catalog http://iside.rm.ingv.it) and largest events occurred in the past 1000
years (magnitudes 5.78 to 6.44 from Rovida et al., (2011)).
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Chapter 1. Introduction

form that can possibly be detected and traced back to tectonic and seismic processes,
giving hints on the driving mechanisms. Are there detectable signals/anomalies
linkable to seismic activity in the heterogeneous time series recorded by the multi-
parametric instrumentation present in NFOs? If so, what are the relations with local
earthquakes and between different datasets? How to compare the heterogeneous
time series? And more: what is the role of crustal fluids in the seismic sequences of
the area? Are there any identifiable seismic patterns that suggest such interactions?
Do local earthquakes nucleate independently of lithology or are some layers more
prone to trigger seismicity? These questions are addressed in the main chapters of
the thesis, the structure of which is reported in the following.

1.2 Thesis outline

The performed work is presented based on two scientific papers (Chapter 2 and 3) to
be submitted to peer reviewed journals. The recurring theme is the multidisciplinary
approach revolving around earthquakes and innovative tools to refine and broaden
the range of inferences and connections between a variety of data. I address the
topic with two complementary paths: the investigation of signals related to active
tectonic processes, in seismic and non-seismic data, and a detailed analysis of
seismicity to highlight if/how fluids may have interacted with tectonic processes.
Additional tests and analyses I performed, not included in publications, are reported
in the Appendixes. Finally, I have drawn a general Conclusion of the work (in
Chapter 4), summarizing all the work done, the inferences but also and especially
the ideas for future work, which is so much but also very promising.

Chapter 2 presents the framework developed for the analysis of multidisciplinary
time series applied to the data recorded by TABOO’s network. The joint analysis of
different datasets is a complex task requiring a methodology to extract and compare
useful information from all the different sources in a coherent framework. Here a
novel approach is presented, based on Bayesian inference, that relies on a reversible
jump Markov chain Monte Carlo algorithm (rj-McMC) to independently model time
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1.2. Thesis outline

series datasets and extract variations/transients under the form of changepoints
distributions as a common comparable output. The proposed workflow is applied
to VP/VS, GNSS and geochemical (Rn and CO2) time series. For each dataset the
output of the analysis is discussed in comparison with seismicity rate and main
earthquakes recorded in the study area, looking for a direct connection, (if one can
say type of cause and effect), between these data. The analysis of the results is
done for single station outputs, multi-station and finally with multidisciplinary
comparison of all analyzed dataset from the different disciplines.

Chapter 3 presents an in depth analysis of spatiotemporal patterns of small
seismic sequences occurred in the study area, to test the hypothesis of fluid in-
volvement in the process. The earthquakes catalog for Città di Castello and
Pietralunga sequences have been built starting directly from raw seismic waveforms
to high-resolution hypocentral locations, exploiting the dense TABOO seismic
network via the most advanced deep learning phase picking techniques, to detect
micro-seismicity with unprecedented resolution. The seismicity patterns are mod-
eled as diffusive processes to investigate the role of fluids in the evolution and
triggering of seismicity. The earthquake catalog produced is compared with a de-
tailed seimostratigraphic three-dimensional model of the area, to frame the seismic
activity in the geologic and tectonic context allowing to discuss the implications of
the hypothesized fluid driven mechanisms.

Chapter 4 synthesizes the results with a discussion about the implications of
the presented studies to provide an outlook on future research directions building
upon the results of this thesis.
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2.1. Introduction

2.1 Introduction

Understanding earthquakes, from the preparatory phase to the (slow or fast) energy
release, is an ambitious task that has to deal with the complexity of natural systems,
whose mechanical, physical and chemical properties evolve over time. Investigating
the relations between earthquakes and various measurable parameters is not new:
for at least fifty years much effort have been put in trying to better understand
earthquake generation through the analysis of a wide variety of measurements,
mostly in search of precursors (Scholz, 1973; Cicerone et al., 2009; Thomas,
1988). Despite the popularity of the problem, it has been rarely faced with a real
multidisciplinary approach involving the analysis of multiple different observables
at the same time for the same area.

In the last decade the development of research infrastructures such as Near Fault
Observatories (NFO) allowed to conduct multidisciplinary experiments in "natural
laboratories", created expressly with the aim of understanding the physical-chemical
processes related to earthquakes, tectonic activity and evolution of fault systems.
One NFO has been installed/developed in central Italy, the Alto Tiberina Near
Fault Observatory (TABOO) (Chiaraluce et al., 2014) (Figure 2.1) This NFO is
located in the upper Tiber Valley (northern Apennines) and it is equipped with
a wide variety of instrumentation, providing continuous acquisition of long time
series from high resolution networks of seismic, geodetic and geochemicals. This
area has unique potential for multidisciplinary studies not only because of the
dense instrumentation and high seismic rate, but also because of the peculiar
seismotectonic framework involving aseismic deformation (Gualandi et al., 2017)
and deep fluids circulation (Chiodini et al., 2004) in this section of the Apennines.
The area has been investigated with a number of complementary techniques: seismic
imaging and monitoring, geodetic and geochemicals.

From a seismological point of view, many studies confirmed that the vast
majority (~90%) of seismic activity originates in the hanging wall of a low angle
normal fault, the Altotiberina fault (ATF) (Chiaraluce et al., 2007), where a
complex system of synthetic and antithetic faults give rise to seismic sequences
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Chapter 2. Looking for tectonic signatures in multidisciplinary time series

with multiple Mw3+ mainshocks (Valoroso et al., 2017). This extensive seismic
activity and dense network allows to have a detailed picture of the subsurface
from high quality seismic catalogs (Valoroso et al., 2017), tomographic (Moretti
et al., 2009; Piana Agostinetti et al., 2017) and deterministic (Latorre et al., 2016)
velocity models.

Recorded earthquakes can also be exploited to “monitor” elastic properties
using travel times of seismic phases to detect variations which are indications of
the processes taking place in the subsurface (Lucente et al., 2010; Li et al., 1998;
Schaff David P. and Beroza Gregory C., 2004). An example of this approach on the
TABOO area is described in Poggiali et al., (2019) using VP/VS time series: here
most of the variations detected are clustered in space and time near the mainshock
of the Gubbio sequence (Dec. 2013).

Another interesting aspect of this area involves geodetic data, which are widely
used to monitor crustal deformation and understand seismic and aseismic slip
(Kanamori, 1977; Avouac, 2015). Many studies suggest an active role for the ATF
in accommodating tectonic extension in this sector of the Apennines, which is
supported by GNSS data with numerical models (Vadacca et al., 2016) and it is
compatible with creeping behaviour (Hreinsdottir and Bennett, 2009; Anderlini
et al., 2016). The high density of geodetic stations allowed also to detect an
aseismic transient associated with slow deformation (Gualandi et al., 2017) during
the occurrence of a shallow seismic sequence (Gubbio 2013, mainshock MW = 3.8).

Recent studies focused on the geochemical aspect of the fluids that circulate
at the main fault depth-level. Interactions of deep fluids of mantle origin (CO2)
with tectonic activity are suggested by several authors as a triggering mechanism
(Chiodini et al., 2004), a factor controlling the spatial and temporal evolution
of seismicity (Miller et al., 2004; Antonioli, 2005), and a proxy for crustal stress
(Camarda et al., 2016). The existence of fluid circulation in the area is documented
both in deep boreholes, where fluid overpressure (CO2) at about 85% of lithostatic
load has been encountered (Chiaraluce et al., 2007), and in very high CO2 flux
emissions at the surface (up to 5800 t/yr), values comparable to active volcanic
regions.
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Geochemical instrumentation installed in the area also includes monitoring of
radon emissions (Piersanti, 2015). This radioactive gas have been investigated
for decades in relation to earthquake generation (see Cicerone et al., (2009) for
a review), and, although relations with seismogenetic processes are still open
issues, laboratory experiments show increased radon emissions as a consequence of
deformation in rocks (Holub and Brady, 1981; Mollo et al., 2011).

This study is based on the idea that the joint analysis of all these information
could shed a light on the mechanism of earthquake nucleation at an intermediate
scale (between laboratory and disctructive earthequakes). However, comparing and
relating all the different datasets produced by this multidisciplinary networks with
tectonic processes has to deal with two levels of complexity: the development of a
methodology to extract useful information from all the different sources in a unique
and coherent framework; and the need of extracting quantitatively comparable
information.

Here we propose a workflow, based on Bayesian inference, that relies on a
reversible jump Markov chain Monte Carlo algorithm (rj-McMC) (Green, 1995) as
a framework to independently model all the time series with piecewise functions
and extract variations/transients which can be finally represented and analyzed
as changepoint (CP) distributions. The ability of Bayesian methods to deal with
non-linear and non-unique problems (Mosegaard and Tarantola, 1995; Tarantola
and Valette, 1982), made these methods appealing in many geophysical fields and
the trans-dimensional implementation (Green, 1995) has proven successful in a
wide variety of applications (Bodin et al., 2012b; Bodin et al., 2012a; Dettmer
et al., 2010; Hawkins and Sambridge, 2015; Piana Agostinetti et al., 2015).

Trans-dimensional algorithms are particularly well suited to deal with CP
problems, because they allow the treatment of the number of CPs as a parameter
itself to be estimated, without requiring subjective a priori assumptions on the
model complexity. Examples of applications on various kinds of time series can be
found in literature: borehole temperature data (Hopcroft et al., 2007; Hopcroft et
al., 2009), geochemical data (Gallagher et al., 2011), thermochronology (Gallagher
2012).
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rj-McMC algorithms, like the one used in this study, are naturally parsimonious
(Malinverno, 2002): this assures that only CPs supported by the data are retrieved
and that simpler models are naturally preferred over complex models. Model
complexity is also directly linked to the level of data noise and the correlation
of data points (Piana Agostinetti and Malinverno, 2018). To limit the effect of
wrong noise estimations we adopted the “hierarchical Bayes” approach (Malinverno
and Briggs, 2004) and let the algorithm estimate a scale factor for errors on the
measurements. Furthermore we added a correlation parameter for data noise that
can be estimated in the inversion, following the treatment of Bodin et al., (2012a).
The latter addition is made to handle the case of correlated measurements that,
if assumed uncorrelated, may also result in an unnecessary increase of the model
complexity.

The aim of the work is to develop and apply a rj-McMC algorithm for the
detection of CPs hidden in different geophysical measurements acquired in the
study area by means of a Bayesian algorithm, and to produce an output which can
easily be used for integrate multidisciplinary datasets, in a synthesis effort. All
analyzed data-sets will be represented in the form of time series, where piecewise
functions will be selected ad-hoc for simulating the observed data. Given the
parsimonious nature of our approach (Malinverno, 2002), our algorithm will make
use of a limited number of piecewise functions for each data-set, i.e. including only
functions directly supported by the data. The occurrence of a discontinuity between
two functions, a CP, will indicate the presence of a discontinuity in the time series.
Collecting and analyzing all discontinuities between all simulated datasets will allow
to relate variations detected at multiple sites and potentially involving different
parameters. The proposed method could therefore contribute to innovative and
heterogeneous warning systems for monitoring tectonically active regions and aid
expert opinion in relating and comparing the different signals recorded by the
increasingly widespread multidisciplinary networks. This kind of approach can also
broaden our knowledge about the existence of relations between earthquakes and
various measurable parameters with potential significance as a proxy for the local
tectonic process. In fact this study involves both parameters for which links with
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seismicity are known, like geodetic and seismic, and parameters for which the links
are debated, like radon, or supposed, like CO2, especially for this area.

The first step in our workflow consists in a pre-processing phase which is
necessary for some of the datasets before the application of the rj-McMC algorithm.
Different data-sets require different levels of data pre-processing procedures, going
from almost nothing (e.g. time series of VP/VS ratio), to complex pre-processing
workflows including external data/constraints (e.g. geochemical data). For VP/VS

this first step consisted mainly in building the time series from raw datasets:
we followed the same cluster-station logic as described in Poggiali et al., (2019)
to accomplish this task. We recognize that geodetic measurements exhibit the
presence of seasonal signals which can severely influence the results if not taken
into account (Serpelloni et al., 2006): seasonal signals (annual and semiannual) are
simulated and the parameters are estimated following a Bayesian approach, before
the subsequent rj-McMC modeling. For geochemical measurements, already in a
suitable time series format, the main pre-processing step consisted in mitigating
the effect of environmental factors known to affect the measurements. In order to
remove the most common sources of short-term anomalies not related to tectonic
activity, namely rainfall (see, among others, Granieri et al., (2003) for CO2 and
Piersanti et al., (2016) for radon), we implemented a simple but effective filter
based on rainfall threshold in a moving window. Moreover raw datasets with
hourly sampling (geochemicals) are resampled on a daily basis to remove eventual
daily and sub-daily oscillations. After the preparation of all datasets, the McMC
algorithm is applied independently on each time series. The collection of CPs
obtained for each data is analyzed per se and relative to the other time series.
Additionally, the time series are compared to the seismicity rate and other signal
of the tectonic process.

2.2 Data and time series pre-processing

The multidisciplinary time series analyzed in this study are derived from both
raw data and scientific products gathered by the TABOO research infrastructure.
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Figure 2.1: Map of the study area. Only stations used in this work are reported.
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Datasets include time series of geodetic, geochemical (CO2 flux and radon emissions)
and VP/VS ratios for a maximum timespan of 10 years (January 2010 to December
2019). A crucial step in searching for variations related to tectonic processes is
defining what kind of signals we are interested in. This approach would require
us to know the actual relations between every observable we analyze and the
tectonic processes taking place. Which is unfortunately unknown. To overcome this
limitation we chose the more viable option of defining which are the signals that we
are not interested in before the CP detection phase. With this strategy we aim to
remove or isolate the contributions which are known to affect the measurements but
are not related to seismic activity. This includes mainly seasonal signals (present
in geodetic and geochemical data) and short-term effects due to meteorological
parameters such as rainfall (observed in geochemical data).

Datasets have very different properties from each other and have required a
variable amount of preparation/preprocessing in order to be analysed with the
McMC algorithm: VP/VS data needed to be spatially organized in time series,
GNSS data required the removal of annual and semiannual periodicity (Serpelloni
et al., 2006) (without considering the creation of positional time series, not treated
here); geochemical data have been filtered and resampled. In the following, we
explain in details all the preprocessing steps for each data-set.

2.2.1 Global Navigation Satellite System data

We analysed horizontal components of continuous GNSS time series from stations
located inside the TABOO area (Figure 2.1). These time series represent the
evolution of each site position in time relative to Eurasian plate over a maximum
of 10 years from January 2010 to December 2019. For a detailed description of the
procedure adopted to produce GNSS positional time series used in this work we refer
to Serpelloni et al., (2006). In a first moment, the instrumental offsets are removed.
Then, a standard McMC search (Sambridge and Mosegaard, 2002) is operated to
define the most probable values of the annual and semiannual periodicity which
generally affect GNSS time series (Serpelloni et al., 2006). In details, we consider
the model:
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Figure 2.2: Example of data from the E-W component of GNSS station ARCE (black
points). Estimated sinusoid (annual plus semiannual components) superimposed in
orange (arbitrary intercept and slope).

pgps(m) = α1sin(2πγ1t+ β1) + α2sin(πγ2t+ β2) , (2.1)

where: pgps(m) are the periodic contributions in the GNSS series that we
wish to infer, α1,2, β1,2 and γ1,2 are respectively the parameters of the annual and
semiannual terms (t is measured in years). γ1,2 have values between 0.9 and 1.1
and are used to adjust annual and semiannual periods, so that they are not strictly
annual and semiannual. The mean posterior values of α1,2, β1,2 and γ1,2 are used
to estimate the periodic signals. After the seasonal estimation, time series are
analyzed with the rj-McMC algorithm to search for sudden changes. For each
GNSS station our data consist of position time series and associated measurement
error of the two horizontal components (E-W and N-S), sampled at 1 sample per
day (example of E-W component in Figure 2.2). Time series shorter than 2 years
are not considered. We used a total of 26 GNSS stations in the area (Figure 2.1).
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2.2.2 Geochemical data

Although environmental / meteorological parameters (e.g. temperature, pressure,
rainfall, etc.) are known “exogenous” factors in the modulation of geochemical
signals (see, among others, Pinault and Baubron, (1996) and Camarda et al.,
(2019) and references therein, respectively for radon and CO2), the specific role and
contribution of each one is still an open issue, often further complicated by site
effects. Nonetheless it is possible to focus on a subset of factors, widely recognized in
literature for having a major influence in the modulation of geochemical emissions,
and implement strategies in the workflow in order to mitigate at least the effect
of these known sources of anomalies. Furthermore the pre-processing we used
on geochemical datasets is functional only to the subsequent application of the
rj-McMC algorithm, that is to remove the main sources of CPs not accountable to
tectonic activity. Thus, we are not interested in identifying, for example, the cause
of a seasonal oscillation, but only to account for it in our model.

CO2

CO2 dataset analyzed in this study consists of CO2 flux measures from 4 stations:
Fungaia, Migianella, Nogna, Uppiano (Figure 2.3). The stations are positioned in
sites characterized by strong CO2 flux, up to 5800 t/year (Camarda et al., 2019),
evidenced in some sites by the presence of bubbling water at the surface. The
timespan considered in this study goes from June 2015 to December 2019, with
almost 3 years covered by all four stations. In each station the data are sampled
hourly. We first proceeded by removing measurements related to known instrument
malfunctions (i.e. Migianella data from the end of May to the end of July 2016).
Because of the very wide range of values, spanning 4 orders of magnitude, we
worked on the log transformed data (base 10 logarithm). This simplifies the McMC
sampling by “compressing” the data range. Many studies investigated the relations
between meteorological parameters and CO2 emissions, (from our knowledge these
studies are all performed in volcanic areas) highlighting a complex behavior, often
site specific, but always characterized by long term seasonal oscillations and short
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term effects related to rainfall and soil water content (Granieri et al., 2003; Camarda
et al., 2019; Viveiros et al., 2008).

In order to remove anomalous signals related to strong precipitation episodes
we implemented a simple filter based on a threshold over the cumulative rainfall
calculated in a moving window. We used a threshold of 1 mm of rainfall and a
window length of two days. These values were found with empirical criteria: 1)
keeping most of the data points (more than 75% of considered days are retained
with such parameters, counted from first to last valid data) 2) removing the clear
spikes/drops associated with strong rainfalls (see Figure 2.4 for an example of how
this filter works on a dataset). Being the cumulative sum for each sample calculated
over the previous 2 days, the moving window has the side effect of accounting for
some time for soil humidity to recover from wet conditions. For our purposes we
preferred this way of treating the effect of rainfall over, for example, subtracting a
regression function modeled on soil humidity, both for simplicity reasons and to
manipulate the datasets as little as possible. Moreover removing data points does
not pose any problem for the McMC algorithm because these methods can deal
with data gaps by simply tending to the prior in such no-data zones, without any
need of interpolation.

After the removal of data points attributable to rainy events, we resample
each dataset at 1 sample per day, taking the mean and the standard deviation
respectively as our final measurements and errors to be analyzed with the McMC
algorithm. Periods with no meteorological data available were not considered: e.g.
Nogna meteorological station unfortunately reported malfunctions until November
2017, so a large fraction of this dataset was discarded. The effect of daily and/or
sub daily cycles, frequently documented in literature for CO2 time series (Granieri
et al., 2003; Rinaldi et al., 2012), is bypassed here because of the daily resampling
that removes these high frequency oscillations.

As seen in geodetic time series, seasonal phenomena can generate periodic
fluctuation in the geochemical time series. Even in this case, we can estimate the
parameters related to a periodic function (see Eq. 2.1 during the pre-processing
steps to isolate such contribution before the rj-McMC step. In particular, we adopt
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Figure 2.3: CO2 raw dataset.

the same scheme used in Section 2.2.1 and we consider a periodic model with annual
and semiannual periodicities. Parameters related to such model are estimated using
a standard McMC approach. In the following rj-McMC application, mean posterior
values of such parameters are considered. An example of the application of this
procedure to one CO2 station (Fungaia)is reported in Figure 2.5.

Finally we expect some degree of serial correlation between the measurements.
In the assumption of uncorrelated samples, this would lead to an unnecessarily
high complexity of the resulting models as a consequence of the wrong assumption.
We deal with this property of the dataset by introducing a correlation parameter
in the parametrization, as described in the method section.
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Figure 2.4: A zoom on Fungaia CO2 station: here the relation between rainfall
(bottom) and CO2 measurements (top) is evidenced. The implemented filtering,
based on a simple rainfall threshold in a moving window, is effective in identifying
anomalous data points (marked in orange in top panel) that will not be considered
in the following steps. We also note that the effect of rain is not always the same
but results in peaks and drops of the measured CO2 flux.
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Figure 2.5: Example of the pre-processing steps for a CO2 station (Fungaia).
Top: raw data in grey and filtered data in black. The grey points are discarded
measurements due to rainfall events or lack of meteorologic recordings (e.g. at
the end of the time series). Bottom: Log transformed data, daily resampled
with errorbars calculated as daily std. The sinusoid estimated with annual plus
semi-annual components is superimposed in orange (arbitrary intercept and slope).
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Radon

Radon emissions that we used as raw data are continuous measures of concentrations
recorded by 4 stations located inside the TABOO area: BADI, CDCA, MURB,
SSFR (Figure 2.6). The stations are part of the italian radon monitoring network
(IRON); details about station sites, installations types and instrumentation can
be found in Cannelli et al., (2018). The instruments used in each station use an
acquisition window of 2 hours to obtain a radon concentration reading, so every
time series is sampled at 12 samples per day. The timespan we analyzed goes
from the end of 2013 to the beginning of 2019, with a good coverage for most of
the considered time window and a maximum extension of more than 4 years of
measurements.

As with CO2 time series we first deleted the few data points related to instrument
malfunctions and log transformed the values. In fact, the stations exhibit a wide
range of variability: from stations with lower and more stable measurements (like
CDCA and BADI) to the much higher mean and variance of SSFR, which exhibit
also spikes with values over 5000 Bq/m3 (Figure 2.6). Radon measurements are
the effect of very complex interactions between several factors, and the influence of
meteorological parameters is widely documented (Pinault and Baubron, (1996) and
Siino et al., (2019) and references therein). Both short (daily and sub-daily) and
long (annual and semiannual) oscillations have been highlighted (Siino et al., 2019;
İnan et al., 2012) and a strong effect of rainfall on the measurements is constantly
evidenced (Piersanti et al., 2016; Cannelli et al., 2018; Tommasone Pascale et al.,
2015), frequently marked by peaks and/or drops in radon time series data. Moreover
the correlations between meteorological parameters and radon emissions exhibit a
site-specific behaviour (Piersanti, 2015; Piersanti et al., 2016).

We applied the same filtering that we used for CO2 data to remove samples
affected by rainfall episodes. The moving window has been kept 2 days long and
the threshold has been increased to 10 mm with an analogue procedure based on
keeping most of the data and removing anomalous signals observed in conjunction
with heavy rain events. Some examples of peaks related to rain events detected in
CDCA and BADI stations are further explored in Cannelli et al., (2018). After
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Figure 2.6: Radon raw dataset.

daily resampling of the remaining data, ~90% of days are retained with respect to
the original datasets (counted from first to last valid data). As with the previous
CO2 case, we take the daily mean and standard deviation as the final values and
associated errors that will be the input of the McMC algorithm. The resampling
procedure removes daily (and sub-daily) periodicity evidenced in literature, which
are generally attributed to temperature and pressure cycles.

The seasonal parameters are estimated for Radon time series following the
same approach presented for GNSS and CO2. Again, this implies a preliminary
application of a standard McMC scheme to a given model. For consistency, we use
the same model as in GNSS and CO2 (annual and semiannual periodicities only).
An example of the application of this procedure to one radon station (CDCA)is
reported in Figure 2.7.
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Figure 2.7: Example of the pre-processing steps for a radon station (CDCA).
Top: raw data in grey and filtered data in black. The grey points are discarded
measurements due to rainfall events or lack of meteorologic recordings (e.g. at
the end of the time series). Bottom: Log transformed data, daily resampled
with errorbars calculated as daily std. The sinusoid estimated with annual plus
semi-annual components is superimposed in orange (arbitrary intercept and slope).
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2.2.3 VP/VS

The average VP/VS ratio for a give ray-path can be computed from the P- and
S- waves travel-times (Wadati and Oki, 1933) using the formula: ˜VP/VS = (tS −
tP )/tP + 1, where ˜VP/VS is the average value along a the ray-path connecting an
earthquake and a seismic station, tP and tS are the computed travel-times (i.e. P-
and S- waves arrival times minus the event origin time). The VP/VS ratio values
and errors used in this work are derived from a database of 82962 events recorded
in the TABOO area from April 2010 to December 2019. The procedure to create
time series from the database is the same as in Poggiali et al., (2019), here we
report a brief summary.

Each time series is constructed with the goal of monitoring VP/VS values in
time for a specific rock volume to detect VP/VS ratio variations. In order to sample
the same rock volume the ray paths have to be similar, so the time series are
constructed on a hypocenter-based selection:

1. the study area is gridded with 500 m spacing in three dimensions;

2. each node of the grid is the center of a 1 km3 sphere, called cluster hereinafter;

3. a cluster-station time series is computed for a given station and all events
within the cluster;

4. a cluster-station time series is retained for the next rj-McMC algorithm, if it
contains at least 100 VP/VS ratio values.

After this procedure we obtained 10560 time series. More than half of the
stations do not have enough data to originate a time series, so only 38 stations from
the starting 90 are actually used in the following analysis. To avoid subjective bias,
we do not remove outliers values, which are present evidently due to mislocated
events in the catalog (i.e. mislocated events display erroneous origin-time, which,
in turn, affect P- and S- wave travel times computation and, finally, VP/VS ratio
estimates).
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2.3 Methodology: the rj-McMC sampling algo-
rithm

Our goal is to produce comparable outputs between data derived from different
disciplines in order to identify significant signals/transients in multiple datasets. The
workflow we propose relies on Bayesian inferences driven by a rj-McMC algorithm
as an analysis tool common to all datasets. We implemented a parameterization
that allows us to overcome or at least mitigate some of the dataset-specific issues
seen in the previous section such as outliers and serial correlation. In the proposed
workflow we model each time series with piecewise linear functions separated by
CPs. Together with the distributions of each parameter analyzed, we produce
distributions of CPs over time for each time series, which is a suitable kind of
output to search for common changes between different disciplines and in relation
to seismic activity. In the following we describe the workflow we used and the
details of our algorithm.

2.3.1 Bayesian inference

Given a physical or mathematical model and a pool of data, the aim of Bayesian
inference (Bayes, 1763) is to estimate a probability distribution for the model
parameters (so called posterior probability distribution, PPD) from prior information
on the model and a likelihood function representing the information contained
in the data (the PPD calculation includes also an "evidence" term, which is not
a function of the model and is often neglected, giving rise to the proportionality
symbol in Equation 2.2). All components (PPD, prior and likelihood) must be
expressed as probability distributions and the relation between them is commonly
expressed with the following formula:

p(m|d) ∝ p(m)p(d|m) (2.2)

Here the posterior pdf p(m|d) of the model m given data d is linked to our prior
knowledge on the model, represented by the prior p(m), and a term that quantifies
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the probability of observing the measured data given that particular model p(d|m),
which is the likelihood function. The likelihood function quantifies how well the set
of parameters composing the model can fit the observed data and can be expressed
in different forms depending on the assumptions made on the statistical character
of the noise (Mosegaard and Tarantola, 1995). The most used technique to obtain
a numerical approximation of the PPD is Markov chain Monte Carlo (McMC)
sampling (Gelman and Rubin, 1996; Mosegaard and Tarantola, 1995; Tarantola and
Valette, 1982): a sequence of models is generated with a random walk constructed
to have the PPD as its equilibrium distribution. Different sets of parameters, called
states, are visited along the chain and the next state depends only on the current
one. The first part of the chain (burn-in) where the random walk moves towards
the high probability region is discarded, after that the random walk is assumed to
be stationary i.e. the importance sampling follows the target distribution.

In this study we adopt the McMC approach of Mosegaard and Tarantola, (1995)
to sample the PPD, which involves two steps. The first step consist in drawing a
candidate model mcand from the prior distribution, for example replacing one of
the parameters in the current model mcurr with a value extracted from the prior
probability distribution for such parameter. In the second step the candidate is
accepted or rejected following an acceptance probability:

α = min

[
1, L(mcand)
L(mcurr)

]
(2.3)

where L represents the likelihood function. It can be proven that if the candidate
models are generated by sampling the prior distribution, this acceptance probability
results in a random walk that samples the PPD (see Mosegaard and Tarantola,
1995). The expression used for the acceptance probability is a special case of the
general acceptance criterion

α = min

[
1, q(mcurr|mcand)
q(mcand|mcurr)

p(mcand)
p(mcurr)

L(mcand)
L(mcurr)

|J|
]

(2.4)

that involves, in addition to the likelihood ratio, also the prior ratio p, a proposal
ratio q to move from a candidate model to the current model and viceversa, and
a Jacobian term J of the transformation from mcurr to mcand which considers
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the (potential) different number of dimensions in the two models. The McMC
implementation used here adopts the transdimensional “reversible-jump” formula-
tion proposed by Green, (1995), where the model dimensionality can vary along
the chain (i.e. different number of parameters). The most important feature of
rj-McMC algorithms is that model complexity is determined by the data: this
characteristic is of primary importance in time series analysis and CPs modeling,
where the number of partitions can be inferred without any subjective assumptions.
In our algorithm model dimensionality can increase or decrease only by one at
each iteration, falling in the category of “birth-death” algorithms (e.g., Malinverno,
2002; Hopcroft et al., 2007). As explained in Agostinetti and Malinverno, (2010),
on which our algorithm is derived, the sampling strategy of Mosegaard and Taran-
tola, (1995) guarantees that the prior distribution equals the proposal distribution
and, by adopting specific transformations, the jacobian term is unity and can be
conveniently ignored.

2.3.2 Model parametrization

The diverse characteristics of the datasets, discussed in the previous section (sec-
tion 2.2), result in the need of a versatile parameterization that can adequately
adapt the model complexity to each observable with the most suitable set of basis
functions. Here we adopt a piecewise-modeling. In other words, we consider a
model that operates linear data interpolation in a given number of time-windows.
Due to our trans-D approach, the number of time-windows is not constant, but it
can vary from one model to the next model during the McMC sampling. Basically,
the piecewise parameters fit the linear trends between two CPs, so these are the
parameters that control local properties of the time series and its variations.

Being k the unknown number of CPs and ci the times of occurrence of each
CP, we model the data in the time-window between ci and ci−1 with a slope ai

and an intercept bi (c0 = tstart, representing the starting date). Because we used
a left-continuous CP definition, we need an additional set of parameters for the
data between ck and tend (end of the observing period), which can be thought of as
half-space values. So, the piecewise model vector can be written as:
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mpiecewise = (k, c, a,b) , (2.5)

where c is a k-vector and a,b are (k + 1)-vectors.
To deal with other properties of the datasets, such as outliers presence and

serial correlation, we included two parameters related to the treatment of data
noise (often called hyperparameters) in our rj-McMC implementation. The first
one is the noise scale parameter ω which is adopted following the “hierarchical
Bayes” approach (Malinverno and Briggs, 2004) and is defined in the same way
as in Poggiali et al., (2019) where the original error values are multiplied by a
factor 10ω . In Bayesian inference the role of measurement errors is of fundamental
importance and it is even more so in trans-dimensional implementations, where
the complexity of the solution is a variable and it’s directly related to the level of
data noise. As exemplified in Agostinetti and Malinverno, (2010) the noise level
is inversely proportional to the complexity of the solution. Imposing an a-priori
noise level is equivalent to obtaining a solution with a specific complexity: a higher
value would determine a less complex solution and vice versa. By adopting the
hierarchical Bayes approach and sampling ω as a parameter we let the algorithm
“modulate” the level of data noise and this ultimately controls the complexity of
the solution in a totally data-driven way. As a consequence, measurement errors
retain only their relative importance to each other.

The second noise parameter r is introduced to treat the serial correlation that
some dataset exhibit (geochemicals). This property results in a covariance matrix
which can no more be assumed as diagonal. We follow the definition of Bodin et al.,
(2012a) where the correlation between samples is described in the covariance matrix
either as an exponentially decaying function or with a Gaussian correlation law.
The first type of noise correlation, of which the details can be found in appendix D2
of Bodin et al., (2012a), is the one adopted in our implementation. This expression
of noise correlation is very convenient from a computational point of view because
both the determinant and the inverse of the covariance matrix have an analytic
formulation that can be exploited to perturb r or ω directly. Thus, our model is
completed by:
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merror = (ω, r) . (2.6)

2.3.3 Likelihood function

Our implementation builds on the one described in Poggiali et al., (2019) and
uses the same sum of absolute differences in the likelihood function (l1 norm).
As explained in Mosegaard and Tarantola, (1995) this is equivalent to expressing
experimental uncertainties with a Laplacian function instead of the more common
Gaussian function. This has the advantage of being a more robust estimator,
which is suitable in the presence of outliers that otherwise would have determined
a greater complexity (more CPs) of the models in order to “fit” outlier values.
The expression for the likelihood, combining the choice of a Laplacian function
and exponential correlation (see Section 2.3.2), can be written as follows. The
covariance matrix can be decomposed as Ce = SRS Malinverno and Briggs, 2004,
where: S is the diagonal n×n matrix with the square root of the data uncertainties
along the diagonal multiplied by the square root of the noise scale parameter 10ω,
and R is the n× n exponential correlation matrix (n is the number of data-points).
The square root of the absolute value of the residuals vector is e =

∣∣∣dobs
i − dsim

i

∣∣∣1/2
.

In this case, following Malinverno and Briggs, (2004), the likelihood function

L(d|m) = 1
2 |Ce|

exp
(
−eT Ce

−1e
)

(2.7)

simplifies to

L(d|m) = 1
(1− r2)n−12∏n

i=1 10ωσi

exp

(
−φ

1− r2

)
(2.8)

with
φ = φ1 +

n−1∑
i=2

φi + φn (2.9)

where:

φ1 =

∣∣∣dobs
1 − dsim

1

∣∣∣
10ωσ1

− r

∣∣∣dobs
1 − dsim

1
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1/2
1 σ

1/2
2

,

φn =
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n
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,
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and

φi = −r

∣∣∣dobs
i−1 − dsim

i−1

∣∣∣1/2 ∣∣∣dobs
i − dsim

i

∣∣∣1/2

10ωσ
1/2
i−1σ

1/2
i

+(1+r2)
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i

∣∣∣
10ωσi

−r

∣∣∣dobs
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i+1

∣∣∣1/2 ∣∣∣dobs
i − dsim

i

∣∣∣1/2

10ωσ
1/2
i+1σ

1/2
i

.

The case of independent samples is handled as a special case of the previous
expression for the likelihood with r = 0. Instead, imposing ω = 0 is equivalent to
using original errors without making inference on the noise scale factor.

2.3.4 Prior probability distributions

In Bayesian inference every prior knowledge we have is expressed by means of
probability distributions, which, combined with the likelihood, will produce the
PPD. Therefore the choice of the prior distributions to be adopted must be made
carefully (Roy and Romanowicz, 2017) in order to balance an efficient sampling
(defining not too wide bounds) and an unconstrained solution. One of the criticisms
that is in fact brought against the Bayesian approach is that the prior can be
tuned to lead the sampling towards preferred solutions (Scales and Snieder, 1997).
Our approach is to use uniform prior distributions for all parameters to avoid any
preference over the solution, and setting sufficiently wide bounds. It is important
to notice that a uniform prior is also used to sample the model dimension. This
means that model with a different number of CPs, namely between 1 and 100,
are equally probable a priori. A bit counter-intiuitively, the consequence is that
having a small amount of information in the data does not automatically translate
in sampling low dimensional models. If few or no information are contained in the
data, both low and high dimensional models will be accepted along the McMC
sampling.

2.3.5 Sampling recipe

After initializing the model parameters in the current model by drawing values
from the prior distributions, the sampling of the PPD is done by proposing a new
candidate model and accepting or rejecting it according to Equation 2.3 presented
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before. To produce a candidate model form the current one, we randomly pick one
of the following moves (grouped into two main categories):

1. moves that affect piecewise parameters:

1.1 (proposed with probability 0.20) perturb intercept value a of a CP;

1.2 (0.20) perturb slope value b of a CP;

1.3 (0.20) perturb the position of a CP in time c;

1.4 (0.1) create a new CP (birth move);

1.5 (0.1) delete an existing CP (death move);

2. moves that affect noise parameters:

2.1 (0.1) perturb noise scale value ω;

2.2 (0.1) perturb noise correlation parameter r.

The uniform priors associated to the model parameters are sampled following the
strategy proposed in Appendix A of Agostinetti and Malinverno, (2010).

We here briefly depict the sampling workflow, summarizing the main steps. All
saved model are post-processed at the end of the McMC sampling to obtain the
approximation of the PPD (from which all figures in the present manuscript are
drawn):

A. pick a candidate model mcand by perturbing the properties of mcurr with one
of the moves illustrated above;

B. compute the likelihood of mcand;

C. accept or reject the candidate model following Equation 2.3: if mcand is
accepted then it replaces mcurr, otherwise mcurr is retained;

D. save mcurr and restart from (A).

We used the versatility of our parametrization to adapt the modeling to the
different scenarios that each dataset represents:
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- for VP/VS we used a simple parameterization made only by a piecewise
constant function (slope parameter fixed to 0);

- GNSS data is modeled with piecewise linear, noise scale value but no noise
correlation parameter;

- Geochemical datasets (radon and CO2) are modeled using piecewise linear,
and both noise parameters.

Each move is tuned, as common practice in Bayesian inversion (Agostinetti and
Malinverno, 2010), by keeping the value of the acceptance ratio (accepted over
proposed models) between 0.25 and 0.5 to balance between the exploration of the
parameter space and sampling efficiency.

For VP/VS time series the algorithm ran on 10 independent chains for 10M
iterations each; the first half of each chain is discarded as burn-in. As introduced
before, the datasets that require seasonal components (GNSS and geochemical) are
modeled with a two step procedure separating the sampling of periodic parameters
from piecewise parameters. We use the first part of the chains to infer only periodic
parameters: the obtained ensemble of models is used to compute the average
values of each periodic parameter. In the second part of the chains we fix seasonal
parameters to these average values and we start sampling the piecewise parameters.
So, for GNSS and geochemical time series, the algorithm is first ran with 20 chains
for 500k iterations, of which the first 400k are discarded as burn-in. The last 100k
of this run are used to infer periodic parameters. Periodic parameters are then kept
fixed and the 20 chains are iterated for 1M models of which 900k are discarded as
burn-in. In each case (VP/VS, GNSS, geochemicals) we retain only 1 model every
100.

2.4 Results

First we analyze some examples of the application of the Bayesian algorithm to
show the general behavior with different datasets and to highlight positive and
negative characteristics of our approach in relation to data properties. We then
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show a case where the inverted model is simple enough to be visually compared
with main earthquakes near the measuring station. Finally, we gather the whole
ensemble of retrieved CPs distributions from multidisciplinary time series and
analyze it in relation with seismic activity recorded inside the study area.

A first observation is that the complexity of the solutions, represented by the
number of CPs used in the modelling, varies considerably across different kind of
datasets (grey histograms in right panels of Figure 2.8). Typically VP/VS time
series can be modeled with few CPs, GNSS time series result in a moderate number
of CPs (generally below 50), and geochemical time series commonly need a high
number of CPs. The number of CPs for geochemical data is generally between 40
and 80, with few notable exceptions: radon station BADI with less than 10 CPs
and SSFR with 100 CPs, which is the maximum value of the prior range on CPs
number (i.e. 0 to 100).

Each dataset modeled with periodic signals shows some time windows of con-
siderable length (months to almost a year in the examples of Figure 2.8) where
seasonal oscillations are enough to properly model the datasets. These portions of
the time series are identified by absence of CPs.

The effect of l1-norm likelihood implemented in the algorithm can be clearly
seen in panel (a) of Figure 2.8: in this GNSS time series the presence of some
outliers is evident, but it is also evident that they are not affecting the resulting
model. Outliers are indeed properly downweighted with the l1-norm and do not give
rise to unneeded CPs. Exceptions are observed, as expected, in case of isolated data
points with low error or clusters of data points far from neighboring values. These
situations are observed more frequently with radon stations, of which examples are
visible in panel (d) of Figure 2.8 (MURB station). The effect of outliers on inverted
models is recognizable by the spike-like peaks or drops in the average models from
PPD (red lines in Figure 2.8).

A feature observed in the models obtained from the GNSS time series, as the one
in panel (a) of Figure 2.8, is that most CPs do not mark large offsets. One of the few
exceptions is visible in this example: a clear offset in October 2016 related to the
Central Italy seismic sequence. This offset is detected in multiple stations, as can
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Figure 2.8: Examples of outputs from different datasets. In all panels data points
are depicted in black, mean model from PPD in red, CP distribution in blue,
number of CP on side panels. The examples, from top to bottom panel, are
respectively: GNSS, VP/VS, CO2, radon.
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be seen in Figure 2.12. More details on this and other common features observed
in multiple GNSS stations can be found in the appendix. Most variations are much
less evident and probably due to local effects or adaptations of the piecewise-linear
model to different amplitude modulations of the seasonal components. The high
sensitivity of the algorithm to such small changes is in accordance with the estimated
scalar factor for the noise level in the data uncertainties, about ω = −0.33, which
means that previously estimated noise values are practically halved.

Many VP/VS time series are sparse and with large gaps between data. In
these ranges of low data-density, CPs can be placed to model few data points
distant from each other. This behavior is expected and it is a consequence of the
automatic procedure for time series creation, without any fine tuning on specific
space-time windows, i.e. not tailored to seismic sequences. CPs used to fit sparse
data are plateau-shaped, not much higher than the prior level, and very different
from the spike-shaped ones marking abrupt changes occurring in zones with high
data density. In panel (b) of Figure 2.8 both types are visible: a well constrained
VP/VS variation is marked with a clear peak in CPs distribution in May 2013;
while between April and May a plateau-type CPs are visible. The latter case
represents a situation where a CP is supported by the data, but the position in
time is not well constrained. It is also interesting to note that the first "cluster" of
data points doesn’t show any CP, meaning that a high density of measurements
does not translates to increased CPs occurrence if the data does not support it.
The no data zone at the beginning of the time series is characterized by a flat CPs
distribution tending to the prior level. An analysis of CPs distribution of all time
series is discussed later.

A commonly observed feature of geochemical time series, is the relatively high
number of CPs used for the modeling. Considering that geochemical time series
are less than than 5 years long, the CPs density over time is much higher compared
to GNSS time series, which are modeled with an average ~30 CPs and are almost
always longer than 5 years (except two stations). The reason why such complex
models are sampled by the algorithm probably arises from specific characteristics of
CO2 and radon datasets. Radon datasets exhibit frequent peaks and drops visible in
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multiple stations: CDCA and MURB have approximately the same number of CPs
(~60) in the same timespan (4 years). Marked drops can be seen in CDCA, while
in MURB both peaks and drops are visible. SSFR is an extreme case: together
with a very high variance, this station is also probably affected by strong peaks on
a multi-day scale, a site specific feature already observed in radon measurements
(Siino et al., 2019)). In all mentioned cases the data points can not be considered
outliers by the algorithm as a consequence of dataset properties and estimated
noise level. This happens despite using an l1-norm and considering a non diagonal
covariance matrix which accounts for correlated measurements. CO2 data, on
the other hand, are characterized by very stable measurements on the daily scale.
With such low noise data, even little variations are considered significant by the
algorithm and this results in the high number of CPs observed. This behavior,
somehow similar to overfitting, is nonetheless determined by the data.

In the end, for both CO2 and radon data, models complexity has an obvious
effect on the interpretability of the results: with an high number of CPs the
importance of each one in terms of “anomalous signal” is lowered and it becomes
increasingly more difficult to detect "significant" variations and eventually relate
each one with potential causes.

BADI is the only geochemical station with a low number of CPs (<10), so it
is the only case in which a direct comparison with local and regional seismicity is
actually possible. In (Figure 2.9) we show: (a) data and mean model from PPD
(the piecewise model is superimposed on the seasonal signal); (b) CPs distribution
and earthquakes (M ≥ 3) within 20 km distance from BADI station. At least in
this case there isn’t a consistent relation between seismic activity and variations in
radon emissions retrieved with our methodology. We may try not to consider the
second half of the time series (from 2016 onwards) and speculate on a link between
radon and seismicity in 2014 and 2015. Even with these premises the only cases
in which a connection can be hypothesized are October 2014 and September 2015
events: in both the variation would be post-seismic. Other events, even closer to
the station, would not produce similar effects.

To highlight common features possibly hidden in the complex output of multi-
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Figure 2.9: Radon station BADI. Top: data (black) and mean model from PPD
(red). Bottom: CP distribution (blue), local earthquakes (red, M ≥ 3) and regional
earthquakes (yellow, M ≥ 5).
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observables results, we gathered all CPs for each dataset and represented as
percentage distributions on a common time axis (Figure 2.10).

We didn’t make any selections, apart from removing VP/VS CPs with less than
10% of data in the time series before or after (one of the criteria used also in
Poggiali et al., (2019)). This is done and in order to eliminate CPs at the edges
of time series, not supported but enough points, probably due to the sparsity of
VP/VS time series mentioned before. VP/VS distribution shows clear peaks: the
most evident related to Gubbio seismic sequence of 2013-2014 (as seen in Poggiali
et al., (2019)), but other peaks are evident in 2010 (Pietralunga sequence) and
2013 (Città di Castello). Detected CP are not “validated” in any way: some
could be related to non-meaningful variations (too little variation with respect to
uncertainties in posterior models) or originate from outliers presence. This level of
detail is nonetheless sufficient to highlight main features.

GNSS CPs distribution shows no obvious common features, apart from two
notable peaks: the one near the end of 2016 related to central Italy earthquakes and
the one at the beginning of 2015, which is discussed in appendix. Other features
of GNSS models are better evidenced with alternative representations shown in
appendix.

Unfortunately most geochemical data are available only after main seismic
sequences of the study area, so with current time series we can’t make an ad-hoc
comparison of geochemical response in relation to local seismic sequences. A
possible attempt for a comparison with seismicity has been done with BADI radon
station (Figure 2.9) because of the simple resulting model (few CPs).

No common pattern of CPs are observed, indicating that, at this scale and with
this processing, no common response is detected (both inter- and intra- discipline).
If present, it remains buried by site-specific effects.

2.5 Discussion and Conclusions

In this study we analyzed different kind of time series with a Bayesian approach
in search for common variations and/or tectonic related signals. The opportunity
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Figure 2.10: CPs distributions of the multidisciplinary time series and earthquakes
distribution (top). Black histograms use a binwidth of 1 day, grey histograms use
a binwidth of 30 days. Local earthquakes (M ≥ 3) in red and regional earthquakes
(M ≥ 5) in yellow.
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Figure 2.11: CPs distributions of the multidisciplinary time series and earthquakes
distribution (top). Zoom on the time window where all datasets are available.
Black histograms use a binwidth of 1 day, grey histograms use a binwidth of 30
days. Local earthquakes (M ≥ 3) in red and regional earthquakes (M ≥ 5) in
yellow.
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for this multidisciplinary experiment is given by the TABOO NFO infrastructure,
composed by multiple seismic, geodetic and geochemical (radon and CO2) measuring
stations, monitoring an area of the northern Apennines characterized by a high
seismicity rate. The proposed workflow, based on a Bayesian framework, is aimed to
independently analyze the different time series and finally produce a standardized
and comparable output, in a synthesis effort. We have dealt with the challenges
related to the different characteristics of the datasets in two ways: 1) a pre-
processing aimed at removing known signals of non-tectonic origin affecting some of
the observables and 2) algorithm implementations regarding the likelihood function,
covariance matrix, and model parametrization.

The proposed implementations allowed the algorithm to be very versatile. The
choices we made for the base function (piecewise-linear), likelihood (l1 norm) and
covariance matrix (correlation parameter) made the algorithm adaptable to a wide
variety of situations and able to deal with complex datasets including outliers,
unknown noise scale and correlation between the measurements, which are both
treated as unknowns and can be estimated. From the modeling point of view, the
algorithm is data-driven and weakly influenced by subjective decisions: Bayesian
inversion controls CPs number and positioning in time, inversions are performed
independently and resulting distribution are a consequence of data and errors
properties.

Nonetheless a successful application depends also on the assumptions made in
the pre-processing phase. Especially for some datasets, this step strongly influences
the time series to be analyzed with the Byesian algorithm and finally the complexity
and interpretability of the results. Our approach on these topics was to keep the
pre-processing step as simple as possible in order to produce suitable input data
for the McMC inversion. More specifically, we considered annual and semiannual
seasonal components for all datasets apart from VP/VS, and for geochemical data
we proposed a filter based on rainfall thresholds. Aspects regarding periodicities
and "exogenous signals", as described in the data section, are very complex and still
debated, therefore we cannot aim to produce time series completely free from non-
tectonic signals, but only to mitigate them in a consistent way. Considering these
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limitations, we acknowledge the potential incompleteness of the pre-processing due
to unknown factors and the expected effects on the results would be an increased
model complexity. This is true even in the worst case scenario of a wrong estimation
of the seasonal components: the piecewise-model would still "fit" the data, but with
an over-complicated and non meaningful model.

Geochemical data are probably the most complicated data to analyze, not only
because of the data (high variance, correlation), but also because of unknown factors
influencing the measurements. Considering annual plus semiannual periodicity,
rain effect and daily resampling (to remove sub-daily cycles) has proven necessary
but often not sufficient to produce interpretable CPs distribution. Seismic related
variations can still be detected with our approach, but are difficult to separate from
variations due to other causes. In this context longer time series and improvements
of the network are crucial for the evaluation of non obvious periodicities and other
signals of various origin that can affect measurements in a systematic way. Also the
temporal coverage of the actual geochemical time series is limited in relation to the
major seismic sequences of the area, therefore we didn’t have the opportunity to
compare a potentially more evident signal or the lack thereof. An alternative way
to analyze geochemical results can involve a quantitative estimation of variations
on the modeled time series. The time distribution of CPs can be paired with, for
example, the cumulative variation on the PPD mean on a moving window.

VP/VS data confirm to be well suited to be analyzed with a Bayesian CPs
detection algorithm because of favorable features of data distribution and noise,
and also because of the simple piecewise-constant model that can be adopted. The
piecewise-constant parametrization used for VP/VS time series also makes CPs
distributions immediately interpretable because each CP identifies a variation in
the time series (e.g. variation in the elastic properties of the sampled volume).
In other kind of datasets this connection is not as obvious, because a potentially
interesting variation could lie between CPs (e.g linear increase or decrease). Peaks
in CPs distributions are observed in conjunction with multiple seismic sequences
recorded in the area: most of the CPs gather around the Gubbio seismic sequence
at the end of 2013, but other peaks are observable in relation to Pietralunga
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(2010) and Città di Castello (2013) sequences Figure 2.10. These peaks in CPs
distributions are not further investigated because the purpose of this study was to
verify multidisciplinary relations.

The proposed method has proved to be applicable successfully also on GNSS
time series. Seismic related offsets are observed in multiple stations, but not in
relation to local earthquakes. A long period (~4 years) pattern emerge from the
analysis of the ensemble of resulting models (Figure 2.12). A common (unknown)
signal is also detected at the beginning of 2015 (Figure 2.13). The techniques here
applied can be used as an offsets detection tool (not only tectonic, but also related
to instrument failures) for GNSS time series.

This approach offers promising insights as a workflow for multidisciplinary time
series analysis. The results will become more interesting from an interpretative point
of view with improvements to the pre-processing step, which in this experiment
has been intentionally left simplified in order to manipulate the data as little as
possible. In this context the estimation of the periodic compontents could benefit
from a trans-dimensional implementation on the number of sinusoids, in order to
include additional periodicities, when needed, in a data-driven way. A refinement
in the estimate and removal of "exogenous" contributions would allow applications
of the approach proposed here to multi-parametric monitoring of active seismic
areas as a tool aiding expert opinion.
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2.A Observations on GNSS models ensemble

In Figure 2.12 we show the median (black line) of mean posterior models for E-W
(top) and N-S (bottom) components. Models are detrended after inversions and
the estimated annual and semiannual signals are not considered. Gathering all
piecewise models from GNSS inversions, some common features emerge.

A long period oscillation is visible on the E-W component with a period of
approximately 4 years. This kind of low frequency signals have been observed
in GNSS time series and have been related to hydrologic processes involving
groundwater recharge/discharge. An in-depth analysis can be found in Serpelloni
et al., (2018) for the Alpine region, and Silverii et al., (2016) and Mandler et al.,
(2021) for the Apennines. An hydrological origin could be an explanation of the
long period oscillation.

Another feature observed on many resulting models is the V-shaped signal
near beginning of 2015, visible in E-W component of Figure 2.12. This feature is
also evident in Figure 2.13, where the azimuth distribution of GNSS stations is
represented as histograms in time. Clear maxima are oserved near 2015, indicating
that a noticeable number of stations are moving in the same directions.

Apart from the seismic offset related to 2016 Central Italy earthquakes, no
obvious coseismic signals are observed in relation to earthquakes occurred inside
the study area.

Acknowledging the complexity of positional time series (Chanard et al., 2020),
it is worth noting that the features here described arise from an ensemble of
independently analyzed time series. Looking at the multi-station features instead
of single station models, partially avoids the risk of misinterpreting site-dependent
signals as tectonic motion.
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Figure 2.12: Median of the posterior mean models from all GNSS stations. Models
are detrended post-processing and don’t include the estimated seasonal contribu-
tions. Grey shade represents interquartile range. Top:E-W component. Bottom:N-S
component. Red lines represent the occurrence of earthquakes M ≥ 3.5 inside the
study area.
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51



Chapter 2. Looking for tectonic signatures in multidisciplinary time series

2.B Periodic signals and trans-dimensional im-
plementation

Time series are influenced, at a variable level, by meteorologic parameters. Some of
these parameters (e.g temperature) translate to seasonal oscillations in measured
time series, others in short-term anomalies (e.g. rain), as described in section 2.2.

