We consider the notion of unitary transformations forming bases for subspaces of M(d,C) such that the square of the Hilbert-Schmidt inner product of matrices from the differing bases is a constant. Moving from the qubit case, we construct the maximal number of such bases for the four- and two-dimensional subspaces while proving the nonexistence of such a construction for the three-dimensional case. Extending this to higher dimensions, we commit to such a construct for the case of qutrits and provide evidence for the existence of such unitaries for prime dimensional quantum systems. Focusing on the qubit case, we show that the average fidelity for estimating any such transformation is equal to the case for estimating a completely unknown unitary from SU(2). This is then followed by a quick application for such unitaries in a quantum cryptographic setup.

Mutually unbiased unitary bases

MANCINI, Stefano
2016-01-01

Abstract

We consider the notion of unitary transformations forming bases for subspaces of M(d,C) such that the square of the Hilbert-Schmidt inner product of matrices from the differing bases is a constant. Moving from the qubit case, we construct the maximal number of such bases for the four- and two-dimensional subspaces while proving the nonexistence of such a construction for the three-dimensional case. Extending this to higher dimensions, we commit to such a construct for the case of qutrits and provide evidence for the existence of such unitaries for prime dimensional quantum systems. Focusing on the qubit case, we show that the average fidelity for estimating any such transformation is equal to the case for estimating a completely unknown unitary from SU(2). This is then followed by a quick application for such unitaries in a quantum cryptographic setup.
2016
File in questo prodotto:
File Dimensione Formato  
PhysRevA.94.052328.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 135.79 kB
Formato Adobe PDF
135.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/394676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact