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We study the effect of frequent projective measurements on the dynamics of quantum self-
sustaining systems, by considering the prototypical example of the quantum Van der Pol oscillator.
Quantum fluctuations are responsible for phase diffusion which progressively blurs the semiclassical
limit cycle dynamics and synchronization, either to an external driving, or between two coupled
self-sustained oscillators. We show that by subjecting the system to repeated measurements of het-
erodyne type at an appropriate repetition frequency one can significantly suppress phase diffusion
without spoiling the semiclassical dynamics. This quantum Zeno-like effect may be effective either
in the case of one or two coupled van der Pol oscillators, and we discuss its possible implementation
in the case of trapped ions.

I. INTRODUCTION

The influence of measurement on quantum systems
is a fundamental feature of quantum mechanics with
many nontrivial manifestations [1–3]. One striking and
well-known example is the so-called quantum Zeno ef-
fect, which predicts that frequent measurements can
freeze quantum dynamics [4]. In recent years, several
in-depth explorations have been performed both theo-
retically and experimentally [5–18] and different mecha-
nisms related to the Zeno effect have been investigated
such as the nonmonotonic dissipation process caused by
a structured reservoir, the renormalization effect due to a
strong system-detector interaction [8], or its connection
with the opposite phenomenon of the anti-Zeno effect
[5, 6, 12, 14, 19–21]. In quantum information process-
ing it has been related to decoherence-free subspaces [22]
and to decoherence control strategies [23–27]. The rela-
tionship between Zeno effect and system symmetry has
been discussed in Refs. [17, 28], while Ref. [29] has shown
that the quantum Zeno effect can be realized even using
classical resources.

Quantum self-sustaining systems whose classical
steady state forms a limit cycle in phase space have
recently attracted much attention in the field of quan-
tum science [30–33]. A prerequisite for the occurrence
of nontrivial physical phenomena such as quantum syn-
chronization [30, 34] and quantum time crystal [35] is
the appearance of stable, self-sustained oscillations and
this generally requires the existence of nonlinearities in
the system’s dynamics. Suitable platforms for exploring
these phenomena are nonlinear systems such as the van
der Pol (vdP) oscillator [31, 36–39] and optomechanical
systems (OMSs) [32, 33, 40–47], and interesting manifes-
tations which have been investigated both theoretically
and experimentally in this respect are mode competition
among limit cycles [48], multi-stability [49], Hopf bifur-

cation [42, 47] and chaotic behavior [50, 51].
The exact solution of the dynamics of these quantum

nonlinear systems is hard and in the literature various ap-
proximate treatments have been proposed: some mean-
field treatments linearize the dynamics of the quantum
fluctuations around the solution of the mean field classi-
cal nonlinear equations, so that the steady state of the
system is a Gaussian state centered around the classical
limit cycle [42–44, 52–55]. However, such kind of state
cannot be maintained after a transient, and inevitably ex-
hibits non-Gaussianity, as was revealed in previous works
by means of simulations [31, 32, 37, 38, 56]. Recently, a
new fruitful perspective has been introduced in Ref. [57],
which showed that the long-time stationary dynamics of
the quantum self-sustaining systems is characterized by
a phase diffusion process yielding a non-Gaussian steady
state well described by an appropriate mixture of Gaus-
sians, distributed over all the phases of the limit cycle.
Stimulated by this result and by the importance of con-

trolling and reducing phase diffusion in self-oscillating
systems, we study here the effect of many repeated
measurements on the self-sustaining system, an aspect
which has remained unexplored up to now. More specif-
ically, we investigate the effect of ideal heterodyne mea-
surements and also of a dichotomic projective measure-
ment which is implementable in the case of trapped-
ion resonators, on the dynamics of single- and bi-partite
quantum self-sustaining systems, by extending the ap-
proach of Navarrete-Benlloch et al. [57] to the semiclas-
sical regime. We consider a quantum vdP oscillator in
the semiclassical regime [31] and find that an appropri-
ate measurement frequency will lead to a Zeno-like effect
such that the phase diffusion of the system is suppressed.
We then consider the case of two coupled vdP quan-
tum oscillators, and show that repeated measurements
can also optimize the quantum synchronization between
the two vdP oscillators. We will also see that, in the
limit of high-frequency measurements, the system state is
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never fully freezed and self-trapped, but randomly walks
in phase-space.
The paper is organized as follows: In. Sec. II, we in-

vestigate the non-Gaussian dynamics and the effect of
the repeated ideal heterodyne measurements on a quan-
tum vdP oscillator in the semiclassical regime. In sub-
section IIA, we describe the measurement process and
its interplay with the phase diffusion process ultimately
related to the inherent time translation symmetry of the
system. In Sec. III, we turn our attention to a dichotomic
measurement and analyze its effect on phase diffusion.
The study of the effect of the repeated measurements is
then extended to the case of two coupled vdP resonators
in Sec. IV, where we see how one can enhance synchro-
nization. We finally summarize the results in Sec. V.

II. MEASUREMENT AND PHASE DYNAMICS

OF A VAN DER POL OSCILLATOR

In order to investigate the effect of measurement on the
phase dynamics of a self-sustained system, we consider a
prototypical self-sustained oscillator, i.e., a quantum vdP
oscillator which undergoes two-excitation nonlinear loss
and it is affected by a linear gain process. Its dynamics
is described by the following master equation [31, 57]

ρ̇ = −i[H, ρ] + κ1L[â†]ρ+ κ2L[â2]ρ, (1)

where H = ωmâ†â (~ = 1) is the Hamiltonian of a free
oscillator and L[ô]ρ = 2ôρô†− ô†ôρ−ρô†ô is the standard
form of the Lindblad superoperator. The second and the
third terms on the right side of the above master equation
describe the linear gain process and the two-excitation
nonlinear dissipation process, respectively [31]. In order
to conveniently calculate and describe the dynamics of
the vdP oscillator, here we adopt the Wigner representa-
tion by introducing the standard Wigner function [58]:

W (α, α∗, t) =
1

π2

∫

d2zχs(z, z
∗, t)e−iz∗α∗

e−izα, (2)

where χs(z, z
∗, t) = Tr[ρ(t)eiz

∗a†+iza] is the
symmetrically-ordered characteristic function. The
quantum master equation (1) can be rephrased in terms
of the following partial differential equation for the
Wigner function [58]

∂tW ={(∂αα+ ∂α∗α∗)[iωm − κ1 + 2κ2(|α|2 − 1)]

+ ∂α∂α∗ [κ1 + 2κ2(2|α|2 − 1)]

+
κ2

2
(∂2

α∂α∗α+ ∂α∂
2
α∗α∗)}W,

(3)

where the higher order diffusion terms (∂2
α∂α∗ and ∂α∂

2
α∗)

provide the possibility of a negative Wigner function,
which is a manifestation of non-classical properties of the
oscillator state. Quantum fluctuations are amplified by
the nonlinear dissipation term with rate κ2, and for not

too small values of the ratio κ2/κ1 the dynamics of the
system may significantly deviate from the classical limit
cycle dynamics. However, here we focus on the semi-
classical regime characterized by κ2/κ1 ≪ 1 [31]: in this
limit derivatives of order higher than the second one can
be neglected [31, 58], and if the initial Wigner function
is non-negative, it will remain non-negative at all times.
In this case, the exact quantum dynamics described by
Eq. (3) can be well described by the following stochastic
Langevin equation [58]

α̇ = (−iωm + κ1)α − 2κ2(|α|2 − 1)α+
√
3κ1 + 2κ2α

in.

(4)

In this expression, the first term on the right-hand side
of the equation describes the oscillation frequency and
gain of the vdP oscillator. The second term corre-
sponds to the nonlinear dissipation, and the last term
describes a stochastic fluctuation process, where αin(t)
is the Gaussian vacuum input noise acting on the oscil-
lator [31, 44, 56], with correlation function

〈αin∗(t)αin(t′)〉 = 〈αin(t′)αin∗(t)〉 = δ(t− t′). (5)

The two quadratures of the vdP resonator are Q = α+α∗

and P = i(α∗ − α). Under this definition, the radius of
the classical limit cycle r is obtained from the stationary
solution of the averaged Eq. (4) and is given by

r = 2|αs| = 2

√

κ1

2κ2

+ 1, (6)

where |αs|2 = κ1/2κ2 +1 can be regarded as the steady-
state number of phonons. In order to numerically re-
produce the essential aspects of the linearization the-
ory of Ref. [57] around a nontrivial steady state such
as a limit cycle, the initial state should be taken as a
Gaussian state centered not too far from the limit cy-
cle in order to ensure that the quantum fluctuations can
be analyzed in terms of the Floquet theory approach of
Ref. [57] so that the system stability and phase diffusion
are determined by the corresponding Floquet eigenval-
ues rather than the instantaneous ones. Therefore we
numerically solve Eq. (4) by selecting as initial state of
the system a coherent state with amplitude r/2, |r/2〉.
As a consequence, the dynamics of the vdP oscillator
is obtained by simulating a large number of stochastic
trajectories αj , each starting from the complex value
αj(0) = r/2 + Z, where Z is a Gaussian random com-
plex number satisfying the normal distribution N (0, 0.5)
[59]. The ensemble-averaged amplitude and its quantum

fluctuation are calculated as 〈a〉(t) = ∑N
j=1 a

j(t)/N and

〈δa2〉(t) =
∑N

j=1(a
j(t) − 〈a〉(t))2/N , where the super-

script j denotes the jth trajectory of the simulation [44].
The Wigner function of the system can be analyzed nu-
merically by discretizing the continuous phase space into
a series of square grids, and the corresponding side length
h can be regarded as the the size of the pixel in phase
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space. According to these simulation results, it is conve-
nient to count NQ,P which is the number of results satis-
fying Qj ∈ (Q−h/2, Q+h/2] and P j ∈ (P−h/2, P+h/2]
at a given time. As mentioned above, in the considered
semiclassical regime, the Wigner function is always non-
negative and it behaves as a standard probability distri-
bution in phase-space, which is obtained as

W (Q,P ) = lim
h→0

NQ,P

Nh2
. (7)

We now subject the vdP resonator to a series of re-
peated measurements: during a time interval t, n mea-
surements are performed so that the measurements are
evenly spaced in time by an interval ∆t = t/n. We first
consider the case of ideal heterodyne measurements, cor-
responding to projections onto the overcomplete basis of
coherent states E(α) = π−1/2|α〉〈α|, α ∈ C [2, 58, 60]. In
the ideal case, the state is projected onto a generic pure
coherent state |αi〉 with a probability which is given by
Pi = Tr[E(αi)ρE

†(αi)], and it corresponds to a strong
measurement, in which the interaction with the detec-
tion apparatus is able to project the system onto a pure
state. In a more realistic scenario, the oscillator is pro-
jected onto a mixed state with phase space variances
larger than the vacuum one, due to detection inefficien-
cies and added noise. The projection is far from ideal
also in the case of weak measurements, which however
will not be considered here. In our stochastic simula-
tion, the ideal heterodyne measurement at time n′∆t
is described by randomly selecting an element αk from
the set αk(n′∆t) ∈ {αj(n′∆t), ∀j}, and choosing as ini-
tial value for the next time step after the measurement
αk(n′∆t)+Z, where again Z is a Gaussian random com-
plex number with normal distribution N (0, 0.5).
A visual and effective description of the dynamics of

system’s state, is provided in Fig. 1, where the time evo-
lution of the Wigner function of the vdP oscillator is
plotted at three different heterodyne measurement rates.
In the first row of Fig. 1, we show the time evolution
without any measurement, in which the initial Gaussian
state gradually diffuses along the classical trajectory of
the limit cycle with increasing phase fluctuation, finally
becoming a ring, as expected. In the second row the evo-
lution in the presence of heterodyne measurements sep-
arated by a time interval ωm∆t = 10 is considered. The
phase diffusion starts to be suppressed and the range of
nonzero values of the Wigner function winding the classi-
cal trajectory is compressed. In the third row, the mea-
surement rate is increased by a factor 10 (ωm∆t = 1),
and in this latter case, phase diffusion is completely sup-
pressed and the Wigner function shows almost no devia-
tion from a Gaussian. Therefore, the Zeno-like effect of
repeated ideal heterodyne measurements proves to be ef-
ficient in suppressing phase diffusion due to the quantum
fluctuations.
The phase diffusion causes the expectation value of the

oscillator’s observables to average time-dependent oscil-
lations to become constant. This phenomenon suggests

FIG. 1. Normalized Wigner function W/max{W } of the vdP
oscillator in the presence of repeated ideal heterodyne mea-
surements. The four columns from left to right correspond
to ωmt = 0, ωmt = 60, ωmt = 120 and ωmt = 180, respec-
tively. The first row represents the case without measure-
ments (∆t = ∞), while the second and the third rows repre-
sent the dynamics in the presence of heterodyne measurement
separated by a time interval ωm∆t = 10 and ωm∆t = 1 re-
spectively. Each Wigner function is obtained from 500000
trajectory solutions of the stochastic Langevin equation (4).
The other parameters are κ1/ωm = 0.1 and κ2/ωm = 0.005.
The solid line in the last sub-figure from the first row is the
corresponding classical limit cycle.

us to characterize the Zeno-like process by means of the
spectral analysis of the mean value of the oscillator’s co-
ordinate, namely,

Q(ω) =

∣

∣

∣

∣

1√
2π

∫

dt〈Q〉(t)e−iωt

∣

∣

∣

∣

, (8)

and the Fourier transform Q(ω) is shown in Fig. 2(a) ver-
sus the number of performed heterodyne measurements
n = t/∆t, with a fixed total evolution time ωmt = 600.
In Fig. 2(b), we show three horizontal cuts of the spectra
in Fig. 2(a), corresponding to no measurement n = 0
(∆t = ∞, black solid line), n = 16 measurements
(ωm∆t = 37.5, red dash line), and n = 6 × 105 hetero-
dyne measurements (ωm∆t = 0.001, blue (upper) solid
line). We see that if the measurement rate is not large
enough the oscillatory behavior remains, together with a
broadening due to phase diffusion. When the heterodyne
measurements become frequent enough, they destroy the
oscillations and a wide chaotic-like Fourier transform ap-
pear (see, e.g. the blue (upper) line in Fig. 2(b)). In
this limit of large enough measurement rate, randomness
accumulates and the motion of the oscillator explores a
much wider phase space region compared to the limit cy-
cle trajectory: in the numerical case of Fig. 2 the size
of the phase-space explored area is about 5 times the
classical limit cycle radius.

