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We propose a general framework for quantum error mitigation that combines and generalizes two
techniques: probabilistic error cancellation (PEC) and zero-noise extrapolation (ZNE). Similarly
to PEC, the proposed method represents ideal operations as linear combinations of noisy opera-
tions that are implementable on hardware. However, instead of assuming a fixed level of hardware
noise, we extend the set of implementable operations by noise scaling. By construction, this method
encompasses both PEC and ZNE as particular cases and allows us to investigate a larger set of hy-
brid techniques. For example, gate extrapolation can be used to implement PEC without requiring
knowledge of the device’s noise model, e.g., avoiding gate set tomography. Alternatively, probabilis-
tic error reduction can be used to estimate expectation values at intermediate virtual noise strengths
(below the hardware level), obtaining partially mitigated results at a lower sampling cost. Moreover,
multiple results obtained with different noise reduction factors can be further post-processed with
ZNE to better approximate the zero-noise limit.
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I. INTRODUCTION

The design of efficient techniques for reducing errors
in quantum processors is an important and pressing re-

search problem for near-term quantum computing. Stan-
dard quantum error correction codes [1–5] are theoreti-
cally known, but can require significant resources (e.g.
qubits, gates) that are unavailable on near-term quan-
tum devices [6]. On the one hand, the most direct way
to reduce physical errors is to improve the existing hard-
ware, e.g., by realizing more stable qubits and less noisy
operations. On the other hand, given the existing noisy
hardware, large improvements can be achieved at the
“software level” by using several techniques which have
been recently called error mitigation methods [7–9] and
which are the focus of this work.

One of such methods is zero-noise extrapolation (ZNE)
[7, 10, 11], where a quantum observable is measured at
different noise levels (by artificially increasing the hard-
ware noise) and extrapolated to the zero-noise limit. An-
other promising method is probabilistic error cancellation
(PEC) [7, 8, 12], where ideal circuits are approximated
with a Monte Carlo average over different noisy circuits.
Even if apparently different, both the ZNE and PEC
methods involve the estimation of an ideal expectation
value of interest from a suitable combination of noisy
expectation values which are experimentally measurable.
As schematically shown in Fig. 1, the main difference lies
in the choice of the measured quantities: in ZNE they
correspond to a fixed circuit evaluated at different noise
levels while in PEC they correspond to a set of different
circuits evaluated at the same level of noise (that of the
hardware).

The aim of this work is to study a more general frame-
work in which ideal expectation values are estimated by
post-processing the results of different circuits evaluated
at different noise levels. We refer to this method as
NEPEC (noise-extended probabilistic error cancellation).
By construction, NEPEC includes both PEC and ZNE as
limit cases. As we will show, intermediate techniques in
which both degrees of freedom—the gates of the circuit
and the noise level—are simultaneously exploited can be
advantageous with respect to different figures of merit
such as the simplicity of experimental implementation,
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FIG. 1. Pictorial representation of different error mitigation techniques. (a) In probabilistic error cancellation (PEC), an
ideal expectation value is estimated from different circuits executed at the same hardware noise λ = 1. (b) In zero-noise
extrapolation (ZNE), an ideal expectation value is estimated from the same circuit executed at different noise levels. (c) In
NEPEC (noise-extended probabilistic error cancellation)—the error mitigation framework introduced in this work—an ideal
expectation value is estimated from a general combination of different circuits evaluated at different noise levels. In fact, the
two-dimensional diagram used in this figure is a simplified representation of the more general linear combination involved in

the NEPEC method. Indeed, according to Eq. (25), the two axes of the diagram can be multi-index arrays (~λ and ~α), since
the noise of each gate of a circuit could be scaled differently.

the robustness to noise characterization errors, and the
sampling cost.

Our work is complementary to the recent results of
Refs. [13, 14], where it is shown how noise-scaling can
enhance the performances of the Clifford data regression
(CDR) technique introduced in Ref. [15] and of the vir-
tual distillation method introduced in Refs. [16, 17]. Sim-
ilarly to NEPEC, Refs. [13, 14] combine different circuits
and different noise levels. However, Refs. [13, 14] use a
machine learning approach in which an inference model
is first trained with a dataset of classically-simulable cir-
cuits and, as a second step, is applied to the circuit of
interest. NEPEC instead requires the construction of
(noise-aware or noise-agnostic) quasi-probability repre-
sentations of ideal gates but, once such representations
are determined, it can be directly applied to any cir-
cuit of interest without training. In Ref. [18], a modified
version of the PEC technique is proposed in which the
statistical variance of the estimator can be reduced at
the cost of introducing a bias error, similarly to what we
study in Sec. VI. In fact, the aim of both techniques is
the reduction of the negative volume of quasi-probability
representations, imposing lower levels of approximation.
The main difference is that in Ref. [18], for each approx-
imation level, a new representation must be numerically
determined. In Sec. VI instead, different levels of noise
reductions are analytically obtained from a suitable re-
scaling of a single quasi-probability representation, ex-
ploiting the notion of canonical noise scaling introduced
in Sec. VI D. While the analytical noise scaling approach
is simpler and intrinsically robust to numerical instabili-
ties, the brute-force numerical approach of Ref. [18] could
achieve a lower sampling variance. Finally, it is impor-
tant to remark that the idea of combining probabilis-
tic error reduction with ZNE was already proposed also
in Ref. [19]. In Ref. [19], the derivation is focused on
Pauli channels and up to first order in the error proba-
bilities. In Sec. VI we generalize this approach beyond

the weak-noise limit and for arbitrary noise models. Dif-
ferences and similarities between the NEPEC framework
introduced in this work and other existing techniques are
summarized in Tables I and II.

Before introducing NEPEC, we present an overview of
PEC and ZNE in the next two sections, respectively. This
sets the notation out and clarifies the relationship with
the existing literature. The reader who is already famil-
iar with PEC and ZNE, could directly jump to Sec. IV
where NEPEC is defined. In Sec. V the concept of noise-
agnostic PEC is introduced, while in Sec. VI we study two
techniques that involve virtual noise scaling: probabilis-
tic error reduction (PER) and virtual ZNE. In Sec. VII
we consider the minimal sampling cost of exact NEPEC
representations, finding a no-go test for a subset of cases,
and providing an example in which noise scaling is ben-
eficial. A summary of these techniques and their key
features can be found in Table I. Finally, in Sec. VIII we
provide concluding remarks.

II. OVERVIEW OF PROBABILISTIC ERROR
CANCELLATION

We first review PEC [7, 8, 20]. We consider a typical
gate-based quantum computing paradigm in which the
expectation value of an observable A = A† is evaluated
after applying a unitary circuit U to n qubits initially
prepared in the product state ρ0 = |0〉〈0|⊗n:

〈A〉ideal = tr[AU(ρ0)], (1)

where the calligraphic symbol U stands for the super-
operator which acts on a density matrix as U(ρ) = UρU†,
where U is a unitary matrix.

The circuit is assumed to be composed of a polynomial
number t of local unitary gates:

U = Gt ◦ . . .G2 ◦ G1, (2)
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NEPEC technique Bias Statistical
variance

Noise scaling
method

Gate
tomography

Reference

Probabilistic error cancellation (PEC) Zero Typically large Not required Required Sec. II
Temme et al. [7]
Endo et al. [8]
Zhang et al. [12]

Zero-noise extrapolation (ZNE) Potentially
large

Typically low Real Not required Sec. III

Li et al. [10]
Temme et al. [7]
Kandala et al. [11]

Noise-agnostic PEC Intermediate Typically large Real Not required Sec. V

Probabilistic error reduction (PER) Intermediate < PEC variance Virtual Required Sec. VI A

(see also Cai [19])

Virtual ZNE Intermediate Intermediate Virtual Required Sec. VI B

(see also Cai [19])

Exact NEPEC representations Zero ≤ PEC variance Real Required Sec. VII

TABLE I. The table provides a qualitative summary with the key features of the different quantum error mitigation techniques
reviewed (ZNE and PEC) and introduced in this work. All techniques can be seen as particular cases of the general error
mitigation framework introduced in Sec. IV, i.e., noise-extended probabilistic error cancellation (NEPEC). The entries of the
table aim to guide the reader about typical aspects of each technique but are intentionally not rigorous and not quantitative.
For example, high-order ZNE can have a large variance, while PEC applied to a short-depth circuit can have a small variance.

Technique Training Auxiliary
qubits

Quasi-prob.
representations

Noise scaling Gate
tomography

Reference

NEPEC Not required Not required Required Real or virtual Optional This work

vnCDR Required Not required Not required Real Not required Lowe et al. [13]

UNITED Required Required Not required Real Not required Bultrini et al. [14]

Bias-variance Not required Not required Required Not required Required Piveteau et al. [18]
tradeoff

TABLE II. Qualitative table comparing the main requirements of the NEPEC framework proposed in this work to the require-
ments of other similar techniques existing in the literature (excluding PEC and ZNE). vnCDR stands for variable-noise Clifford
data regression [13]. UNITED stands for UNIfied Technique for Error mitigation with Data [14]. A more detailed comparison
between the different implementations of NEPEC, including the particular limit cases of PEC and ZNE, is given in Table I.

where each gate Gi typically acts non-trivially only on 1
or 2 qubits. Now assume that, because of the hardware
noise, we are actually able to apply only a set I of noisy
implementable operations. An implementable operation
O ∈ I corresponds to a local quantum channel which
is usually non-unitary and so the ideal gates of the cir-
cuit cannot be exactly implemented in a direct way. For
simplicity, in this work we ignore state-preparation and
measurement (SPAM) errors but, in principle, they can
be taken into account in a similar fashion [7, 8].

The main idea of PEC is to represent each ideal gate
Gi of the circuit as a linear combination of noisy imple-
mentable operations {Oα}:

Gi =
∑
α

ηi,αOi,α, Oi,α ∈ I, ηi,α ∈ R. (3)

In principle, the index i of Oi,α in Eq. (3) could be
dropped. However, in this work, we keep it to explic-
itly define a gate-dependent basis of implementable op-

erations.
Note that this representation exists provided that: (i)

the set of implementable operations is large enough to
approximately or exactly represent Gi (a sufficient condi-
tion is that I forms a basis for the full space of quantum
channels) and (ii) the coefficients ηi,α are allowed to take
negative values. Since each operation is trace-preserving
we always have:∑

α

ηi,α = 1, γi =
∑
α

|ηi,α| ≥ 1. (4)

The normalization condition implies that one can con-
sider {ηi,α} as a quasi-probability distribution [7, 21] with
respect to the index α, while its one-norm γi is related
to the amount of negativity, i.e., the total volume of the
negative coefficients. The minimum value of γi is 1 and
is achieved only if all the coefficients are positive, cor-
responding to the special case in which {ηi,α} is a valid
probability distribution.
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As we are going to see in the next subsections, the
parameter γi is also related to the PEC sampling cost
associated to the gate Gi [7, 20, 21]. Therefore, among
all the possible representations given in Eq. (3), one is
typically interested in those minimizing γi:

γopti = min
{ηi,α}
{Oi,α}

[∑
α

|ηi,α|

]
s.t. Eq. (3) holds. (5)

A detailed analysis of the optimal PEC sampling cost
defined in Eq. (5) can be found in Ref. [20].

A. Error cancellation

Now, if we first replace Eq. (3) into Eq. (2) and then
substitute the result into Eq. (1), we obtain an expres-
sion for the desired ideal expectation value as a linear
combination of many noisy expectation values:

〈A〉ideal =
∑
~α

η~α〈A~α〉noisy, (6)

where:

η~α := ηt,αt . . . η2,α2
η1,α1

, (7)

〈A~α〉noisy := tr[AΦ~α(ρ0)], (8)

Φ~α := Ot,αt ◦ · · · ◦ O2,α2 ◦ O1,α1 . (9)

By linearity of the sum, the coefficients η~α form again a
quasi-probability distribution for the global circuit whose
one-norm γ is the product of those of the gates:∑

~α

η~α = 1, γ =
∑
~α

|η~α| = Πiγi. (10)

In principle, by running all the noisy circuits Φ~α and
evaluating all the corresponding expectation values 〈A~α〉,
one can exactly compute the ideal result 〈A〉ideal. How-
ever, the number of terms in Eq. (6) grows exponentially
with respect to the number of gates t and, in most prac-
tical situations, this approach is unfeasible. A possible
solution to avoid this issue is to replace the sum in Eq. (6)
with a Monte Carlo approximation [7, 8, 20, 21].

B. Monte Carlo estimation

Let us define the probability distribution pi(α) =
|ηi,α|/γi associated to the quasi-probability representa-
tion of the gate Gi. It is easy to check that we can always
re-write Eq. (3) as:

Gi =
∑
α

pi(α)γisign(ηi,α)Oi,α. (11)

If we sample an index α at random from the distribution
pi(α), we obtain a random variable α̂ such that

Ĝi = γisign(ηi,α̂)Oi,α̂, (12)

is an unbiased estimator for the ideal gate Gi, i.e., Gi =
E{Ĝi} where the average E(·) is with respect to the sam-
pling distribution pi(α).

If, for each gate Gi of the circuit described in Eq. (2),
we independently sample an index α̂ corresponding to the
noisy operationOi,α̂, we can define an unbiased estimator
for the full circuit as:

Û = Ĝt ◦ . . . Ĝ2 ◦ Ĝ1 = γσ~̂αΦ~̂α, (13)

where Φ~̂α is the sampled noisy circuit, γ is the constant
introduced in Eq. (10) and σ~̂α = Πisign(ηi,α̂) = sign(η~̂α).
In other words, by sampling individual gates one-by-
one, we are effectively sampling from the global quasi-
probability representation of the full circuit such that
U = E{Û}. This directly implies that by measuring the
observable A on the sampled circuits, one can estimate
the ideal expectation value with a Monte Carlo sampling
average over noisy expectation values:

〈A〉ideal = E
{

tr[AÛ(ρ0)]
}

= E
{
γσ~̂α〈A~̂α〉noisy

}
. (14)

Differently from Eq. (6) which is exact but contains
an exponential number of terms, the right-hand-side of
Eq. (14) can be approximated by averaging over a finite
number of samples. How many samples are necessary
to approximate 〈A〉ideal up to a precision δ? From the
standard (classical) theory of Monte Carlo sampling it
can be shown that [20, 21]:

# of samples ∝ γ2

δ2
. (15)

This gives a clear operational meaning to the parame-
ter γ: the larger the negativity of the quasi-distribution
the higher the PEC sampling cost. Since γ = Πiγi, its
value scales exponentially with respect to the number of
gates. Nonetheless, PEC can still be very advantageous
with the medium-size circuits which can run on near-term
quantum computers [12].

III. OVERVIEW OF ZERO-NOISE
EXTRAPOLATION

Zero-noise extrapolation [7, 10, 11] is an error mitiga-
tion method that relies on the assumption that the noise
of the physical hardware can be artificially increased be-
yond the base level such that, after measuring an ex-
pectation value for different strengths of the noise, it is
possible to extrapolate the zero-noise limit.

More precisely, it is assumed that the strength of the
noise can be quantified by some parameter Γ (e.g. the
decoherence rate of some noise channel) and that it is
possible to scale the noise by a dimensionless parameter
λ ≥ 1 such that the effective noise channel acting on the
system has a larger strength Γ′ = λΓ. Importantly, dif-
ferently from PEC, in this case it is not necessary to know
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the details of the noise model. In fact, there are many sit-
uations in which the noise level Γ is unknown and/or the
associated noise channel is hard to characterize, nonethe-
less, it is still possible to correctly scale Γ by some given
factor λ. For example, the pulse-stretching technique in-
troduced in [7] and several gate-level methods proposed
in [22–24] allow to effectively scale the hardware noise,
without actually “knowing” it (within the limits and as-
sumptions of these methods).

We now try to express ZNE with a formalism that
is as similar as possible to the one previously used for
describing PEC. We consider an ideal expectation value
〈A〉ideal that we would like to infer from a set of noisy

expectation values 〈A〉(λ)noisy evaluated at different values
of the noise scale factor λ ≥ 1:

〈A〉(λ)noisy := tr[AU (λ)(ρ0)], (16)

U (λ) := G(λ)t ◦ · · · ◦ G(λ)2 ◦ G(λ)1 , (17)

where G(λ)i represents the noise-scaled implementation of

the ideal unitary gate Gi = G(λ=0)
i . If a polynomial fit

[22] is used to evaluate the zero-noise limit (Richardson
extrapolation [7] is a special case), the ideal result can al-
ways be expressed as linear combination of the measured
noisy expectation values:

〈A〉ideal =
∑
λ∈S

ηλ〈A〉(λ)noisy + ∆ , (18)

where S = {λ1, λ2, . . . , λm} is the chosen set of m noise
scale factors and where ηλ are real coefficients which are
completely determined by S and by the degree of the
polynomial but are independent of the measured results
(because a polynomial fit is a linear regression problem)
[25] . Differently from the exact linear combination intro-
duced in Eq. (6), in ZNE the result is subject to a some
bias error ∆, which depends on the amount of noise Γ
and on the quality of the extrapolation model.

It is easy to check that, also in this case, {ηλ |λ ∈ S}
can be interpreted as a quasi-probability distribution:∑

λ∈S

ηλ = 1, γ =
∑
λ∈S

|ηλ| ≥ 1. (19)

Similarly to PEC, the parameter γ quantifies how much
the statistical uncertainty on the expectation values

〈A〉(λ)noisy gets amplified by the linear combination in

Eq. (18) and so how large is the mitigation overhead.
For example, in the case of Richardson extrapolation, γ
scales exponentially with respect to the size of S [22, 24]
which in practice implies that only a few noise scale fac-
tors must be used to avoid numerical instabilities. In
general, the number of terms in the linear combination
is small and one can directly measure all the noisy ex-
pectation values. This means that, in the case of ZNE,
it is not necessary to use any probabilistic Monte Carlo
sampling.

To summarize, in both the PEC and ZNE methods, an
ideal expectation value is represented as an average over
noisy expectation values with respect to a quasi proba-
bility distribution. The only difference lies in the domain
of the distribution as shown in Fig.1. Can we consider
the two domains of PEC and ZNE as particular cases of a
more general configuration space? This is the main idea
proposed in this work and we formalize it in the next
section.

IV. NEPEC: NOISE-EXTENDED
PROBABILISTIC ERROR CANCELLATION

In this section we introduce NEPEC (noise-extended
probabilistic error cancellation), a generalization of PEC
in which the set of implementable operations is extended
by noise scaling (see Fig. 1).

We begin with the set of implementable operations I
which appears in Eq. (3) and which is at the basis of PEC.
Let us also assume that for each operationO ∈ I, one can
scale the noise by a factor λ ≥ 1, obtaining a noise-scaled
operation O(λ). In practice this implies that, thanks to
noise scaling, we have at our disposal an extended set of
implementable operations:

Ĩ = {O(λ) | O ∈ I, λ ≥ 1}. (20)

By construction, Ĩ includes I as a subset. A noise-scaled
implementable operation O(λ) can be expressed as:

O(λ) := G(λ) = E(λ) ◦ G, (21)

where G is some ideal unitary operation and E(λ) is some
noise channel such that E(1) corresponds to the hardware
base noise and E(0) = Id. For example, if a gate G act-
ing on k qubits is affected by a depolarizing channel Dp
with error probability p [20], the associated noise-scaled
operation can be defined as in Eq. (21) with:

E(λ) = Dλp = (1−λp)Id+λp
∑
P∈Pk

P
4k − 1

, λ ∈ [1, λmax],

(22)
where Pk is the set of all Pauli strings of length k with
the exclusion of the identity string Id1 ⊗ Id2 ⊗ .... ⊗ Idk
and λmax is the maximum scale factor. If we impose λp
to be a valid probability we obtain λmax = p−1, while if
we more realistically require that the maximum scaling
is achieved when the output state is completely mixed
we get λmax = (1− 4−k)p−1 < p−1.

In practice, noise scaling can be experimentally
achieved by acting on the physical control pulses [7] or by
acting on the circuit at a gate-level [22–24]. For example,
we anticipate that in the simulation shown in Fig. 2 (pre-
sented in the next section), we will apply unitary folding
[22] to approximately scale the noise with odd integers
values of λ. According to this method, instead of using
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Eq. (21), a noise-scaled operation associated to a gate G
is defined as:

O(λ) := G(λ) = G(1) ◦
[
G†(1) ◦ G(1)

](λ−1)/2
,

λ = 1, 3, . . . , (23)

where G(1), corresponds to the gate G executed at the
hardware base noise (i.e., at λ = 1). More details on the
practical advantages and limitations of unitary folding
can be found in Refs. [22, 26]. Even if the final results
may depend on the choice of the noise scaling method, the
abstract formulation of the NEPEC technique is actually
independent from this choice.

If we expand an ideal gate Gi of a given circuit in the
new basis Ĩ, we obtain:

Gi =
∑
α,λ

ηi,α,λO(λ)
i,α , Oλi,α ∈ Ĩ, ηi,α,λ ∈ R, (24)

which is the natural generalization of Eq. (3) to a noise-
extended basis. The associated mitigation cost is given
by the one-norm of the quasi-probability distribution
{ηi,α,λ}, i.e., γi =

∑
α,λ |ηi,α,λ| ≥ 1.

Similarly to PEC and ZNE, our goal is to approxi-
mate an ideal expectation value as a linear combination
of noisy expectation values associated to implementable
circuits:

〈A〉ideal =
∑
~α,~λ

η~α,~λ〈A~α〉
(~λ)
noisy (25)

〈A~α〉(
~λ)
noisy := tr[AΦ

(~λ)
~α (ρ0)], (26)

Φ
(~λ)
~α := O(λt)

t,αt ◦ · · · ◦ O
(λ2)
2,α2
◦ O(λ1)

1,α1
, (27)

where O(λ)
i,α ∈ Ĩ is i-th noisy gate of the circuit, α enu-

merates different implementable operations and λ is the
noise scale factor.

Since in NEPEC we have two degrees of freedom—
the choice of gates and their noise scale factors—the set
of coefficients {η~α,~λ} should be considered as a quasi-

distribution with respect to the pair of indices (~α,~λ):

∑
~α,~λ

η~α,~λ = 1, γ =
∑
~α,~λ

|η~α,~λ|. (28)

In most practical situations, it is not possible to mea-
sure all the terms in Eq. (25) because their number is
too large. In these cases, one can sample a random

pair of indices (~̂α,
~̂
λ) from the probability distribution

p~α,~λ = |η~α,~λ|/γ, such that the ideal expectation value can

be estimated probabilistically as an average over many
samples:

〈A〉ideal = E
{
γσ~̂α,~̂λ

〈A(
~̂
λ)
~̂α
〉noisy

}
, (29)

where σ~̂α,~̂λ
= sign(η~̂α,~̂λ

). This is the NEPEC version of

Eq. (14) and, also in this case, the sampling cost scales
as γ2.

In Eq. (25), the sum is over the two variables ~α and ~λ.
If we fix λj = 1, we re-obtain the PEC linear combination
given in Eq. (6). If we instead fix the choice of the noisy
gates to match that of the ideal circuit and impose a
uniform scale factor λj = λ, the sum over ~α disappears
and we recover the ZNE linear combination introduced in
Eq. (18). A graphical representation showing how PEC
and ZNE are particular cases of NEPEC is given in Fig. 1.

Is there any advantage in using the more general
NEPEC framework compared to the particular limit
cases represented by PEC and ZNE? The answer to this
question depends on the considered figure of merit and
so it is better to address more specific questions:

1. Can NEPEC be used without the full tomographic
knowledge of the gates which is instead necessary
in PEC? We address this question in Sec. V.

2. Can NEPEC be used to effectively implement vir-
tual noise scaling methods for ZNE? We address
this question in Sec. VI.

3. Can NEPEC allow for a smaller sampling cost
compared to PEC? We address this question in
Sec. VII.

In the next sections we show, with theoretical argu-
ments and with explicit numerical examples, that all
the previous questions can have a positive answer, even
though this depends on the specific circuit, gate set, and
device under consideration. The techniques introduced
hereafter are qualitatively compared to ZNE and PEC in
Table I.

V. EXTRAPOLATING GATES FOR
NOISE-AGNOSTIC PEC

In the previous section we presented the general formu-
lation of NEPEC, introducing the quasi-probability rep-
resentations for expectation values [Eqs. (25) and (29)],
and for individual gates (Eq. (24)). However, among all
the possible representations which could be used, what
are the good ones for practical applications? Are there
specific NEPEC representations that have some good
physical motivation or that are practically easier to im-
plement?

In this section we consider a particular technique where
the quasi-probability representation for individual gates
is inspired by ZNE while the full circuit is sampled ac-
cording to the standard PEC algorithm. The main ad-
vantage of this approach is the possibility of obtaining
an approximate probabilistic error cancellation technique
which is noise-agnostic, i.e., which does not require the
full characterization of the noise model or the full tomog-
raphy of the noisy gate set.
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FIG. 2. The expectation value of the observable A = |0〉〈0| is
estimated with different techniques for a single-qubit random-
ized benchmarking circuit of depth 14 such that 〈A〉ideal = 1.
The PEC results are based on quasi-probability representa-
tions built assuming a fixed estimated noise level of p = 0.01.
When this assumption matches the actual noise level of the
hardware, PEC achieves an optimal cancellation of the noise.
On the other hand, when the actual noise of the system is
different from the assumed value (noise characterization er-
ror), PEC results are more biased than NEPEC results. The
NEPEC results are obtained using the noise-agnostic repre-
sentations defined according to Eq. (30) with scale factors
S = {λ1, λ2} = {1, 51} and coefficients given by Eq. (31).
Unitary folding is used for digitally scaling the noise as de-
scribed in Eq. (23) without assuming a specific noise model or
noise level. All the noisy expectation values are directly evalu-
ated from simulated density matrices and therefore shot noise
is absent in this figure (corresponding to the limit of infinite
shots). The random fluctuations of the PEC and NEPEC
points are due to the finite number (5000) of Monte Carlo
samples. For the numerical simulation of this example, we
used the error mitigation software package Mitiq [26].

The idea is to represent each ideal gate Gi of a circuit
as a linear combination of the same noisy gate executed
at different noise scale factors λ ≥ 1. In practice we drop
the α index which appears in the NEPEC representation
of a generic gate given in Eq. (24) and keep only the sum
over a finite set of noise scale factors Si = {λ1, λ2, . . . }:

Gi =
∑
λ∈Si

ηi,λ G(λ)i + ∆i, ηi,λ ∈ R, (30)

where we also add a small bias error—the super-operator
∆i in (30)—since the restricted noisy basis may not allow
for an exact representation.

Note that Eq. (30) could be considered as a kind of

“extrapolation” of the noisy gate G(λ)i to the zero-noise

limit G(λ=0)
i . Differently from standard ZNE, where the

extrapolation is applied to some scalar expectation value,
here we are instead extrapolating the super-operator of
a single gate with the aim of obtaining a good quasi-
probability representation.

Crucially, the scalar coefficients ηi,λ can be determined
in exactly the same way as in standard ZNE. More pre-
cisely, for any polynomial model (including Richardson
extrapolation), the coefficients ηi,λ depend only on the
set of noise scale factors Si. This means that, given
the extrapolation order and the set Si, we can com-
pute the coefficients ηi,λ with the same standard methods
which are often used for ZNE. For example, in the case
of Richardson extrapolation, the explicit formula for the
coefficients is [22]:

ηi,λ =
∏
λ′∈Si
λ′ 6=λ

λ′

λ′ − λ
, λ ∈ Si. (31)

Alternatively, only in the case in which one has the full to-
mographic knowledge of the noise scaled gates, one could
directly optimize the coefficients ηi,λ in Eq. (30) to better
represent the ideal gate.

Once we have the quasi-probability representation de-
scribed in Eq. (30) for each gate of an ideal circuit, we
can estimate expectation values via the usual probabilis-
tic error cancellation approach. In practice one has to
stochastically modulate the effective noise along the cir-
cuit by sampling a noise scale factor for each gate ac-
cording to the probability distribution pi(λ) = |ηi,λ|/γi.
Eventually, to estimate the ideal result one should com-
bine all the measured samples according to Eq. (29).

Compared to the standard decomposition used in PEC
and introduced in Eq. (3), in order to use the specific
NEPEC representation given in Eq. (30), one needs some
direct or indirect way of scaling the noise of individual
gates. On the other hand, the main advantage of this
method is that it does not require the full knowledge
of the noise model which would instead be necessary to
evaluate Eq. (3).

A simple example demonstrating noise-agnostic error
mitigation with NEPEC is shown in Fig. 2 for a single-
qubit circuit subject to different levels of depolarizing
noise. In Fig. 2, one can also observe that standard PEC
(with fixed gate representations) is quite sensible to
noise characterization errors (i.e. the mismatch between
the assumed and the actual noise-models). On the con-
trary, exploiting the noise-independent representations
defined in Eq. (30), NEPEC is by construction more ro-
bust with respect to the noise level and to the noise type.

Note: Instead of considering the unitary operator Gi
in Eq. (30) as the i-th gate of the circuit, one may also
associate it to the i-th layer or to the i-th sub-circuit.
The proposed procedure would be exactly the same,
with the only constraint of using a uniform noise scale
factor for each i-th part of the circuit. Depending on
the noise scaling method, acting at the level of layers
may be more practical with respect to scaling the noise
of individual gates. For example, it is probably simpler
to apply the pulse-stretching [7, 11] technique layer-wise
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instead of gate-wise.

A. Reducing the sampling cost of gate
extrapolation

The sampling cost parameters γi of the quasi-
probability representation defined in Eq. (30) can be
quite large compared to the PEC representation of
Eq. (3) and this fact can be a practical limitation for
large circuits. We propose two solutions to reduce the
sampling cost in the case of large and highly noisy cir-
cuits:

1 Considering Gi as the unitary matrix which repre-
sents a large block of the circuit instead of a single
gate or of a thin layer of gates.

2 Applying large noise scaling to increase the distance
between the different elements of Si (the set of noise
scale factors).

An example of the first option is to divide a long circuit
into a few (say 2 or 3) parts of approximately equal size.
Each part could be represented as in Eq. (30). In this
setting, the full circuit is expressible as a linear combi-
nation of a limited number of terms which can be easily
measured.

The second option instead is motivated by the fact
that, the more the values of λ are different, the smaller
the one-norm of the extrapolation coefficients. For
example, for a linear extrapolation with scale factors
Si = {1, λ2}, the two extrapolation coefficients would be
ηi,1 = λ2/(λ2 − 1) and ηi,λ2

= 1/(1− λ2), corresponding
to a mitigation cost of γi = (1+λ2)/(λ2−1) which tends
to one for a large λ2. In practice, however, there is usu-
ally a trade-off for the optimal amount of noise scaling:
large noise scaling values are convenient for reducing the
sampling variance, but too large noise scaling may give
a bad extrapolation bias (large ∆ in Eq. (30)). More-
over, depending on how noise scaling is defined, there
can be a maximum value of lambda λ above which it is
impossible to scale the noise. For example, for the noise-
scaled depolarizing channel Dλp acting on k qubits de-
fined in Eq. (22), a physically motivated maximum value
is λmax = (1 − 4−k)p−1, where p is the base error rate
of the hardware. In this case, linear extrapolation of a
single-qubit gate would give a mitigation cost of:

γi =
1 + λmax

λmax − 1
=

1 + ε

1− ε
, ε = (4/3)p. (32)

This is larger than the PEC optimal cost γopt = (1 +
ε/2)(1 − ε) [20], consistent with the no-go result of
Sec. VII. Interestingly, if we instead set λmax = p−1,
we obtain γi = (1 + p)/(1 − p) which is slightly smaller
than the optimal PEC cost of Ref. [20]. However one
should take into account that, for λ > (1− 4−k)p−1, the
corresponding noise-scaled depolarizing channel may be

impossible to implement on hardware even if mathemat-
ically well-defined. For this reason, Eq. (32) is a more
realistic and prudent estimate of the actual error mitiga-
tion cost.

VI. PROBABILISTIC ERROR REDUCTION
AND VIRTUAL ZNE

In this section we show how one can use a proba-
bilistic sampling approach for indirectly implementing a
“virtual” noise scaling process instead of aiming for a
complete cancellation of errors. Differently from com-
mon noise scaling methods like pulse-stretching or uni-
tary folding, virtual noise scaling can be used to effec-
tively reduce the noise below the hardware level instead
of scaling it up. Similarly to the general NEPEC frame-
work discussed in Sec. IV, also in this section we extend
the space of implementable operations to arbitrary (vir-
tual) noise levels and we show how this can be useful for
reducing the statistical variance of the mitigated results.

We comment that a similar notion of probabilistic noise
reduction was recently proposed also in Ref. [19].

A. Probabilistic error reduction

For noise scale factors λ larger than 1 (noise amplifica-
tion), probabilistic noise scaling is not new. Indeed the
probabilistic application of Pauli gates for amplifying the
noise, was already used in one of the first experimental
applications of ZNE [10]. In this work instead we explore
the possibility of virtually scaling down the noise in the
interval λ ∈ [0, 1] and we refer to this technique as prob-
abilistic error reduction (PER), which can be considered
both as noise scaling method and as an error mitigation
method.

Given a generic definition of noise scaling (see
Eq. (21)), PER can be obtained generalizing the PEC
quasi-probability representation given in Eq. (3). Specif-
ically, we replace the unitary gate on the l.h.s. of Eq. (3)
with a non-unitary channel corresponding to the i-th

noise-scaled gate G(λ)i of the circuit of interest:

G(λ)i =
∑
α

ηi,α(λ)Oi,α, Oi,α ∈ I, (33)∑
α

ηi,α(λ) = 1 ∀λ, γi(λ) :=
∑
α

|ηi,α(λ)|.

Explicit quasi-probability representations for the par-
ticular case of depolarizing noise are derived in subsection
VI C and a more general scenario is considered subsection
VI D. An example of PER is shown in Fig. 3(a), where an
expectation value is estimated at different virtual noise
scale factors, interpolating between the unmitigated re-
sult (λ = 1) and PEC (λ = 0).

Here we stress an important aspect which is evident
in Fig. 3(a): the statistical uncertainty associated to the
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FIG. 3. (a) Probabilistic error reduction by virtual noise scal-
ing. A single-qubit randomized-benchmarking circuit com-
posed of 46 gates is simulated assuming a depolarizing noise
model with p = 0.015. The expectation value of A = |0〉〈0|
is estimated at different values of the noise scale factor λ via
PER according to Eq. (33) and, more specifically, (35). For
increasing values of λ, the results continuously interpolate
between PEC (λ = 0) and no mitigation (λ = 1), while the
associated statistical variance gets reduced. (b) Error mitiga-
tion by linear zero-noise extrapolation with virtual scale fac-
tors S = {λ1, λ2} = {0.2, 1}, compared to standard PEC and
to PER (with λ = 0.2). We observe that all error mitigation
methods improve the unmitigated result. As expected, virtual
ZNE and PER are on average more biased than PEC, how-
ever, their statistical uncertainty can be significantly smaller.
For each noise scale factor, 5×104 measurements (shots) have
been used. For each shot, a different circuit was sampled ac-
cording to PER. To estimate the statistical distribution, the
samples have been divided into 25 batches of 2×103 elements
each. The “violin plots” show the statistical distributions
with respect to independent batches. The central horizon-
tal segment in each “violin” corresponds to the mean of all
the samples, which is equal to the mean of the batches. For
the numerical simulation of this example, we used the error
mitigation software package Mitiq [26].

PER estimates decreases for larger values of λ. For this
reason PER can be considered as a low-cost error mit-
igation method in the sense that, compared to PEC, it
requires a smaller number of samples at the price of a
partial mitigation of the noise. Equivalently, for a fixed
number of samples, PER results are characterized by a

smaller statistical uncertainty compared to PEC. For this
reason PER could be useful in real-world scenarios char-
acterized by a large level of noise, in which the sampling
cost of PEC would be too large. We mention that a sim-
ilar bias-variance trade off in probabilistic error cancella-
tion has been recently studied also in Eq. [18], although
with a different approach in which noise scaling is not
involved.

B. Virtual ZNE

A possible way to get a better estimate of the ideal
expectation value is to consider PER as a noise scaling
method and to apply ZNE as a second step (see also
Ref. [19]). A demonstration of this virtual zero-noise ex-
trapolation technique is reported in Fig. 3(b).

The potential advantage with respect to standard ZNE
is quite evident: we can now explore the region 0 < λ < 1
and this makes the extrapolation to λ = 0 less biased.
But what is the advantage with respect to standard PEC?
In PEC, the ideal expectation value (λ = 0) is directly
computed with an unbiased estimator such that no ex-
trapolation is necessary. As discussed in the case of PER,
also virtual ZNE can have a smaller statistical error com-
pared to PEC, as shown the example of Fig. 3(b). A
notable fact is that the zero-noise limit could also be ex-
trapolated with a non-linear function of the noisy expec-
tation values (e.g. when using an exponential fit), while
PEC is always linear by construction.

In conclusion, we may summarize both PER and vir-
tual ZNE as hybrid techniques interpolating between two
standard inference methods: ZNE (characterized by low
variance but biased) and PEC (unbiased but affected by
a large variance).

C. Example: depolarizing-channel error reduction

To clarify the probabilistic error reduction (PER)
method, we explicitly present a simple single-qubit ex-
ample. We consider the noisy gate set corresponding to
all single-qubit unitaries followed by depolarizing noise:
I = {Dp ◦ G | G is unitary}. Instead of completely can-
celling the noise as in PEC, in PER we are interested in
the effective implementation of noise scaled gates:

G(λ) = Dλp ◦ G, 0 ≤ λ ≤ λmax = 3/4p−1. (34)

Extending the same calculations of Refs. [7, 20] to the
case λ 6= 0 and using the notation ε = 4/3p, it is easy
to derive the following quasi-probability representation
which is valid for any noise-scaled gate:

G(λ) = η1O1 + η2O2 + η3O3 + η4O4, (35)
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where:

η1 =

(
1 +

3

4

ε(1− λ)

1− ε

)
, O1 = Dp ◦ G,

η2 = −1

4

ε(1− λ)

1− ε
, O2 = Dp ◦ (X ◦ G),

η3 = −1

4

ε(1− λ)

1− ε
, O3 = Dp ◦ (Y ◦ G),

η4 = −1

4

ε(1− λ)

1− ε
, O4 = Dp ◦ (Z ◦ G). (36)

In the definition of the noisy operations Oj given in the
equation above, the composition of the unitary chan-
nels applied before Dp represent a single elementary
gate. For λ = 0, Eq. (36) reduces to the PEC quasi-
probability representation obtained in Refs. [7, 20]. For
1 ≤ λ ≤ λmax = ε−1, all coefficients are positive corre-
sponding to the direct application of depolarizing errors
to scale up the noise (see e.g. [10]). For 0 ≤ λ ≤ 1 instead
the situation is less trivial and corresponds to the prob-
abilistic error reduction regime considered in this work.
In this case, the last 3 coefficients of Eq. (36) are neg-
ative and the negative volume of the quasi-distribution
decreases linearly with λ, interpolating between the two
extremes of full error cancellation (at λ = 0) and no-
mitigation (at λ = 1). More explicitly the one-norm of
the quasi-probability given in Eq. (36), as a function of
λ, is given by:

γ(λ) =
{
γ − λ(γ − 1), λ ∈ [0, 1],
1, λ ∈ [1, ε−1],

(37)

where γ = 1 + 3
2

ε
1−ε is the PEC one-norm (at λ = 0).

For the sake of completeness, we mention that Eqs. (36)
are also valid in the region λ = [ε−1, p−1] where the
noise scaled depolarizing channel is completely positive
(physical). However the one-norm γ(λ) remains equal to
1 only for λ = [ε−1, γ+1

γ−1 ], while it increases again for

λ ∈ [γ+1
γ−1 , p

−1]. This is consistent with the more gen-

eral analysis that we will present in the next subsection
(Sec. VI D, Eq. (44)).

For a fixed number of samples, Eq. (37) implies that
PER is affected by a decreasing statistical uncertainty for
increasing values of λ, at the price of a larger bias error.
For the same reason, the statistical variance of the vir-
tual ZNE technique is reduced too. Both phenomena are
clearly visible in the numerical example shown in Fig. 3
and these qualitative features are reported in Table I.

D. Canonical noise scaling

In the previous example we considered a depolariz-
ing noise model which depends on a single parameter
p and therefore admits a natural notion of noise reduc-
tion p→ λp. The same approach could be applied when
the noise model is an amplitude damping channel [7, 20].
However, how can one meaningfully scale an arbitrary

noise model? In this section we show that a generic
quasi-probability representation of an ideal gate induces
an abstract canonical noise model that we can associate
to that gate. This abstract noise model is a well-defined
trace-preserving and completely positive channel which
depends linearly on a single noise parameter p. In prac-
tice, this implies that noise scaling can always be mean-
ingfully defined for any quasi-probability representation
of an ideal gate.

Let us consider the representation of an ideal gate G as
a linear combination of noisy operations Oα weighted by
a quasi-probability distribution ηα. The explicit formula
is given in Eq. (3) where, for simplicity, we now drop
the gate index i. We now split the domain of the quasi-
distribution ηα in two parts corresponding to the regions
where ηα is positive and negative respectively:

D(±) = {α, such that ηα ≷ 0}. (38)

In a similar way we can define two completely positive
and trace-preserving channels associated to the positive
and negative regions respectively (see e.g. Ref. [20] or, in
the context of magic states, Ref. [27]):

Φ(±) =
1

γ(±)

∑
D(±)

|ηα|Oα, γ(±) =
∑
D(±)

|ηα|, (39)

where γ(±) are to the positive and negative volumes of
the quasi-distribution, such that the total one-norm is
γ = γ(+) + γ(−), while the normalization implies that
γ(+) − γ(−) = 1.

Given the previous definitions we can reduce the multi-
term linear combination in Eq. (3) to a linear combina-
tions of just two channels:

G = γ(+)Φ(+) − γ(−)Φ(−), (40)

where both channels Φ(±) can be applied on the noisy
hardware since they are a convex combination of imple-
mentable operations. What is the physical meaning of
these channels? As we are going to show, Φ+ can be
considered as a noisy approximation of G, while Φ− could
be considered an error term that needs to be subtracted
from Φ+ in order to recover the ideal gate G.

This intuition suggests the following canonical noise
model associated to the ideal gate G:

Λp = (1− p)G + pΦ(−), p ∈ [0, 1], (41)

corresponding to a channel in which with probability p
the error operation Φ(−) occurs, while with probability
the (1−p) the ideal gate is applied without any errors. It
is easy to check that, depending the single parameter p,
the channel Λp interpolates between the three channels
that appear in Eq. (40): for p = 0 we obtain the ideal
gate G, for p = γ(−)/γ(+) we obtain Φ(+) which therefore
could be considered as a noisy (implementable) approx-
imation of the ideal gate, while for p = 1 we get Φ(−)

which can be considered as the maximum noise limit.
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If we identify p̃ = γ(−)/γ(+) as the noise level of the
hardware, we directly obtain a natural definition of a
noise scaled gate:

G(λ) = Λλp̃ = (1− λp̃)G + λp̃Φ(−), p̃ =
γ(−)

γ(+)
, (42)

where 0 ≤ λ ≤ λmax = γ(+)/γ(−). By construction,
this type of noise reduces the negativity of the quasi-
probability representation. Indeed, replacing Eq. (40)
into Eq. (42), we obtain the following representation for
the noise scaled gate in terms of implementable opera-
tions:

G(λ) = (γ(+) − λγ(−))Φ(+) − (1− λ)γ(−)Φ(−), (43)

whose sampling cost (one-norm) decreases linearly with
respect to the noise scale factor λ:

γ(λ) =
{ γ − λ(γ − 1), λ ∈ [0, 1],

1, λ ∈ [1, λmax = γ+1
γ−1 ].

(44)

Note: For the optimal PEC representation of a gate in
the presence of depolarizing noise given in Eq. (35) (eval-
uated at λ = 0), the canonical noise channel defined in
Eq. (41) is equal to the actual physical depolarizing chan-
nel acting on the system. In other words, the noise-scaled
quasi-probability decomposition that was manually com-
puted in Eqs. (36) is a particular case of Eq. (43). The
advantage of Eq. (43) is that it is well defined even for
an arbitrary PEC representation, e.g., one based on the
experimental tomography of a noisy gate set.

VII. MINIMUM SAMPLING COST OF EXACT
NEPEC REPRESENTATIONS

In the previous sections we presented several tech-
niques in which ideal gates are expanded in a noise-
extended basis with approximate representations, i.e.,
with a non-zero bias. In this section instead we focus
on exact gate representations and we study the possibil-
ity of reducing the optimal sampling cost γopt introduced
in Eq. (5) by using NEPEC instead of PEC. Our analy-
sis is inspired by the resource theory of error mitigation
proposed in Ref. [20] and we follow a similar (but not
identical) notation. Let I be the set of implementable op-
erations used in PEC. Then, by noise scaling, we obtain
the extended set of implementable operations Ĩ intro-
duced in Eq. (20), such that any ideal gate Gi of a circuit
can be expanded in this extended basis as described in
Eq. (24). The associated optimal sampling cost is:

γ̃opti = min
{ηi,α,λ}
{O(λ)

α }

∑
α,λ

|ηi,α,λ|

 s.t. Eq. (24) holds ≤ γopti ,

(45)

where the last inequality sign is a consequence of the
fact that, since I ⊂ Ĩ, the minimization in Eq. (45) is
over a larger landscape w.r.t. Eq. (5) and so, in principle,
a smaller value can be reached. But is this inequality
strict? We will show that this depends on the particular
noise model and on the specific gate set I.

A. A no-go test

Hypothesis 1: Let us consider the particular setting in
which each noise-scaled operation in Ĩ can be represented
as a convex combination of operations which are in the
non-scaled set I, i.e.:

∀O(λ) ∈ Ĩ, O(λ) =
∑
α

µλ(α)Oα, Oα ∈ I, (46)

where {µλ(α) ≥ 0} is a positive probability distribution
with respect to α.

In practice, if Hypothesis 1 holds, instead of actually
scaling the hardware noise one could effectively obtain
the same result by just probabilistically drawing an op-
eration in I according to the probability distribution
µλ(α). It is reasonable to expect that, in this case, there
cannot be any advantage with respect to the sampling
cost and so the inequality in (45) saturates to a trivial
equality.

Indeed, by replacing Eq. (46) into Eq. (24), we see that
for each noise-extended representation of a gate Gi there
exists an equivalent representation which does not require
noise scaling and has the same one-norm parameter γi.
The corresponding quasi-distribution is:

ηi,α′ =
∑
α,λ

ηi,α,λ µi,α,λ(α′), (47)

whose one-norm is the same as the NEPEC one-norm,
since∑
α′

|ηi,α′ | =
∑
α,λ

|ηi,α,λ|
∑
α′

|µi,α,λ(α′)| =
∑
α,λ

|ηi,α,λ| = γi.

(48)
Therefore we can conclude that, if Hypothesis 1 holds,
noise-scaling cannot reduce the sampling cost, i.e.,
γ̃opt = γopt.

A relevant example in which this no-go result ap-
plies is when the set of implementable operations is
I = {Ep◦G,∀ unitary G} andDp is a depolarizing channel
acting on k qubits (see e.g. [20] for a detailed analysis of
this error mitigation scenario). The corresponding noise-

extended set would be Ĩ = {Dλp ◦ G,∀ unitary G, λ ∈
[1, λmax = (1 − 4−k)p−1]}, where the explicit expression
for Dλp was already given in Eq. (22). For λ ∈ [1, λmax],
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Dλp = Dp ◦Dp′(λ) for some p′(λ) ∈ [0, 1], and so we have:

G(λ) = Dλp ◦ G = Dp ◦ Dp′(λ) ◦ G

= [1− p′(λ)]Dp ◦ G + p′(λ)
∑
P∈Pk

Dp ◦ P ◦ G
4k − 1

, (49)

where the last sum is over all the Pauli strings different
from the identity as described in Eq. (22). Since P ◦ G
is a unitary, Dp ◦ P ◦ G ∈ I and so Eq. (49) corresponds
to a convex combination of operations which are in I.
This means that Hypothesis 1 holds and so, in this case,
noise scaling cannot help in reducing the mitigation cost
of an exact representation.

B. Example: NEPEC representations with
amplitude damping noise

An example in which γ̃opt < γopt, is given
by the following noisy gate set: I = {Ap ◦
G,∀ single-qubit unitary G} where Ap is a single-qubit
amplitude damping channel. It is easy to check that,
since all the G that appear in the definition of I are
unitary, it is impossible to obtain a valid PEC represen-
tation with this gate set [7]. Indeed any linear combina-
tion of the noisy elements of I, if applied to the maxi-
mally mixed state, will always simplify to the non-unital
channel Ap and so it can never represent the action of
an ideal unitary gate. For this reason, the operation
RESET = |0〉〈0| + |0〉〈1| was used in previous works
[7, 8, 20] to make PEC feasible in the presence of am-
plitude damping noise.

In this proof-of-principle example we assume that, for
some reason, we cannot apply the RESET gate (e.g. be-
cause its physical implementation is too noisy or too
slow). In this case, the mitigation norm γopt is infinite,
in the sense that the minimization problem in Eq. (5) is
unfeasible without noise scaling. On the other hand, if
we extend the gate set I by noise scaling, the minimiza-
tion problem in Eq. (5) becomes feasible and we obtain
a finite mitigation cost γ̃opt < γopt = ∞. This can be
formally deduced by simply observing that Aλp, in the
maximum noise limit λ → p−1, tends to the RESET
gate and so we can recover the results of Refs. [7, 8, 20]
in this limit. Moreover we numerically find that even
using intermediate values of noise scaling 1 < λ < p−1,
the representation problem becomes feasible without a
RESET gate at the cost of obtaining a larger (but finite)
one-norm. Unfortunately we also report that, when us-
ing noise scaling on an initial gate set I which already
includes the RESET gate, we could not obtain any fur-
ther reduction of the sampling cost.

Inspired by the gate extrapolation technique proposed
in Sec. V, we may also ask if it is possible to obtain
a representation in the form of Eq. (30), i.e., only us-

ing a linear combination of the same gate G(λ)i applied

at different noise scale factors. Differently from the de-
polarizing super-operator Dp which is linear in p, the
amplitude damping super-operator Ap is non-linear in p.
This is not a problem if we aim for an approximate (bi-
ased) representation, but obtaining an exact (unbiased)
representation is less trivial. Using the change of vari-
able p′ = 1 −

√
1− p, Ap becomes a quadratic function

of p′. This implies that by scaling p′ with 3 scale fac-
tors λ ∈ S = [λ1, λ2, λ3] we can always extrapolate to
the exact zero-noise limit using the Richardson coeffi-
cients defined in Eq. (31). Minimizing the one-norm of
the quasi-probability {ηi,λ} with respect to S and impos-
ing λj ∈ [0, 1/p′], one can obtain the optimal coefficients
S = [1, (1 + 1/p′)/2, 1/p′]. The corresponding optimized
one norm is:

γi =
1 + 6p′ + p′2

(1− p′)2
=

9− 8
√

1− p− p
1− p

. (50)

For small p, the equation above scales as 1 + 4p+O(p2).
For comparison, we note that this is strictly larger than
the sampling cost derived in Refs. [20] which scales as
1 + p+ O(p2). This is not surprising since Eq. (50) cor-
responds to a very restricted noisy basis (just a single
noise-scaled gate).

We conclude noticing that, while the change of
variable p → p′ was useful for the theoretical derivation
of Eq. (50) and for proving the existence of an exact
quadratic extrapolation, it is not necessary to apply it in
a practical scenario. In a real use case, one can directly
scale the noise level p with three different noise scale
factors and just solve for the coefficients {ηi,λ |λ ∈ S}
in Eq. (30). The previous theoretical analysis ensures
that, in the presence of amplitude damping noise, three
different scale factors are enough to obtain an exact
solution of Eq. (30).

VIII. CONCLUSIONS

We propose a general error mitigation framework—
NEPEC—in which a given ideal quantum circuit is rep-
resented in terms of a quasi-probability distribution over
different circuits evaluated at different noise levels. This
approach generalizes existing techniques (PEC and ZNE)
and, depending on the choice of the quasi-probability
distribution, gives rise to different practical implemen-
tations as summarized in Table I.

A promising implementation of NEPEC is the possi-
bility of defining approximate quasi-probability represen-
tations of individual gates (or layers) via local extrapo-
lation and therefore without the need of performing gate
set tomography. This fact can be an important practical
advantage compared to standard PEC and, by construc-
tion, it bypasses noise characterization errors. For exam-
ple, in the simulation reported in Fig. 2, we have shown
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the robustness of this method against noise calibration
errors.

Other specific implementations of the NEPEC ap-
proach are probabilistic error reduction (PER) and vir-
tual ZNE. In PER, noise is reduced at intermediate scale
factors λ ∈ [0, 1] with the advantage of requiring a smaller
sampling cost compared to PEC (λ = 0). Moreover, PER
can also be considered as a virtual noise scaling method,
and ZNE can be applied as a second post-processing step
as shown in Fig. 3 (see also [19]). As a by-product of our
theoretical analysis, we also identified a canonical noise
channel that can be associated to any quasi-probability
representation of a gate (Sec. VI D). This canonical chan-
nel is useful to apply PER with any noisy gate set and
might be of independent interest beyond the scope of this
work.

Finally we investigated if, by extending the basis of
implementable operations via noise-scaling, it is possible
to obtain exact gate representations with a smaller one-
norm (sampling cost) compared to standard PEC repre-
sentations. We found that there is a large class of sit-
uations (see Hypothesis 1 in Sec. VII) in which this is
impossible, however, we also gave an explicit example in
which NEPEC provides an advantage (Sec. VII B).

We hope that this work can stimulate further theo-
retical and experimental research lines. Stacking and
hybridizing different quantum error mitigation tech-
niques seems a promising strategy [13, 14, 19, 28]. The

freedom of sampling over different circuits and different
noise levels opens up a large variety of possible error mit-
igation techniques. In this work we explicitly proposed
only some of them (see Table I), but new and perhaps
better techniques based on the NEPEC framework could
be found in the future. Moreover, the experimental
implementation of NEPEC with real quantum processors
remains and open and important research task which
could be addressed in the near-future. In this regard,
we comment that an experimental implementation of
NEPEC is feasible with current technology. Indeed,
the main technical requirements (sampling and noise
scaling) have been already achieved and experimentally
demonstrated in the context of PEC [12] and ZNE [11].
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