We present a new geometric unfolding of a prototype problem of optimal control theory, the Mayer problem. This approach is crucially based on the Stokes Theorem and yields to a necessary and sufficient condition that characterizes the optimal solutions, from which the classical Pontryagin Maximum Principle is derived in a new insightful way. It also suggests generalizations in diverse directions of such famous principle.
Autori: | |
Autori: | Cardin, F.; Spiro, A. |
Titolo: | Pontryagin maximum principle and Stokes theorem |
Coautori afferenti a istituzioni straniere: | no |
Data di pubblicazione: | 2019 |
Numero degli autori: | 2 |
Rivista: | JOURNAL OF GEOMETRY AND PHYSICS |
Codice identificativo ISI: | WOS:000472701500018 |
Codice identificativo Scopus: | 2-s2.0-85065534708 |
Volume: | 142 |
Pagina iniziale: | 274 |
Pagina finale: | 286 |
Numero di pagine: | 13 |
Lingua: | Inglese |
IF: | si |
Rilevanza: | internazionale |
Revisione (peer review): | Esperti anonimi |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.geomphys.2019.04.014 |
URL: | https://arxiv.org/pdf/1812.07875.pdf |
Data di presentazione: | 2021-04-02T16:28:25Z |
Abstract: | We present a new geometric unfolding of a prototype problem of optimal control theory, the Mayer problem. This approach is crucially based on the Stokes Theorem and yields to a necessary and sufficient condition that characterizes the optimal solutions, from which the classical Pontryagin Maximum Principle is derived in a new insightful way. It also suggests generalizations in diverse directions of such famous principle. |
Appare nelle tipologie: | Articolo |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
1-s2.0-S0393044019300853-main-Pontryagin.pdf | Documento in Post-print | DRM non definito | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.