The transition from the oscillatory behavior to the
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FIG. 2. (a) Fourier transform of the average quadrature Q(ω)
as a function of the number of repeated heterodyne measure-
ments n. (b) Q(ω) at three horizontal cuts of Fig. 2(a), cor-
responding to no measurement n = 0 (∆t = ∞, black solid
line), n = 16 measurements (ωm∆t = 37.5, red dash line), and
n = 6× 105 heterodyne measurements (ωm∆t = 0.001, blue (
upper) solid line). Here the ensemble average is obtained by
5000 calculations of the stochastic Langevin equation and the
other parameters are the same as those in Fig. 1. The arrow
in (a) marks nc ∼ 211 which is the critical measurement rate
corresponding to the threshold condition of Eq. (9). (c) Peak
value of the Fourier transform, normalized with respect to the
corresponding limit cycle radius, Qn(ωm) = Q(ωm)/r, versus
the rate ratio κ2/κ1, at fixed measurement rate n = 2000, cor-
responding to ωm∆t = 0.3 for a total evolution time t = 600.
The Fourier transform is obtained by averaging 10 times the
result obtained with a single trajectory in order to eliminate
the influence of randomness.

chaotic motion caused by frequent enough heterodyne
measurements is abrupt and one can define an effective
measurement rate threshold nc. Below this threshold,
Q(ω) shows a single peak which even increases with in-
creasing measurement rate (compare red and black lines
in Fig. 2(b)) due to inhibition of phase diffusion caused
by the measurements. Above the threshold, the Fourier
transform becomes much wider and noisy. Therefore
below the threshold the average phase shift between
two successive measurements ωm∆t is still distinguish-
able and larger than the accumulated phase dispersion
caused by phase diffusion and that can be estimated as
2π/r. Therefore, the threshold between the two regimes
can be identified as when the limit cycle phase shift is
larger than three times the phase standard deviation, i.e.,
3/r > ωm∆t/2π, yielding the threshold condition

∆tc =
3π

ωm

√

2κ2

κ1 + 2κ2

, (9)

corresponding to the critical measurement rate nc =
t/∆tc, which for the parameters used in Fig. 2 is nc ≃

211.
The presence of a phase-transition-like behavior is con-

firmed by Fig. 2(c), where we have considered a fixed
measurement time interval ωm∆t = 0.3 (n = 2000), and
plotted the peak value of the Fourier transform, normal-
ized with respect to the corresponding limit cycle radius,
Qn(ωm) = Q(ωm)/r, versus the rate ratio κ2/κ1. The
data show two well distinct behaviors: at small κ2/κ1

the normalized peak is constant, while it shows a power
law decay as soon as κ2/κ1 becomes larger than a value
which exactly corresponds to the threshold condition of
Eq. (9): in this regime, phase diffusion due to the quan-
tum fluctuations becomes dominant and the oscillatory
behavior is progressively lost.

A. General features of the quantum Zeno effect in

self-sustained systems

The inhibition of phase diffusion in a quantum vdP os-
cillator by means of repeated heterodyne measurements
shown in the previous section when the measurement rate
is properly chosen can be seen as a manifestation of a
quantum Zeno-like process. We now discuss in more de-
tail if and when this phenomenon is generalizable to any
self-sustained system, and also the connection with the
Zeno effect in general.
In a generic self-sustained system, time translation

symmetry is broken and a limit cycle is formed in phase-
space. At the same time, as shown in Ref. [57], quantum
fluctuations are responsible for a phase diffusion process
which spoils the classical limit cycle, and the quantum
steady-state of the system can be expressed as a mixture
of Gaussians [57]

W =

∫ 2π

0

f(θ)WG(θ), (10)

where WG are localized Wigner functions corresponding
to the Gaussian state obtained by a linearized theory
with coefficient matrix depending upon the classical tra-
jectory. These Gaussian states will gradually diffuse and
lose their definite phase, as described by Eq. (10): the
distribution f(θ) will become broader and broader until
it becomes a uniform distribution, as shown in Fig. 3(a),
restoring the time translation symmetry in this way at
the end [35, 61].
If we now insert repeated ideal projective measure-

ments within the time evolution of the system, as in the
quantum Zeno effect, these measurements will tend to
freeze the system dynamics, and one can have two differ-
ent scenarios, depending upon the value of the measure-
ment frequency compared to the typical timescales of the
nonlinear dynamics of the self-oscillating system.
As we have seen in the previous section, if during the

time interval between two successive measurements ∆t,
the phase shift due to the oscillation ∆θ is still distin-
guishable and larger than the increase of the standard de-
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FIG. 3. Schematic representation of the interplay between
phase diffusion and repeated measurements in quantum self-
sustained system. (a): The dynamical process when no mea-
surement is performed. (b): The case when measurements
are performed with a not too large rate so that the limit cy-
cle phase shift between two measurement is distinguishable
and not overwhelmed by phase diffusion. (c): The case when
measurements are performed with a large rate so that the
limit cycle phase shift is too small. Here U (P) represents the
evolution (measurement) process.

viation of the phase due to phase diffusion, σ(∆t) < ∆θ,
the repeated measurements will inhibit phase dispersion
and will keep the distribution f(θ) close to a δ-function,
as shown in Fig. 3(b). As a consequence, the system’s
state will remain Gaussian and will rotate around the
classical limit cycle. In this case the Zeno effect is effec-
tive in suppressing the unwanted phase diffusion. If the
measurement rate is large and ∆t → 0, the phase shift
induced by the oscillation will become too small and the
state will tend to be frozen, as in the ideal projective Zeno
effect, and as shown in Fig. 3(c). These arguments can
be applied to a generic self-oscillating system; however,
in the model studied here and discussed in the previous
section, we do not have perfect freezing as in the case
of the standard Zeno effect but rather a random walk in
phase space because we considered heterodyne measure-
ments which are still projective, but in the overcomplete

basis of the coherent states. Due to the nonzero overlap
between different basis states, the quantum state may
change even in the limit ∆t → 0, and this is responsible
for the residual random walk in phase space (e.g. the
blue (upper) line in Fig. 2(b)).

For what concerns time translation symmetry and its
eventual breaking, we notice that in general adding re-
peated measurements as in the Zeno effect makes the
situation more involved. The numerical analysis carried
out here does not allow us to draw definitive conclusions.
However, in the regime below the threshold found in the
previous section where phase diffusion is suppressed and
the limit cycle is restored, the periodicity is still the clas-
sical one, longer than the measurement frequency and
we have an effective amplification of the period as it oc-
curs in Floquet time crystals [61]. On the other hand,
when the measurement rate is above threshold, the ran-

dom walk in phase space of the state seems to suggest
that the system is not able to reach its steady state, as
also suggested in Ref. [62].

III. DICHOTOMIC MEASUREMENTS

As shown in Ref. [31], the quantum vdP oscillator
can be experimentally implemented with a trapped ion,
by means of appropriate drivings resonant with the ion
motional sidebands. However, even though trapped
ions are an exceptional platform for quantum state and
process engineering [63], implementing ideal projective
heterodyne measurements on them is highly nontriv-
ial. What is instead quite easily achievable using the
electron shelving technique [63] is the dichotomic mea-
surement corresponding to the positive operator val-
ued measurement (POVM) with measurement operators
{M1 = |α〉〈α|,M2 = I − |α〉〈α|}, that is, the projec-
tors corresponding to the results to the yes/no question
if the oscillator is in the desired coherent state |α〉 or
not. It is therefore interesting to see if repeating mea-
surements of this kind on the system is still effective in
suppressing phase diffusion. Compared with the ideal
projective heterodyne measurement, such a dichotomic
measurement only determines whether a quantum state
is on a selected coherent state |α〉 or not. This POVM
is obtained by applying a properly chosen phase space
displacement operation to the POVM corresponding to
establishing if the ion motional state is in its ground state
|0〉 or not, and which is realized in trapped ions with the
electron shelving technique [63]. Also this technique cor-
responds to a strong measurement, capable of projecting
(in case of success) onto a pure state. In our model, the
selected target state is a periodic rotating coherent state
ρ = |α〉 = |

√

Tr(ρsâ†â)e
−iωmt〉 centered at the trajec-

tory of the limit cycle. After applying the displacement
transformation ρ′ = D†(α)ρD(α), the dichotomic mea-
surement can be described as a POVM measurement on
ρ′ with POVM operators {M1 = |0〉〈0|,M2 = I−|0〉〈0|}.
The quantum state after a measurement Mi can be ex-
pressed as

ρmi = D(α)

[

Miρ
′M †

i

Tr(Miρ′M
†
i )

]

D†(α), (11)

and the corresponding probability is Pi = Tr(Miρ
′M †

i ).

When a series of such dichotomic measurements are in-
serted into the evolution process of a vdP oscillator, the
physical process corresponding to the POVM operator
M1 reproduces the desired action of the ideal projective
measurement onto the overcomplete coherent state ba-
sis, that is, the measurement correctly projects the state
onto a coherent state. In this case, as shown in Fig. 4(a),
(c) and (d), the phase of this coherent state will dif-
fuse again until a next successful measurement process
M1 eliminates the accumulated phase diffusion, and so
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FIG. 4. Normalized Wigner function W/max{W } of vdP
oscillator influenced by the dichotomic measurement. Evolu-
tion (a)→(b): the phase of the system’s state further diffuses
during a standard time evolution of duration ωm∆t = 10.
Evolution (a)→(c)→(d): the POVM operator M1 maps the
phase diffused state to a coherent state ρm1 which further
evolves to a state whose phase diffusion is suppressed. Evolu-
tion (a)→(e)→(f): the POVM operator M2 maps the system’s
state to a “complementary” state of the coherent state ρm2

with negative Wigner function, and phase diffusion is even
wider after the evolution. The numerical calculation is per-
formed in a 50 × 50 Hilbert subspace with Fock state basis
and the other parameters are the same as those of Fig. 1.

on. However, in contrast to the complete heterodyne
measurement of the previous section, and as shown in
Fig. 4(e), the other POVM operator M2 maps the sys-
tem’s state to a state with a distinct quantum nature,
corresponding to a Wigner function with possibly nega-
tive values. It can be seen by comparing sub-figures (b),
(d) and (e) that phase diffusion may be even magnified
after that the oscillator is projected onto ρm2 instead of
ρm1.

Despite the negative effect of the complementary un-
successful measurement M2, one can investigate if it is
possible to find a regime where the probability to project
onto the desired coherent state approaches one, so as to
circumvent the unwanted effect of M2. This analysis is
carried out in Fig. 5. In Fig. 5(a) we plot the probability
P1 corresponding to the desired result in the k + 1th di-
chotomic measurement versus the measurement interval
∆t under the condition that a coherent state is obtained
at the generic kth measurement (full and dashed blue
lines, referring to two different parameter regimes). It
can be seen that the probability of obtaining again the
coherent state will monotonically decrease with increas-
ing ∆t due to the constant influence of phase diffusion

by quantum noise, and therefore one needs small mea-
surement intervals ∆t in order to try to suppress phase
diffusion. For small ∆t P1 linearly decreases, that is
P1(∆t) = 1 − c∆t (see the inset of Fig. 5(a)). As a
consequence, if one considers a given total time t = n∆t,
the probability that the dichotomic measurements always
give the same desired coherent state projection within
this time interval is Pt1 = [P1(∆t)]n,

Pt1 = [P1(∆t)]n ≃
(

1− c
t

n

)n

≃ e−ct. (12)

In this case, the factor n is eliminated from the formula,
which means that neither the Zeno effect nor the anti-
Zeno effect occurs during the whole process, and there-
fore this dichotomic measurement is not able to suppress
phase diffusion efficiently. We verify this assertion by ex-
amining the variation of Pt1 with the measurement fre-
quency n and plotting the results in Fig. 5(b). It can be
seen that Pt1 will not get any significant improvement
by increasing the measurement rate n and therefore de-
creasing ∆t to low values.

We have also investigated if instead the oscillator can
be frozen into some state, complementary to the coher-
ent state, i.e., the state corresponding to the result of
the POVM operator M2. In this case however, the mea-
surement projects onto a high-dimensional subspace and
the resulting state after one M2 measurement is gener-
ally different from the resulting state after the subse-
quent M2 measurement. Therefore, there is no simple
formula as that of Eq. (12). However, through simula-
tions we find that there is still no sign of the occurrence of
the Zeno effect. This means that even though we repeat
the evolution-measurement process, the state will not be
frozen, but jumps between the coherent state and its cor-
responding “complementary state” take place. Nonethe-
less, compared with the steady-state ρs with fully unde-
termined phase obtained without any measurement, we
see that some inhibition of phase diffusion occurs also for
the dichotomic measurement, although less efficient com-
pared to the ideal projective heterodyne measurement.

IV. MEASUREMENT-ENHANCED QUANTUM

SYNCHRONIZATION OF TWO VDP

OSCILLATORS

In the previous sections, we showed how frequent ideal
heterodyne measurements can suppress the phase dif-
fusion on a self-oscillating system. It is interesting to
see if in the case of a multipartite self-sustained sys-
tem, these measurements can affect and eventually in-
crease the phase correlations between the subsystems. It
has been shown that two coupled quantum vdP oscilla-
tors can be spontaneously phase-correlated or synchro-
nized [31, 64]. In this work, the interaction between two
oscillators is chosen to obey the U(1) symmetry, so that
the dynamics of the system can be described by the fol-
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FIG. 5. (a) The probability P1 of obtaining a coherent state in
a dichotomic measurement as a function of the measurement
time interval ∆t. The blue (upper) line corresponds to the
evolution of the system from a coherent state, i.e., the last
measurement result is ρm1, while the red (lower) line refers
to the case where the last measurement gave ρm2. (b) The
probability Pt1 = (P1)

n that the vdP oscillator stays in the
desired coherent state in a given time interval ωmt = 2 as
a function of the time interval between two measurements
∆t. In (a) and (b), the solid lines refer to κ1/ωm = 0.1
and κ2/ωm = 0.005 (the ”classical” limit of a vdP oscillator),
while dashed lines refer to κ1 = 0.005/ωm and κ2/ωm = 0.01.

lowing master equation

ρ̇ = −i[H, ρ] +
∑

j=1,2

κ1(L[â†j ]ρ) + κ2L[â2j ]ρ, (13)

with Hamiltonian H =
∑

j=1,2 ωmj â
†
j âj −µ(â†1a2+ â†2a1)

with coupling strength µ. The corresponding stochas-
tic Langevin equations, in the same semiclassical limit
considered earlier, are given by

α̇j =(−iωmj + κ1)αj − 2κ2(|αj |2 − 1)αj

+ iµα3−j +
√
3κ1 + 2κ2α

in
j , j = 1, 2,

(14)

where the two input noises are uncorrelated Gaussian
vacuum input noises of the identical to those introduced
in Eq. (4), satisfying the correlation functions of Eq. (5).

Let us first review the properties of the coupled vdP os-
cillator model for what concerns phase-correlations in the
presence of quantum noise, which is usually quantified in
terms of the probability distribution of the phase differ-
ence θ− = θ1−θ2, where we have defined αj = Ije

iθj . For
this model, the U(1) symmetry leads to a bistable dis-
tribution with equally probable in-phase and anti-phase
synchronization [31]. This can be understood also an-
alytically by first rewriting the stochastic equations in
terms of the amplitude and phase variables,

İ1 = (κ1 − 2κ2)I1 − 2κ2I
3
1 + µI2 sin θ− +NI1 ,

İ2 = (κ1 − 2κ2)I2 − 2κ2I
3
2 − µI1 sin θ− +NI2 ,

θ̇− = −∆ω + µ

(

I2
I1

− I1
I2

)

cos θ− +Nθ− ,

(15)

where ∆ω = ωm1 − ωm2 is the frequency differ-
ence between the two oscillators. The terms NI1,2 =√
3κ1 + 2κ2(α

in
1,2e

−iθ1,2 + αin,∗
1,2 eiθ1,2) are the amplitude

noises and Nθ− =
√
3κ1 + 2κ2[(α

in
1 e−iθ1−αin,∗

1 eiθ1)/I1−
(αin

2 e−iθ2 − αin,∗
2 eiθ2)/I2] corresponds to the phase noise

term responsible for phase diffusion. Then, in the weak
coupling limit µ/ωmj ≪ 1, one can approximate the dy-
namics of two amplitudes I1,2 as perturbations around
their equilibrium positions at zero coupling, that is,
Ij = I0 + δIj , where I0 = r/2 =

√

κ1/2κ2 + 1. We
get

δİ1 = (κ1 − 2κ2)δI1 − 6κ2I
2
0δI1 + µI0 sin θ− +NI1,

δİ2 = (κ1 − 2κ2)δI2 − 6κ2I
2
0δI2 − µI0 sin θ− +NI2,

θ̇− = −∆ω + 2µ

(

δI2 − δI1
I0

)

cos θ− +Nθ− .

(16)

Finally, one gets an effective equation for the phase dif-
ference θ− only, by determining the stationary values of
the amplitude fluctuations, obtained by setting the left-
hand side of the first two equations in Eqs. (16) equal to
zero. One obtains δI3−j = (−1)jµI0 sin θ−/(2κ1 + 8κ2),
and using these expression into the third equation for θ−,
one arrives at

θ̇− = −∆ω −
(

µ2

2κ1 + 8κ2

)

sin 2θ− +Nθ−

≡ −∆ω − 2c sin 2θ− +Nθ− ,

(17)

which is a Kuramoto-type equation with a washboard po-
tential U = −

∫

θ̇dθ = ∆ωθ1 − c cos 2θ− [49, 56, 65]. The
sin 2θ− term is responsible for the presence of two local
potential minima located at θ− = 0 and π, respectively,
clearly showing the bistability of the synchronized states,
and the equiprobable in-phase and anti-phase correlated
states.
We have numerically solved the stochastic Langevin

equations (14) with the initial phase difference θ− =
θ1−θ2 = π/2 and we show the results in Fig. 6. Fig. 6(a)
shows the stationary probability distribution of the phase
difference which can be obtained from the joint Wigner
function expressed in polar coordinates (I1,I2,θ+,θ−) and
integrating over the variables I1, I2 and θ+. We clearly
see the two equal maxima at θ− = 0, π. In Fig. 6(b)
we plot the time evolution of the probability density at
the two maxima, Wθ−(0) and Wθ−(π). The two oscilla-
tors tend firstly to in-phase synchronization, and then the
degree of anti-phase synchronization gradually increases,
resulting in a decrease in Wθ−(0) until they reach the
same steady-state value. This identical stationary value
of the two maxima provides a quantification of the phase
correlation (or anti-correlation) of the two oscillators and
it is now interesting to study what is the effect of repeated
ideal heterodyne measurements on this correlation.
We quantify the effect of the repeated measurements

on the phase correlations of the two coupled oscillators
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FIG. 6. (a): Phase error distribution of steady state for two
coupled oscillators with ωm1 = 1, ∆ω = 0.01 and µ = 0.02.
(b): Time evolution of phase error distributions correspond-
ing to in-phase synchronization (blue, upper) and anti-phase
synchronization (red, lower). The results are obtained by 106

calculations of the stochastic Langevin equations and other
used parameters are the same with those in Fig. 1.

by considering the time evolution of the probability den-
sity of the phase difference θ−, evaluated at the perfect
correlation condition, Wθ(0)t, and at the anti-correlated
condition, Wθ(π)t. We define the phase correlation at
moment t as the largest between the two values, and from
this we define the degree of synchronization of the two
coupled oscillators as the following time average, provid-
ing a robust signature of the phase correlation between
the two coupled oscillators,

Si =
1

T

∫ T

0

dtmax[W i
θ−(0)t,W

i
θ−(π)t]. (18)

The repeated measurements bring extra randomness, and
a steady state is not reached anymore in general because
of the measurements, and this is why we average over
time. Then we average also over M = 20 repetitions and
consider S =

∑Si/M . We plot the numerical results for
this quantifier in Fig. 7, where we have normalized S with
respect to the steady-state value Sl = W (0) = W (π) of
the unmeasured, symmetric case shown of Fig. 6(b). The
associated standard deviation of this quantifier over the
M repetitions is σ(S/Sl) ∼ 0.3..
Fig. 7 shows S/Sl versus the measurement time inter-

val ∆t for two different choices of the frequency differ-
ence ∆ω and coupling rate µ (red plus and blue circles),
and we see that quantum synchronization between the
two vdP oscillators is enhanced over a wide range of the
measurement time interval ∆t. In particular, the largest
improvement of phase correlation is obtained at short ∆t,
and this is somehow consistent with the time evolution
of the phase difference distribution maxima in Fig. 6(b),
where one has larger values for W (0) at shorter times.
This is also visible in the inset, where we compare the
stationary phase difference probability distribution with-
out measurements (dashed lines in the inset) with the one
corresponding to the time averaged nonstationary func-
tion obtained with repeated ideal heterodyne measure-

0 20 40 60 80 100
1

1.5

2

2.5

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

FIG. 7. Synchronization measure of Eq. (18) normalized by
the value corresponding to the stationary values of Fig. 6(b),
versus the measurement time interval ∆t. Here, blue circles
refer to the parameter choice ∆ω/ωm1 = 0.01 and µ/ωm1 =
0.02, while the red triangles to the choice ∆ω/ωm1 = 0.1 and
µ/ωm1 = 0.1. Each Si is obtained from 50000 calculations of
the stochastic Langevin equation and we average over M = 20
values of Si in order to get S . The inset shows the phase dif-
ference distribution corresponding to the steady state without
measurements for the two parameter choices (dashed lines),
and to the case in the presence of repeated heterodyne mea-
surements with a time interval ωm1∆t = 10 (circles). The
other parameters are the same as those of Fig. 1.

ments with ωm1∆t = 10 (the optimal case shown in the
main figure), and corresponding to circles. In fact now
only one kind of phase-correlation is enhanced by the
measurement, and one has only one well distinct peak
in the phase difference distribution, characterized by a
smaller variance, and therefore an appreciably reduced
phase diffusion.

V. CONCLUSION

In summary, we have investigated the influence of re-
peated measurements on the dynamics of quantum self-
sustained systems. We have shown that the phase diffu-
sion of the systems under study can be suppressed sim-
ilarly to what occurs in the Zeno effect. In this case,
by appropriately choosing the measurement rate, and in
the case of ideal heterodyne projective measurements,
the dynamics is stabilized around the classical limit cy-
cle with a rotating Gaussian-like state with suppressed
phase diffusion. Differently from the standard Zeno ef-
fect, if the measurement rate exceeds a critical value, the
final system’s state does not freeze at its initial state but
is characterized by a random walk in phase space, due to
the overcompletness of the coherent state basis.
Then we have studied the effect of repeated hetero-

dyne measurements on the phase correlations between
two coupled vdP oscillators. We found that these mea-
surements improve the phase-correlations and enhance
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quantum synchronization with respect to the stationary
value which is achieved in the model in the absence of
any measurement.
We expect that the Zeno effect and the suppression of

phase diffusion discussed in this paper are not restricted
to vdP oscillator systems, but occur in any repeatedly
measured self-sustaining system, provided that the kind
of measurement and its rate are conveniently chosen.
Nonetheless, in limit cycles time translation symmetry
is broken and repeated measurements are an additional
ingredient of the dynamics whose general effects on such
a spontaneous symmetry breaking process are not yet
fully clear and could be worth investigating.
A further interesting study not carried out in the

present paper is to replace strong ideal projective mea-
surements with weak measurements due to the interac-
tion with a probe system. One expects that weak mea-
surements are not effective in inducing a Zeno-like ef-
fect because the change (or “collapse”) of the system’s
quantum state occurs only gradually. However, in this
case, diverse probe systems can be coupled to the target
system, and different probe measurements can be cho-
sen, yielding different post-selection effects on the target
system. The possibility that also a well designed weak

measurements could be able to prevent phase diffusion
is an interesting option which will be investigated in the
future.

We finally notice that it has been proved that the stan-
dard quantum Zeno effect occurs also if measurements
are replaced by strong coupling [5, 6, 12]. Whether these
similar phenomena can be extended to self-sustaining sys-
tems can be an interesting subject for future investiga-
tions.
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Valcárcel, Phys. Rev. Lett. 119, 133601 (2017).

[58] H. J. Carmichael, Statistical Methods in Quantum Optics
1 (Springer-Verlag, Berlin, 1999).

[59] Here the sign N (x0, y0) denotes a Gaussian distri-
bution whose expectation is x0 and variance is y0,
that is, the probability density function is f(x) =

(2πy0)
−1/2 exp[−(x− x0)

2/(2y0)].
[60] H. P Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory

26,78 (1980).
[61] D. V. Else, B. Bauer, and C. Nayak, Phys. Rev. Lett.

117, 090402 (2016).
[62] F. Iemini, A. Russomanno, J. Keeling, M. Schirò, M.
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