In a first phase of data exploration, geochemical time series have been analyzed
in search for relations with meteorological parameters to be used in the modeling
of seasonal signals. As already pointed out, a complex aspect of these datasets is
the site specific effect observed in CO2 and radon with respect to meteorological
parameters. As shown in Figure 2.14 and Figure 2.15, the correlation between
available parameters (temperature, humidity, atmospheric pressure) and geochemi-
cal measurements is highly variable, with both positive and negative correlation
values for the same parameter at different sites.

The determination of cause-effects relations between meteo and geochemical
measurements is a very complex topic, which is beyond the scope of this work.
Even if the specific cause of the fluctuations are not identified, seasonal oscillations
are indeed present, as shown in Figure 2.16 and Figure 2.17. The frequency spectra
are estimated using a least-squares spectral analysis method (Lomb-Scargle), which
allows to analyze series with gaps and irregular sampling, unlike Fourier analysis. A
strong daily signal is observed in radon time series, along with an annual oscillation
and a minor semi-annual oscillation. For CO2 the long period signals are still
present, but daily oscillations are not so prominent.

Apart from the annual and semi-annual signals present in both GNSS (Serpelloni
et al., 2006) and geochemical data (Siino et al., 2019), other oscillating contribution
could be present in CO2 and radon time series, as suggested by Figure 2.16 and
Figure 2.17. Since the number of sinusoids required to model the time series is
not exactly known, the idea to approach this problem has been the integration of
this unknown periodic contributions in the rj-McMC algorithm. The number of
sinusoids should not increase indefinitely, due to the parsimonious characteristics
of such algorithms (Malinverno, 2002), guaranteeing against "overfitting" the data
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Figure 2.14: Correlation coefficient between CO2 time series and meteorological
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Figure 2.16: Lomb-Scargle periodogram of CO2 time series.
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Figure 2.17: Lomb-Scargle periodogram of radon time series.
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with an unnecessary high number of sinusoids. Thus, we explored this possibility by
implementing a "double trans-dimensional" version of the code, meaning that the
algorithm would be trans-dimensional in both the number of CPs and the number
of sinusoids, the latter treated in this version as an additional unknown parameter.
The equation reported for the modeling of annual and semi-annual contributions:

p(m) = α1sin(2πγ1t+ β1) + α2sin(πγ2t+ β2) (2.10)

becomes a more general

p(m) =
n∑

i=1
αisin(2πγit+ βi). (2.11)

The parametrization includes a periodic model vector mperiodic = (n,α,β,γ)
with α,β,γ vectors of length n describing amplitude, frequency and phase of
each of the n estimated sinusoids. The complete parametrization include this
periodic part and the piecewise model vector described in the method section:
mpiecewise = (k, c, a,b).

The moves have been updated accordingly to sample the additional periodic
parameters. The following moves have been added:

1. perturb amplitude value α of a sinusoid;

2. perturb phase value β of a sinusoid;

3. perturb frequency γ of a sinusoid;

4. create a new sinusoid (birth move);

5. delete an existing sinusoid (death move).

This approach have been extensively tested on synthetic and real data, resulting
in a complex coexistence of periodic and piecewise parametrization. On the simpler
synthetic cases, like the one shown in Figure 2.18. Here the dataset is correctly
modeled with 2 CPs and 2 sinuoids.

A slightly complex synthetic model (Figure 2.19) highlights a non-optimal
modeling, with neither the number of CPs nor sinuoids converging to the right
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Figure 2.18: Synthetic test made with 2 sinusoids and 2 CPs. Data (magenta) and
mean model from PPD (green) in panel (a); CP distribution in panel (b); number
of CPs in panel (c), number of sinusoids in panel (d), noise scale in panel (e).
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value (respectively 6 and 2). Moreover the distributions appear bimodal, indicating
the (obvious) strong link between the piecewise and periodic parameterizations
influencing each other. The issues encountered here and in numerous other test are
due at least to the following factors:

• the two parametrization are "competing" to fit the datasets, with the piecewise
part able to adapt to any sinusoidal model, being it correct or incorrect;

• the sampling along one or more chains can get stuck in a high likelihood area
due to an incorrect sinusoidal and piecewise combination;

• the noise scale hyperparameter can contribute to this situation by lowering
its value and making it impossible to change the parametrization towards
correct values, especially because changing the sinusoidal model affects the
whole time series at once.

Despite being interesting from a methodological point of view, this approach have
proven not to be reliably applicable, needing further improvements and testing.
A successful application may require a more sophisticated sampling, involving
techniques like Simulated Annealing (Laarhoven and Aarts, 1987) to increase the
exploration of the solution space.

To analyze the real datasets, the simplified procedure involving separate sam-
pling of periodic and piecewise parameters have been ultimately adopted, as
described in Chapter 2. Adopting the strategy of sampling the two parameteriza-
tions separately, the number of sinusoids had to be fixed to avoid the possibility of
CPs being modeled with a high number of sinusoids.
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3.1 Introduction

The role of fluids in seismogenesis have been extensively studied and diverse mech-
anisms have been invoked to explain their involvement in earthquakes generation
processes and seismic sequences evolution: dilatancy related to changes in shear
stress and/or mean stress, localized post-seismic fluid redistribution around rup-
ture, and post-seismic discharge of fluids from over-pressured portions of the crust
(Sibson, (1994) and Sibson, (2000) and references therein). The effect of pore-fluid
flow in triggering seismicity has long been suggested (Nur and Booker, 1972), and
specific characteristics and patterns related to possibly fluid-driven seismic activity
have been highlighted both in aftershocks (Noir et al., 1997; Antonioli, 2005),
swarm like sequences (Saccorotti et al., 2002; Hainzl, 2004; Ross and Cochran,
2021) as well as in induced seismicity episodes (Talwani, 1984; Shapiro et al., 1997;
Shapiro et al., 1999).

A typical signature referred to a possible ongoing diffusive process is commonly
visible in the spatiotemporal migration of hypocenters, where the seismic cloud
expands over time. This feature has been initially used by Shapiro et al., (1997)
to model a pore-pressure perturbation caused by fluid injections into a borehole.
They solved the diffusion equation for the case of a point pore-pressure source in
a homogeneous isotropic saturated poroelastic medium and the distance of the
propagating pore-pressure front from the source is estimated as

r =
√

4πDt, (3.1)

where t is time from the injection of fluid, D is hydraulic diffusivity (m2s−1) and r
is distance (radius, in a homogeneous isotropic medium). The indication is that
the triggering of an earthquake may occur at any time t at location r after the
pore-pressure front reaches point r. So, in a (r−t) plot, the fluid triggered seismicity
should lie below the parabola defined by Shapiro et al., (1997) as "triggering front"
(see Equation 3.1). Whilst, if earthquake triggering occurs immediately after the
pore pressure perturbation, in a (r − t) plot we should observe a relatively narrow
parabolic cluster of seismicity along that parabola. Both these approaches measure
the distance between hypocenters, thus considering that pore-pressure relaxation
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begins at the origin time and hypocenter of the causative shock. This method
has then been widely used to diagnose diffusive processes in natural earthquakes
(Duverger et al., (2015), Ruhl et al., (2016), De Barros et al., (2019), De Barros
et al., (2020), and Ross and Cochran, (2021) among others).

In the last twenty years in Italy, and specifically for extensional seismic sequences
occurred along the Apennines, there is increasing indication of interaction between
fluids and earthquakes. Miller et al., (2004) shown that the 1997 Umbria-Marche
seismic sequence may have been driven by a fluid pressure pulse generated from
the coseismic release of trapped high-pressure fluids by comparing aftershocks
hypocenters to a modeled high-pressure diffusion front. Antonioli, (2005) observed
that the spatio-temporal migration of seismicity is consistent with fluid flow and
Lombardi et al., (2010) showed that the temporal increase of background seismicity
rate can be explained by transient perturbation caused by poroelastic relaxation.
The 1997 sequence was anticipated by foreshocks activity and Ripepe, (2000),
following a dilatancy model, suggested that the relatively low VP/VS ratio observed
before the main shocks could indicate the presence of fluid in the focal volume.

Fluids played a key role also in 2009 L’Aquila seismic sequence. Malagnini
et al., (2012) shown that the Campotosto fault experienced a strong reduction in
shear strength due to the increasing pore fluid pressure triggered by the previous
main event. Di Luccio et al., (2010) observed that pore pressure diffusion controls
the space-time evolution of aftershocks and detected a related increment in VP/VS

values. VP/VS is also analyzed by Lucente et al., (2010) supporting a dilatancy
phenomenon before the mainshock. Basing on the analysis of focal mechanisms
Terakawa et al., (2010) proposed for L’Aquila a scenario involving high pressure
fluids at hypocentral depths, similar to what described by Miller et al., (2004) for
the Umbria-Marche sequence.

More recently fluid involvement have also been hypothesized for the 2016-2017
Central Italy seismic sequence by Chiarabba et al., (2018) highlighting VP/VS

anomalies imaged by tomographic models and by Malagnini et al., (2022) analyzing
seismic attenuation and space-time distributions of events.

The case of a fluid-driven seismicity is supported by the presence of a known
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source of fluids in the inner sector of the Apennines. Chiodini et al., (2004) reported
in fact about large CO2 degassing sources, whose isotopic composition suggests a
deep origin due to metasomatization of mantle rocks. Despite the still debated
origin of the CO2, its flux sharply decreases in a narrow band where most of the
chain seismicity concentrates, suggesting a contributing role for fluids overpressure
in seismogenesis.

In the northern Apennines specifically, fluid overpressure has been measured in
San Donato and Santo Stefano boreholes at 85% of lithostatic load (Chiodini et al.,
2004) at a depth of 4.8 km and 3.7 km (boreholes reporeted in Figure 3.1). This
evidence is framed in the context of a E-NE-trending active extension at about
3 mm/yr (Serpelloni et al., 2005), ongoing since the Quaternary and following
an upper Miocene-lower Pliocene compressional phase always eastward trending
(Chiaraluce et al., 2007). The main geological units composing the resulting thrust
and fold belt are summarized in (Mirabella et al., 2011) as: (1) the top of the
basement (late Paleozoic-middle Triassic); (2) Triassic Evaporites; (3) a carbonate
multilayer platform (lower Jurassic-Oligocene); and (4) foredeep turbidites (early
Miocene). The overpressure observed in the deep boreholes are probably due to the
accumulation of gas in crustal traps favored by the tectonic setting together with
the presence of the Evaporitic layer (Trippetta et al., 2010; Trippetta et al., 2013).

Thus, given the marked presence of fluids in the subsurface of this sector of the
Northern Apennines, their claimed involvement in the generation of the seismic
activity of the area (Valoroso et al., 2017; Marzorati et al., 2014; Piana Agostinetti
et al., 2017), and not least the presence of a very dense seismic network pertaining
to the Alto Tiberina Near Fault Observatory (TABOO) (Chiaraluce et al., 2014),
we have chosen to investigate the connection between fluids and seismogenesis by
analyzing of the seismicity pattern of two small seismic sequences.

We report in Figure 3.1 the 2010-2015 seismicity of the study area as recon-
structed by (Valoroso et al., 2017); the vast majority of the events occur in the
hanging wall of a low angle normal fault, the Altotiberina fault (ATF) (Chiaraluce
et al., 2007), within a complex system of synthetic and antithetic faults dissecting
the stratigraphic succession and giving rise to seismic sequences with multiple
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Mw3+ mainshocks.

The two small but prolific sequences we analyzed occurred nearby Città di
Castello (CdC) and Pietralunga (see boxes in Figure 3.1). The first is active in
April-May 2013 and the second starts in 2010 and reactivates in 2013 and 2014
(Figure 3.2). Following the approach proposed by Shapiro et al., (1997) we tested
the hypothesis of the presence of a triggering front due to an evolving pore-pressure
diffusion process, by checking for the parabolic signature in the spatiotemporal
distribution of earthquakes.

Since the approach requires the largest as possible number of events and robust
hypocentral locations (Shapiro et al., 2003), we generated a new earthquakes
catalog for both sequences at higher resolution, by applying a deep neural network
algorithm directly starting from the continuous waveforms provided by the very
dense TABOO network consisting of a dense array of seismometers installed both
at surface and in boreholes, allowing a very low detection threshold. The high
detection capability of TABOO network and the superior performance of artificial
intelligence-based algorithms, allow us to treat local small earthquakes (3 <ML < 4)
as a mainshock leading to a proper aftershock sequence. These kind of algorithms
have in fact rapidly spread for the phase detection task because of a superior
performance with respect to standard picking algorithms, on speed, recall and
accuracy (Ross et al., 2018; Zhu and Beroza, 2019; Mousavi et al., 2020).For our
application in a low-magnitude and high-seismicity context, another advantage to
consider is the increased capability of these methods in detecting small magnitude
earthquakes (Mousavi et al., 2020; Park et al., 2020), which can enhance not only
the number of detected events, but also the robustness of the features that we aim
to investigate.

This area is therefore a perfect place to investigate the evolution of minor
extensional seismic sequences and the effects of fluids on seismogenesis because of 1)
the presence of a known source of CO2 at depth; 2) the geologic and tectonic setting
favoring fluid overpressure and 3) the presence of a high-resolution data. Thus,
once relocated the new catalogs of the CdC and Pietralunga sequences generated
by means of a state of art detection, association, and location procedure, we verify
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if the seismicity distribution is consistent with a diffusive pattern. Finally, we
compare the located earthquakes with a deterministic seismostratigraphic model of
the upper crust (from Latorre et al., (2016)), to investigate the possible contribution
of the lithology in controlling seismic activity evolution.

3.2 Data analysis

3.2.1 Event detection, picking and association

Our workflow consisted of five main steps (see Figure 3.3): (1) continuous waveforms
retrieval; (2) application of PhaseNet (Zhu and Beroza, 2019), a deep-neural
network algorithm for phase detection and picking; (3) phase association and
preliminary location using REAL (Zhang et al., 2019); (4) absolute earthquake
location with NonLinLoc (NLL), a probabilistic non-linear hypocenter inversion
algorithm (Lomax et al., 2000; Lomax et al., 2014); (5) and a final relocation of
a subset of the events using hypoDD. We started by collecting raw seismic data
(e.g., continuous waveforms) recorded by TABOO network consisting of about 55
stations (whose distribution is showed in Figure 3.1) including very- and short-
periods plus broad band three-component sensors. All the recordings, including
the DH channels, have been re-sampled at 100 Hz. We selected three specific
time windows corresponding to the CdC (from March 2013 to May 2013) and
Pietralunga (from April 2010 to May 2010 and then from March 2014 to May
2014) seismic sequences; see Figure 3.2). The seismicity peaks observed from the
second half of 2013 to the first months of 2014 pertain to the Gubbio sequence (red
highlight in Figure 3.2). For this swarm-like sequence, not treated here, seismic and
geodetic data reveal aseismic contribution in the deformation process (Gualandi
et al., 2017).

After preparing the waveforms, we have applied a deep-neural-network-based
seismic arrival-time picking algorithm (PhaseNet, Zhu and Beroza, (2019)), allowing
us to detect P- and S-waves arrival time in the seismic waveforms. We ran PhaseNet
on the three-component waveforms high-pass filtered at 1 Hz. The high-pass
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Figure 3.3: Scheme of the adopted workflow.

filtering further increases the detection capabilities of PhaseNet, by reducing the
low frequency noise with respect to the unfiltered datasets used in the training
phases (Zhu, p.c.). In other words the algorithm has learned the features of P
and S arrivals in more complicated cases, thus its work with filtered waveforms is
facilitated. Traces have been processed in chunks of 30 s length with 50% overlap in
order not to cut earthquake signals. PhaseNet outputs probability distributions of
P arrivals, S arrivals and noise and is designed such that peaks in probability mark
the arrival time of the phases. To define a P or S phase we used a threshold value for
peaks probability of 0.5, as in the original work from (Zhu and Beroza, 2019) and
in other PhaseNet applications (Park et al., (2020); Liu et al., (2020)). Duplicated
picks from overlapping windows are identified on the basis of their timestamps
and the one with higher probability is retained. The total number of picked P-
and S- phases amounts respectively to 3611057 and 3286647. Picks probability
distributions for the three considered time windows highlighted in Figure 3.2 are
reported in Figure 3.4.

The output P and S picks from PhaseNet are used as input for REAL, which
associates and initially locates earthquakes primarily through counting the number
of P and S picks and secondarily from travel time residuals by grid searching (Zhang
et al., 2019). We kept most of REAL parameters to default ones: the grid step is
0.02◦ in horizontal and 2 km in depth reaching 30 km; the searched area is 0.25◦

centered at the station recording the initiating P phase. Minimum time distance
between 2 events is kept at 5 seconds. Thresholds for P phases and total phases
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Figure 3.4: Picks probabilities for each of the three considered time windows.

are kept respectively at 3 and 5. These thresholds have been intentionally left to
low values because of two reasons: the first one is that we are mostly working with
microseismicity and in this context a low number of phases is expected for very
small local earthquakes; the second one is since the catalog will be refined in the
next steps anyway. So, our goal for this preliminary location is to keep as many
events as possible. Acknowledging that we are probably carrying more false events,
we aim to filter them out in the next steps, after assessing their quality not only on
the number of phases but considering more constraints from location parameters
and uncertainties. As in Ross and Cochran, (2021) no magnitude estimation have
been made because it is not needed for our purposes and, dealing with very small
events, it is an inherently difficult task. We retrieved magnitudes for our final
catalog by merging the events with the corresponding events in the catalog of
Valoroso et al., (2017).

3.2.2 Events location

Firstly, we located all the retrieved events in absolute terms using the NonLinLoc
(NLL) (Lomax et al., 2000). To compute the hypocentral locations we initially
established the more suitable NLL code settings and tuning parameters for the
TABOO area and network. The 1-D velocity model chosen for the locations is the
one proposed by Carannante et al., (2013) because it generates the best residual
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Pick probability (p) Weight Error [s]
p ≥ 0.85 0 0.05

0.7 ≤ p < 0.85 1 0.10
0.6 ≤ p < 0.7 2 0.25
0.5 ≤ p < 0.6 3 0.50

Table 3.1: Picks weighting scheme.

distribution and formal errors. Then, to partially overtake the oversimplified
assumption of using a 1D velocity model in the generation of the starting locations,
we used mean static station corrections available for the whole TABOO network
(from Bagh p.c.).

NLL (Lomax et al., 2000) is based on a probabilistic, nonlinear formulation of
the earthquake location problem, thus it does not provide a single "best" solution to
the hypocenter location but an estimation of the posterior probability distribution
for the hypocentral coordinates and origin times, allowing us to retrieve a complete
description of location uncertainties. To this regard, we must point out that as with
most machine learning picking algorithms, PhaseNet does not provide an estimate
of the time uncertainty on the picks, but only a probability value (going from 0
to 1; the last picking has the largest probability to be correct). Thus, to perform
the probabilistic hypocenter location with NLL we weighted the picks according to
their associated PhaseNet output probability (see Table 3.1), as in e.g. Tan et al.,
(2021) and Liu et al., (2020).

The NLL output catalog counts more than 160k events, located employing ∼
2.4M phases (P- and S-), thus using about one third of the total detected phases.

To classify the quality of our absolute locations, we adopted the procedure
proposed by Michele et al., (2019) to the resulting catalog. These authors proposed
a criterion to assess the location quality, consisting of the combination of the
uncertainty estimates, properly normalized, provided by the NLL code. The
procedure quantifies the location quality in terms of a unique numeric normalized
value, named quality factor (qf), which varies between 0 (best) and 1 (worst). Then,
the obtained location is assigned to a quality class depending on the qf parameter
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according to the scheme: A-class (0 < qf ≤ 0.25), B-class (0.25 < qf ≤ 0.50),
C-class (0.50 < qf ≤ 0.75) and D-class (0.75 < qf < 1.00). We report in Figure 3.5
the statistical distribution of the location parameters of the NLL output catalog,
grouped by quality classes.

Even if we are mainly interested in the relative distribution of the seismic events,
after ranking all the earthquakes locations we selected only class A and B as input
for the relocation process. Quality classes for the whole TABOO area and for CdC
and Pietralunga areas (boxes in Figure 3.1) are shown in Figure 3.6. The selected
subsets have been relocated with HypoDD (Waldhauser, 2000) using travel times of
P and S waves. DD algorithm assumes that, if the hypocentral separation between
two earthquakes is small compared to the event-station distance, the ray paths are
similar along almost the entire ray path. Therefore, the difference in travel times for
two events observed at one station can be attributed to the spatial offset between
the events with high accuracy. In this way, the ray paths between the source region
and a common station can be considered similar along almost the entire ray path.
Therefore, the difference in travel times for two events observed at one station
can be attributed only to the spatial offset between the events, and the latter can
be computed with high accuracy by differencing Geiger’s equation for earthquake
location (see Waldhauser, (2000) for a comprehensive review). HypoDD solves
the minimization problem by weighted least squares (LSQR, Paige, (1982)) using
the conjugate gradients method. Improved hypocenters are found by iteratively
adjusting the vector difference between hypocentral pairs. Hypocentral parameters
and partial derivatives are updated after each iteration. We estimated hypocentral
errors by using the singular value decomposition (SVD) (see Waldhauser, (2001))
for a subset of 200 earthquakes for each sequence, because error estimates obtained
with LSQR are overly optimistic. Thus, from the initial set of earthquakes, we
end up with 22k relocated events for Pietralunga and 9k for CdC with most of the
locations possessing formal horizontal and vertical errors, very similar for the two
sets, respectively 50 m and 100 m (See histograms in Figure 3.7). Consequently,
structural and patterns details with 500 m of dimension can be interpreted.
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Figure 3.5: Location parameters grouped by quality classes (A-D).
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3.3 Results

The final relocated catalog of CdC and Pietralunga sequences counts 6 times the
number of events detected in previous catalog (Valoroso et al., 2017): the events
number increased from 1.5k to 9k events for CdC and from 3.1k to 20k events for
Pietralunga Figure 3.8. For both sequences the spatial distribution of events is
similar to the catalog of Valoroso et al., (2017) but with a much higher density
of events, proving the reliability of the new detections. In Figure 3.9 we show
the cumulative number of events vs time. The curves have similar shape, with
corresponding times of sudden increases in both catalogs, but with a marked
difference in the absolute number of detected events.

In the following we analyze the seismicity patterns of both sequences and we
discuss relations with hosting lithologies.
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3.3.1 Pietralunga sequence

The Pietralunga sequence involves a fault system of ∼ 10 km of length (Pietralunga
fault, PIEF), NW-SE oriented, with segments activated in different periods from
2010 to 2014. In Figure 3.10 we show the seismicity distribution in map view (a),
cross sections orthogonal to the PIEF (b) and space time diagrams grounded on
along strike sections (c).

The sequence starts in April 2010 with five days of foreshocks (maximum
magnitude < ML1.7, Valoroso et al., (2017)) leading to the MW 3.6 earthquake
occurred on April 15 2010. From this event onwards, an along-strike migration
begins, which is represented with red dots in Figure 3.10, and specifically in the
along strike plot of panel (c). The NW trending migration velocity is compatible
with the value of 0.4 km/day from Marzorati et al., (2014). The 2010 sequence
activated the south-eastern portion of the PIEF:a 6 km long segment well imaged in
the cross sections of Figure 3.10(b) with seismicity dipping NE at 60◦, compatible
with time domain moment tensor focal mechanism solution of the mainshock
(http://cnt.rm.ingv.it/tdmt). A shorter antithetic fault is also activated in the
same period, well resolved here thanks to the high number of detected events. The
mainshock is located at the deeper termination of the two faults (Figure 3.10(b),
section 3). A high seismic activity persist for about 3 weeks in total.

The r − t plot we report in Figure 3.11 shows the foreshocks moving toward
the MW 3.6 mainshock, whose occurrence coincides with the beginning of a clear
diffusive pattern, with an estimated hydraulic diffusivity value of about 2m2s−1.
The earthquakes with magnitude ≥ML2.5 are all positioned near the triggering
front. After less than 3 days from the mainshock the seismic cloud moves away
from the source and the rock volume near the mainshock becomes characterized by
a very low density of events. This pattern is compatible with a backfront signature
(Parotidis et al., 2004; Segall and Lu, 2015) observed in induced seismicity but also
in natural earthquakes (Ross and Cochran, 2021), and it is a characteristic related
to the end of the fluid injection transient.

After 3 years of quiescence, seismic activity starts again in March 2013 (yellow
dots in Figure 3.10) with a MW 3.3 taking place in the northern section of the
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Figure 3.10: Pietralunga sequence: map (a), cross sections (b) and along-strike
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PIEF system. This part of the sequence does not show an along strike migration
(Figure 3.10 (c)), and appears to be clustered in a short segment of the fault, ∼ 1
km long. The seismic activity continues weeks later and seems to occur on a short
(< 0.5 km) antithetic fault, eastward to the main fault (Figure 3.10(b), section 7).

Seismicity renews in March 2014; events are represented with blue dots in
Figure 3.10. This part of the sequence fills the gap between the previous phases
of 2010 and 2013, occurred respectively in the south-eastern and north-western
sections of the PIEF. Foreshocks are detected, similarly to the 2010 parts. This
time the foreshocks do not lead to a clear mainshock but to multiple (relatively)
major earthquakes with ML ≥ 2.5 and a MW 3.2 on March 25. The along-strike
migration is again visible (Figure 3.10 (c)) and takes place in both NW and, more
extensively, SE direction, respectively with velocities of ∼ 0.5 and 0.25. his part of
the sequence involves a NE dipping segment along with a minor parallel segment ∼ 1
km north-east of the main one (Figure 3.10(b), sections 6-7). The SE migration also
reactivates parts of the fault that were previously activated in 2010 (Figure 3.10(b),
sections 4-5). This feature is not visible in the catalog of Valoroso et al., (2017),
evidencing again the outcome of a higher detection capability. A sustained seismic
activity in the south-eastern part is observed (Figure 3.10(b), section 1), which
appears clearly unrelated to the described migration (blue dots in Figure 3.10(c)
at distance ≤ 1 km). This is part of the Gubbio sequence occurring few kilometers
SE (Figure 3.1).

Given that the 2014 events do not show a clear mainshock, essentially behaving
like a small swarm, we tested multiple events as the origin of r − t plots. In
Figure 3.12 and Figure 3.13 we selected two diverse earthquakes with ML ≥ 2.5
occurring at the beginning of the migration pattern observed in Figure 3.10 (c), after
the foreshocks. Using different earthquakes as origin does not hide the presence of
the diffusive pattern but slightly changes the value of estimated hydraulic diffusivity:
< 1m2s−1 in Figure 3.12 and > 1m2s−1 in Figure 3.13. In both cases the number of
events near the origin point decrease markedly after 5 days, but activity continues
at greater distances, which, similarly to 2010, suggest again the presence of a back
front pattern compatible with the cessation of the fluid diffusion stimulation.
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Figure 3.12: r-t plot Pietralunga 2014. Origin: 2014-03-21 04:41:02 M 2.5
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3.3.2 Città di Castello sequence

The CdC sequence starts and ends between a brief time window of one month
and involves a fault segment with a length of about 2.5 km. It can be temporally
divided in two main bursts of activity: the first (red dots in Figure 3.14) starts
on April 20 2013 with a MW 3.4 earthquake, followed the next day by two other
earthquakes (MW 3.1 and MW 3.2) nucleating very close to each other both in
space and time. The migration of seismicity is evident for this first part of the
sequence in the along strike direction (Figure 3.14(c)). Firstly, we observe a vertical
(i.e., co-seismic) alignment of points in the first hours after the mainshock, probably
due to a static stress transfer effect. Then, the distribution of seismicity starts
showing a clear migration of ∼ 0.5 km/day. No foreshocks have been detected
before the MW 3.4 earthquake of April 20. After almost three days of lower seismic
activity, the seismicity increases again (yellow dots in Figure 3.14), insisting on the
central segment of the fault.

For the CdC sequence we noticed a scattering of the shallower events, possibly
related to a larger depth uncertainty. This can be due to the combination of
two factors: 1) the sequence is placed near the western boundary of the TABOO
network, thus having a slightly poorer stations coverage; 2) the two seismic stations
nearest to the sequence are unfortunately very noisy (CDCA) and with a persistent
occurrence of gaps (BADI).

The r − t plot relative to this first part of the sequence is shown in Figure 3.15.
In this case the origin (i.e. the source of fluids) is not coincident with the first
earthquake, but we moved it about 750 m. This value has been found with a
grid search over possible sources near the MW 3.4, of which the exact location
has been checked by manually reviewing the associated P and S phases, to make
sure it wasn’t a mislocated event. Unlike with borehole fluid injection, in natural
earthquake applications we do not know the exact location of the fluid source
(Pacchiani and Lyon-Caen, 2010). Usually the source is assumed coincident with
the first earthquake in a swarm or with the mainshock in a mainshock-aftershock
sequence (as in the other r-t plots of the present work), but the initial propagation
of pore pressure could as well be seismically silent (Duverger et al., 2015). Still, we
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Figure 3.14: Città di Castello sequence: map (a), cross sections (b) and along-strike
space-time diagram (c). Distance = 0 in along-strike plots corresponds to section 1.
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decided to try using only the events located with arrival times from the two nearest
stations (CDCA and BADI) to mitigate the aforementioned issue (Figure 3.15,
bottom). Reference curves with different diffusivity values are shown along with
the spatiotemporal distribution of hypocenters. A diffusive pattern is evident, with
a hydraulic diffusivity value of ∼ 1m2s−1.

The second burst of the CdC sequence (light blue dots in Figure 3.14) starts
on May 8 with a MW 3.6, followed less than 4 hours later by a MW 3.0. The
spatiotemporal evolution (Figure 3.14(c)) is similar to the previous one, but with
a less defined migration along-strike. Seismicity moves away from the MW 3.6
earthquake with an expanding front and reactivates in a small cluster in the middle
section (12-13 May) after a couple of days of lower activity. The along-strike
migration is less clear in this case, probably because of a stronger co-seismic
triggering at the beginning. Interestingly, the mainshocks of both the first and
second phase of the sequence are almost co-located in map (Figure 3.14 (a)) and in
sections (Figure 3.14 (b), section 2).

The r− t plot for the May portion of the CdC sequence is shown in Figure 3.16.
The spatiotemporal pattern does not initially follow a diffusive pattern (in the first
hours from the MW 3.6), where the distribution of events is probably dominated by
(co-seismically induced) static stress transfer effects. The diffusive pattern becomes
evident from ∼ 0.5 days, with a hydraulic diffusivity estimated between 1m2s−1

and 2m2s−1. It is in fact frequently and reasonably assumed that the evolution of
a seismic sequence is not driven by a single mechanism, but more realistically by
a complex interaction between both hydraulic and mechanical properties (Hainzl,
2004; De Barros et al., 2019; De Barros et al., 2021), the role of which can be
primary or secondary at different stages of the sequence. As with Pietralunga
sequence, the events move away from the origin point, leaving the rock volume
near the source practically aseismic.

For both Pietralunga and CdC sequences our hydraulic diffusivity estimates
(1 − 2m2s−1) lie well within the 0.1 − 10m2s−1 interval, commonly observed for
induced and natural earthquakes (Talwani, 1984).
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3.3.3 Lithology and seismicity

We have compared the seismicity distribution retrieved in this study with the actual
lithology and geological structures profiting from the availability of a detailed 3D
seismostratigraphic model for the TABOO area Latorre et al., (2016). The three-
dimensional model has been constructed by combining information from active
seismic (derived from the interpretation of 300 km of seismic reflection profiles), data
from kilometers deep boreholes, detailed geological surveys and direct measurements
of P and S wave velocities performed in situ and in laboratory.

The Pietralunga and CdC sequences are superimposed on the seismostrati-
graphic units from Latorre et al., (2016) and shown respectively in Figure 3.17
and Figure 3.18. The complete succession of seismostratigraphic units defined in
Latorre et al., (2016) include, from bottom to top: (1) the Paleozoic Crystalline
Basement; (2) the Acoustic Basement composed of Paleozoic-Triassic clastic and
metasedimentary rocks; (3) the Triassic Evaporites; (4) the Jurassic-Oligocene
Carbonatic Multilayer; and (5) the Miocene Turbidites.

The most remarkable feature is the constant involvement of the Triassic Evapor-
ites (highlighted in magenta in the figures) in the development of seismic sequences.
In the case of Pietralunga most of the events occurred inside the Triassic Evaporites
and Carbonatic Multilayer (Figure 3.17). For Pietralunga 2010 we observe that the
sequence starts in the evaporitic layer, with the mainshock located at the lower ter-
mination of the NE dipping main fault and the antithetic segment. The occurrence
of the MW 3.6 earthquake marks the beginning of the migration, with its main
directions towards the surface and to NW, as previously described in along-strike
plots (Figure 3.10 (c)). The vertical development of the sequence, which spreads
from the bottom up from the Triassic Evaporites towards the overlying Carbonatic
Multilayer, is in agreement with observations of Marzorati et al., (2014) and Latorre
et al., (2016). The upward migration along with the diffusion pattern highlighted
in the r − t plot of this portion of the sequence (Figure 3.11) corroborates the
fluid-driven hypothesis.

The 2014 seismicity takes place inside the same seismostratigraphic units but,
unlike the 2010 part, the migration pattern doesn’t seem to have a component
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Figure 3.17: Pietralunga sections with seismostratigraphic units from Latorre et al.,
(2016). Triassic Evaporites highlighted in magenta.

directed towards the surface. The sequence seems dominated by the SE migration
observed in along-strike plots (Figure 3.10(c)): starting from the northern segment
of the fault activated in the short burst of 2013, seismicity moves towards south-east,
ultimately connecting with the 2010 fault segment.

The CdC sequence shows a marked clustering of all the MW > 3 earthquakes
both in map (Figure 3.14(a)) and in sections (Figure 3.18, section 2). In Fig-
ure 3.18 we show only events with phases from nearest stations, thus mitigating
the aforementioned scattering observed in the CdC sequence. Almost all of the
MW > 3 earthquakes occur inside the Triassic Evaporites, suggesting a strong
lithological control over seismicity. The first burst of seismicity, starting with the
MW 3.4 on 2013-04-20, triggers a migration with a primary along-strike component,
but also a vertical one, similar to what is observed in 2010 Pietralunga sequence.
The occurrence of subvertical clouds of events have been observed in relation with
fluids migration (Shapiro et al., 2003; Di Luccio et al., 2010), also in the northern
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Figure 3.18: CdC sections with seismostratigraphic units from Latorre et al., (2016).
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Apennines (Calderoni et al., 2009) and can be explained by the movements of fluids
along with negative pressure gradients, reasonably assumed to be directed towards
the surface (Pacchiani and Lyon-Caen, 2010). In this context the lithological units
near the Triassic Evaporites are involved as a consequence of the expansion of the
diffusion front. Considering the shifting of the origin used in Figure 3.15 to model
the diffusive pattern, the vertical migration could actually start near the Evaporites
- Carbonates interface instead of starting completely inside the evaporitic layer.
This would mean a less upward directed migration and a greater involvement of the
Carbonatic layer in the diffusion process. This consideration does not affect the
overall diffusive behavior and the evident along-strike migration, observed firstly in
Figure 3.14(c).

3.4 Discussion and conclusions

We investigated the potential role of fluids in the development of two small seismic
sequences (mainshocks magnitude < 4) occurred in the Northern Apennines: The
Città di Castello and the Pietralunga sequence.

The study area has a unique potential to test the hypothesis of fluid involvement
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in seismogenesis for multiple reasons. Firstly, a CO2 source of claimed mantle
origin (Chiodini et al., 2004), with well documented degassing phenomena at the
surface (Chiaraluce et al., 2014), along with the favorable geologic and tectonic
setting for the development of overpressure in crustal traps (Trippetta et al.,
2013), as evidenced by measurements in deep (4-5km) boreholes with values
comparable to the 85% of the lithostatic load. Furthermore, the presence of a
dense monitoring network (Chiaraluce et al., 2014), which allows a very low event
detection threshold, unlocking the possibility to analyze local small sequences with
a resolution comparable to the one reached for bigger sequences, with the advantage
of a much higher frequency of occurrence.

We exploited the potential of the seismic network by running a state-of-the-
art deep learning phase picking algorithm (PhaseNet, Zhu and Beroza, (2019))
directly running on the raw waveforms. The retrieved P- and S-waves arrival
times are then associated to common events with a recently developed algorithm
(REAL, Zhang et al., (2019)). Absolute locations are obtained with a global
probabilistic location method (NonLinLoc, Lomax et al., (2000)) and then the
seismic events, after undergoing through quality selections criteria, are relocated
with the double-difference algorithm (HypoDD, Waldhauser, (2000)).

The final catalog for Pietralunga and CdC sequences consist of roughly 6 times
more events than the previously available catalogs for the same areas and time
windows (Figure 3.8 and Figure 3.9). The results of our workflow confirms the
detection capabilities of recently developed phase picking methods based on artificial
intelligence, highlighting the superior performances especially in a microseismicity
context.

The dense catalogs are analyzed to test the hypothesis of fluid diffusion pro-
cesses driving the spatiotemporal migration of seismicity. By modeling the seismic
sequences using the solution to the diffusion equation proposed by (Shapiro et al.,
1997), we detected patterns compatible to fluid diffusion in both Pietralunga (Fig-
ure 3.11, Figure 3.12 or Figure 3.13) and CdC sequences (Figure 3.15, Figure 3.16).
The diffusive pattern, sometimes coupled with a backfront signature defining the
end of the diffusion effect, is highlighted in space-time diagrams (named r − t

91



Chapter 3. Diffusion processes in minor seismic sequences

plots) together with the characteristic prolonged and along-strike migration of the
seismicity.

The estimated values of hydraulic diffusivity are in the order of 1 − 2m2s−1,
perfectly within ranges commonly observed for induced and natural earthquakes
(Talwani, 1984), ranging from 0.1 to 10m2s−1. These values are also consistent
to the relation proposed by Chiaraluce, (2012) between diffusivity values and
earthquake magnitudes in extensional tectonic environments. In this regard our
estimated values are representative of M < 4 earthquakes, and rank on the lower
end with respect to other diffusivity values estimated for larger earthquakes in the
Apennines, with the Umbria-Marche (Antonioli, 2005), L’Aquila (Malagnini et al.,
2012) and 2016 Central Italy (Malagnini et al., 2022) sequences showing larger
diffusivity values (at least one order of magnitude larger).

CdC and Pietralunga sequences appear to be both driven by pore-pressure
diffusion, but in between them they differ in some aspects, testifying the complex and
variable behavior observable even at this small scale within a common seismotectonic
context. We do not detect foreshocks for the CdC sequence and the early stage of
the activation of both April and May segments of this fault system, show a sudden
co-seismic migration along strike, occurring immediately after the main rupture
episodes (as showed by the clouds of events, vertically aligned in the along-strike
plots; Figure 3.14(c)). We interpreted this portion of the sequence as related to
triggering effects due to static stress transfer (Stein, 1999). Whilst the Pietralunga
sequence shows foreshocks activity and no evident static triggering signatures; more
similarly to a swarm-like behavior.

Other interesting features are evident by comparing the seismicity distribution
with the three-dimensional distribution of the lithologies at depth. We benefit in fact
from the availability of a detailed deterministic seimostratigraphic model of the area
(from Latorre et al., (2016)). As shown in Figure 3.17 and Figure 3.18 an involvement
of the Triassic Evaporites in the seismic activity is ubiquitous. Pietralunga 2010
sequence, before spreading upwards toward the Carbonatic Multilayer, nucleates
within the Triassic Evaporites (Figure 3.17, section 3). The same for the 2014
activity (in agreement with Marzorati et al., (2014), Latorre et al., (2016) and
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Valoroso et al., (2017)). While all the CdC mainshocks, despite the slightly lower
location resolution, show a consistent pattern and are all clustered inside the
Triassic Evaporites.

Thus, we confirm the Triassic Evaporites as a preferential lithology for earth-
quakes nucleation, indicating a strong mechanical control and corroborating their
seismogenic role (Mirabella et al., (2008), Collettini et al., (2009a), and Miller et al.,
(2004) for the 1997 Umbria-Marche sequence and Marzorati et al., (2014) and
Latorre et al., (2016) for the Pietralunga one). This lithology has been suggested to
have an important part in the trapping of fluids: composed of a series of anhydritic
and dolomitic layers, the Triassic Evaporites may act as barriers to fluid flow due
to the exceptionally low permeability of the anhydrite (Trippetta et al., 2010;
Trippetta et al., 2013), substantially contributing to the overpressure measured
in boreholes. Thus, in the case of a deep origin for the CO2 (e.g., from mantle
degassing, as proposed by (Chiodini et al., 2004)), the flux coming from below may
remain trapped in this low permeability layers, locally generating overpressure,
as observed in the Santo Stefano and San Donato boreholes, specifically in the
dolostone layers that would act as CO2 reservoirs. Moreover anhydrites can keep a
low permeability even during deformation due to their tendency to deform with a
ductile behaviour (De Paola et al., 2009). The brittle deformation during the main
events of the sequences probably links the different dolostones reservoirs and fluids,
triggering the diffusive flow driving the seismic activity.

As proposed by Collettini et al., (2009a), brittle faulting within the Triassic
Evaporites could generate the paths for crustal scale fluid flow (Cello et al., 2001).
In this context the Pietralunga sequence may be an example of two fluid driven
seismic phases migrating along the PATF with opposite directions: towards NW in
2010 and mainly towards SE in 2014. The starting of migration on opposite ends of
the fault indicates multiple sources of fluids separated by ∼ 5 km. The distribution
of events in CdC sequence suggest a single source of fluids as the driving mechanism
for the aftershocks of both April and May 2013. In this case the slight increase in
hydraulic diffusivity between the first and the second phase could be indicative of
the propagation in an already ruptured medium.

93



Chapter 3. Diffusion processes in minor seismic sequences

Our observations of diffusive patterns, the involvement of the Triassic Evaporites
and the nucleation of multiple mainshocks in this lithology, are all supporting
the case of fluid driven seismicity with strong lithological control in CdC and
Pietralunga sequences. Moreover, our findings confirm that small extensional
sequences show similar characteristics with respect to large ones (e.g. Antonioli,
(2005); Di Luccio et al., (2010); Malagnini et al., (2022); respectively for Umbria-
Marche 1997, L’Aquila 2009 and Central Italy 2016), such as along strike seismicity
migration, fluid-driven aftershocks and multi-segments ruptures; underlining a
similar behavior on different orders of magnitude.

The analysis of seismic patterns in small sequences represents a fruitful line of
research, giving insights to understand preparatory phases and aftershocks evolu-
tion with advantages in information availability with respect to major sequences,
provided a dense instrumentation and high performance detection techniques.

This highlights the relevance of implementing high resolution networks to observe
and model characteristics of small sequences that can be transferred to major ones.
The ongoing development of seismic networks and Near Fault Observatories is
essential for this kind of applications, in order to be able to resolve fault structural
details and seismicity patterns at the hundreds of meters scale.
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3.A VP/VS analysis on foreshocks

The very high number of events detected with the workflow applied in Chapter 3
allowed to perform a detailed analysis on the foreshock sequence of Pietralunga
2010.

A small cluster (radius=500 m) centered near the hypocenter of 15 April 2010
mainshock and including the foreshocks is used to select the corresponding events
and calculate VP/VS values, creating time series for each station in Figure 3.19.
VP/VS time series are analyzed with the rj-McMC algorithm developed in Chapter
2: a piecewise constant modeling is used.

While in ATPI and PIEI stations no variations are detected, ATPC (∼ 750
events detected in April 2010 for this station) shows an increase in VP/VS values
before the mainshock. Such variation is visible in Figure 3.20. The observed trend
is verified also with a simple moving median, computed using different number of
samples (see Figure 3.21).

The increase in VP/VS preceding the mainshock is similar to what observed by
Lucente et al., (2010) for the 2009 L’Aquila sequence, compatible with a dilatancy
phenomenon and corroborating the important role played by fluids diffusion.
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3.B Application of location workflow to an on-
going seismic sequence: Gubbio 2021

On 15 May 2021 at 07:56:01 (UTC time) a MW 3.9 normal faulting earthquake
occurred near Gubbio. The event was well recorded by a large number of INGV
stations pertaining to TABOO network, allowing an optimal detection and reloca-
tion of the seismic activity. The event gave the onset to a local seismic sequence
characterized by the occurrence of 160 detected/relocated events between 15-16
May.

This sequences gave the opportunity to apply the location workflow used in
Chapter 3 (without the final relocation) to an ongoing seismic sequence. The
relative map and cross sections are shown in Figure 3.22. Grey and black points
(e.g., events) represent respectively the background activity from 2010 to 2015
and the Gubbio swarm of 2013-2014 (from Valoroso et al., (2017)). Green points
represent the 345 earthquakes occurred between 10 and 14 of May and the red
ones are the 326 events of the 15 and 16 of May after the MW 3.9 whose location
is represented by a white star. The recent sequence reactivates a minor antithetic
splay of the ATF placed on the Gubbio fault hanging wall (both outlined in cross
sections).

Aprat from the larger number of detected events (more than double), the new
locations obtained with the workflow based on the deep learning picker (Zhu and
Beroza, 2019) includes also some previously undetected foreshocks (see events
occurred between 0 and 5 km of distance from Gubbio in space-time diagram of
Figure 3.23).

98



 5  

Figure 3.22: Map and sections of events. Grey and black points represent back-
ground activity from 2010 to 2015 and Gubbio swarm of 2013-2014. Green points
represent the earthquakes occurred between 10 and 14 May 2021 and the red ones
are the events of the 15 and 16 May 2021 after the MW 3.9, whose location is
represented by a white star.
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Figure 3.23: Space-time diagram of Gubbio 2021 sequence.
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4. Conclusion and outlook

In my research I was prompted by the idea that the contribution from multiple
disciplines is essential for the advancement of our knowledge of earthquakes phe-
nomena. I considered questions regarding potentially significant anomalies (e.g.,
variations) detectable in multiparametric data or the possible role played by crustal
fluids in triggering and constraining the seismic activity and its evolution, as some
of the key questions in modern earthquakes Science. And I believe that answering
these questions requires considering phenomena at the boundaries between different
research fields and the availability of long time series of high-resolution data.

In this thesis I faced the analysis of multidisciplinary raw data and derived
scientific products potentially related to tectonic processes, with the aim to generate
a common environment able to integrate and compare the diverse datasets. One
day in the future, the outcome of these studies could provide a contribution to
aiding expert opinions pertaining to monitoring agencies. I exploited previous
knowledge of the area and together with the usage of state-of-the-art methods to
better detect and characterize the seismic activity of the study region, I looked for
relationships between complex processes occurring in the crust.

The whole work has been possible due to the recent development of a modern
research infrastructure including dense seismological, geodetic and geochemical
networks monitoring a small (3000 km2) region of the Northern Apennines charac-
terized by a high rate of micro-seismic release and possessing moderate to large
earthquakes potential.
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I studied (see Chapter 2) the integration of diverse time series derived from
multiparametric sensors and their relation to seismicity activity detected inside
the study area. A primary goal was the development of a method that allows the
comparison of all the different quantities in a coherent way. In this context the big
advantage of the proposed reversible-jump Markov chain Monte Carlo (rj-McMC)
approach is the ability to estimate the number of discontinuities, (Change Points;
CP), required to model the time series, based only on data and errors. This is a data-
driven approach which is particularly valuable for this kind of analysis involving
many different time series from multiple stations, where an ad hoc modeling would
be not only infeasible, but also lead to a completely subjective result. The output
of the application of the algorithm has been analyzed in terms of CP distributions
and mean models obtained from the posterior probability distribution (PPD).

Further analysis can include any statistical parameters obtained from the PPD,
making the output exploitable in different ways. The multidisciplinary comparison
has been made for the whole study area, highlighting no obvious variations occurring
in multiple analyzed parameters. Another useful representation of the results
could involve a more focused selection of specific stations and seismic events (e.g.,
pertaining to a specific seismic sequence). Unfortunately, the overlap between the
timing of occurrence of the local main seismic sequences and the availability of all
datasets was not favorable. Given the results reported in Chapter 3, an interesting
proxy for future analysis would be to verify if a variation in the CO2 flux can be
detected at the surface before/during/after the occurrence of fluid driven sequences
like the ones I described. This would be a first indication of hydraulic connectivity
from (few kilometers of) depth to the free surface.

The availability of long-term time series of multiparametric data is crucial
to have the possibility of reliably identifying tectonic signals (being pre- co- or
post-seismic). The identification of earthquake related signals is in fact further
complicated by the influence of non-tectonic effects (Earth’s tides, barometric
pressure, temperature, rainfall, and other factors (Hartmann and Levy, 2005))
on many measured parameters. Some of these effects may be corrected by dis-
posing of longer time series, which would allow the identification, for example, of
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long-term fluctuations or recurring meteorological effects in addition to the ones
considered. This is of paramount importance in the pre-processing phase I adopted
(see section 2.2). By considering more of these "exogenous" signals, the resulting
CP distribution in geochemical or GNSS time series would be much simpler, thus
allowing an easier reading of the data and perhaps a more meaningful comparison.

The complex CP distributions also arise, as explained in Chapter 2, from the
lowering of the noise scale parameter. This behavior is not imposed but determined
by the data distribution. Nonetheless it results in a high sensitivity of the algorithm,
to even small variations. If such variations are deemed as unnecessary or unwanted,
the causes should be further investigated to develop strategies that can mitigate the
issue acting on error evaluation and/or treatment. The novel approach I proposed
has a good potential in multiparametric monitoring of seismically active regions
and lays a foundation to a more systematic, data-driven and coherent handling of
the ever increasing datasets recorded by modern networks. A fruitful application is
nonetheless tied to the level of knowledge that we have on the effects of different
sources of anomalies on the measured parameters.

In Chapter 3 the study changes focus from the exploration of tectonic related
signals in multidisciplinary datasets to the effects that composite processes hap-
pening in the crust may have on the spatiotemporal distribution of the seismicity.
I have been working to test the hypothesis of fluid diffusion processes occurring
in the study area at the source depth, by identifying compatible signatures in
seismicity pattern evolution.

Detailed analysis of such patterns in small seismic sequences (mainshocks
magnitude < 4) faces significant observational challenges. Nevertheless, these small
earthquake sequences are often the only source of information; large earthquakes
are in fact a lot less frequent (even if possibly impending). Thus, the analysis of
micro seismicity is the one providing valuable information on preparatory phases,
triggering mechanisms and fault mechanics, evidencing similarities or differences at
various scales of the problem.

I exploited the detection capability threshold of TABOO’s seismic network
by means of novel deep learning techniques applied to detection and localization
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problems, with the aim to build a detailed picture of the spatiotemporal evolution
of seismicity. The goodness of the obtained results in not only expressed by the
increased detection capability, but it is also reflected in the enhancement of the
quality of the retrieved earthquakes catalog, due to the availability of a significatively
larger number of seismic phases (e.g., P- and S-waves arrival times) allowing the
adoption of more stringent quality control systems (filtering) on the detected
events while still keeping a plentiful catalog. Further improvements in locations
robustness would be gained by including an estimate of the time uncertainty in
the output of the phase detection algorithms, which is a useful feature, although
uncommon for these machine learning techniques (an exception is, for example,
the one proposed by Mousavi et al., (2020)). Acknowledging the generalization
capabilities of the deep learning algorithms to waveforms from different regions
around the world (Mousavi et al., 2020), an interesting test would be the assessment
of the eventual level of improvements in precision and recall using transfer learning
to update the training of the model with local waveforms. Regarding the precision
of the relocation process, especially valuable when dealing with small structures, a
substantial increase would be expected performing analysis of waveforms similarities
via cross-correlation techniques (Schaff, 2004).

The spatiotemporal distributions of events obtained from the produced catalog
strongly suggest the occurrence of diffusive processes during both Città di Castello
and Pietralunga seismic sequences. These small sequences show characteristics very
similar to the ones characterizing larger extensional sequences (e.g. Colfiorito 1997
L’Aquila 2009, Central Italy 2016), indicating that the fluid-driven mechanism may
be widespread in the Apennines, disregarding the magnitude difference. This finding
supports the already strong case of deeply trapped CO2 substantially contributing
to seismicity, earthquakes, and aftershocks in the Apennines (Chiarabba et al.,
(2009), Lucente et al., (2010), Miller et al., (2004), Terakawa et al., (2010), among
others).

The results advise also for a strong lithological (e.g., mechanical) control
on earthquake nucleation and distribution, with the low permeability Triassic
Evaporites seemingly able to promote earthquake nucleation as a response to
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development of (CO2) fluid overpressure. These considerations corroborates the
hypothesis advanced in multiple studies performed in the same area (e.g. Trippetta
et al., (2013); Mirabella et al., (2008); Marzorati et al., (2014), Latorre et al., (2016);
Piana Agostinetti et al., (2017)) and agrees with what observed in laboratory tests
involving the same lithology (De Paola et al., (2009); Collettini et al., (2009a),
Trippetta et al., (2010)).

Thus, based on my experience, I strongly believe that our improvement of the
understanding of natural phenomena (e.g., earthquake) is largely data-driven. The
improvement of our observational capabilities allows testing a broader range of
models and hypotheses searching for new hints of crustal processes interacting
with each other. The integration of high-resolution data coming from different
disciplines can help us in obtaining a comprehensive picture to unravel tectonic
evolution and fault zone processes. The analysis of small seismicity proves to be a
prolific line of research, providing valuable information that can be extended on the
behavior of larger earthquakes and narrowing the gap with laboratory experiments,
which have made much progress recently (Rouet-Leduc et al., 2017), but with
which the integration constitutes a further step to overcome.

In my PhD journey, which unfortunately included very few trips due to the
(partially still ongoing) pandemic, I was lucky enough to be able to explore a
multitude of topics. I had the chance to explore datasets that I had never seen
before, learn about how broad and branched the earthquakes Science is, and
deepened many interesting aspects in the study of seismic sequences: from the
delicate steps of locating earthquakes to the analysis of seismic catalogs. I also
had the opportunity to participate (virtually) in seminars where I was able to
share some of my ideas and work, but, more importantly, learn from the others,
their research approach and hypothesis. The multidisciplinary approach that I
followed has undoubtedly shaped me, making me able to wander on many facets
of earthquake Science, from the more seismological aspects to the computational
methods and observational skills, without losing my bearing. Due to the social
distancing imposed by the pandemic, I managed to appreciate the value of scientific
collaboration even more. I enjoyed every occasion in which I had the opportunity
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to cooperate with those who share the same topics and issues, receiving (and I
hope sometimes even giving), a valuable contribution.
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