The effect of broccoli extract (BE)-enriched diet was studied in order to evaluate its ability to counteract liver cholesterol oxidation products (COPs) induced by acute strenuous exercise in rats. Thirty-two female Wistar rats were randomly divided into four groups: control diet without exercise (C), BE-enriched diet without exercise (B), control diet with acute exhaustive exercise (S) and BE-enriched diet with acute exhaustive exercise (BS). The study lasted 45 days and on the last day, rats of S and BS groups were forced to run until exhaustion on a treadmill. Glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT) and cholesterol oxidation products (COPs) were determined in liver. Exhaustive exercise was clearly responsible for tissue damage, as evidenced by the increase of lactate dehydrogenase (LDH) plasma activity increase in the S group rats. Moreover, the exercise protocol reduced CAT activity in liver, while it did not affect GST, GR and GPx. The BE-enriched diet increased raised GST, GR and CAT activities in rats of BS group. The main COPs found were 7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, cholestanetriol, 24-hydroxycholesterol and 27-hydroxycholesterol. The BE-enriched diet led to reduced cholesterol oxidation following exhaustive exercise; the highest level of COPs was found in the S group, whereas the BS rats showed the lowest valueamount. This study indicates that the BE-enriched diet increases antioxidant enzyme activities and exerts an antioxidant effect towards cholesterol oxidation in rat liver, suggesting the use of phytochemicals in the prevention of oxidative damage and in the modulation of the redox environment.

Effect of broccoli extract enriched diet on liver cholesterol oxidation in rats subjected to exhaustive exercise

ANGELONI, Cristina;
2017-01-01

Abstract

The effect of broccoli extract (BE)-enriched diet was studied in order to evaluate its ability to counteract liver cholesterol oxidation products (COPs) induced by acute strenuous exercise in rats. Thirty-two female Wistar rats were randomly divided into four groups: control diet without exercise (C), BE-enriched diet without exercise (B), control diet with acute exhaustive exercise (S) and BE-enriched diet with acute exhaustive exercise (BS). The study lasted 45 days and on the last day, rats of S and BS groups were forced to run until exhaustion on a treadmill. Glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT) and cholesterol oxidation products (COPs) were determined in liver. Exhaustive exercise was clearly responsible for tissue damage, as evidenced by the increase of lactate dehydrogenase (LDH) plasma activity increase in the S group rats. Moreover, the exercise protocol reduced CAT activity in liver, while it did not affect GST, GR and GPx. The BE-enriched diet increased raised GST, GR and CAT activities in rats of BS group. The main COPs found were 7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, cholestanetriol, 24-hydroxycholesterol and 27-hydroxycholesterol. The BE-enriched diet led to reduced cholesterol oxidation following exhaustive exercise; the highest level of COPs was found in the S group, whereas the BS rats showed the lowest valueamount. This study indicates that the BE-enriched diet increases antioxidant enzyme activities and exerts an antioxidant effect towards cholesterol oxidation in rat liver, suggesting the use of phytochemicals in the prevention of oxidative damage and in the modulation of the redox environment.
2017
File in questo prodotto:
File Dimensione Formato  
Cardenia et al. 2017.pdf

solo gestori di archivio

Descrizione: J Steroid Biochem Mol Biol 169 (2017) 137–144
Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 875.39 kB
Formato Adobe PDF
875.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/397471
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact