The approved platinum drugs continue to have a major role in cancer treatment. However, despite their efficacy, serious side effects often prevent their administration at full efficacious doses or may considerably affect patients’ quality of life. Hence, there is an urgent need to find safer and better-tolerated chemotherapeutic drugs. In this work we investigated in vitro the activity and the neurotoxicity of new anticancer complexes based on copper ([Cu(PTA)4]PF6; [Cu(thp)4]PF6), gold ([Au(PTA)4]PF6) and platinum ([PtCl2(cis-1,4-DACH)]; [Pt(1,1’-CBDCA)(cis-1,4-DACH)]). Cytotoxicity was tested by MTT assay in a panel of human cancer cells. Neurotoxicity was evaluated by an in vitro model based on organotypic cultures of DRG from E15 rat embryos. Since the ubiquitin-proteasome system is a cancer cell molecular target of copper and gold based-drugs, we evaluated, by fluorimetric assay, their ability to hinder the proteasome machinery in DRG neurons. At 48 hours, both copper compounds were not neurotoxic even at higher concentrations with respect to the IC50 calculated in cancer cells while [Au(PTA)4]PF6 was neurotoxic at lower concentration than IC50. [PtCl2(cis-1,4-DACH)] elicited a neurotoxicity slightly lower with respect to oxaliplatin. Conversely, [Pt(1,1’-CBDCA)(cis-1,4-DACH)] showed a reduced neurotoxicity compared with the reference drug. Both copper-based compounds, that are not neurotoxic, do not inhibit proteasome activity in DRG neurons. Contrarily, the neurotoxic complex [Au(PTA)4]PF6, induces a significant inhibition of proteasome activity. Our results, together with the low IC50 of the copper and platinum based complexes, suggest them as promising compounds providing support to further in vivo studies.

In vitro activity and neurotoxicity of new promising metal-based anticancer complexes

PELLEI, Maura;SANTINI, Carlo;
2016-01-01

Abstract

The approved platinum drugs continue to have a major role in cancer treatment. However, despite their efficacy, serious side effects often prevent their administration at full efficacious doses or may considerably affect patients’ quality of life. Hence, there is an urgent need to find safer and better-tolerated chemotherapeutic drugs. In this work we investigated in vitro the activity and the neurotoxicity of new anticancer complexes based on copper ([Cu(PTA)4]PF6; [Cu(thp)4]PF6), gold ([Au(PTA)4]PF6) and platinum ([PtCl2(cis-1,4-DACH)]; [Pt(1,1’-CBDCA)(cis-1,4-DACH)]). Cytotoxicity was tested by MTT assay in a panel of human cancer cells. Neurotoxicity was evaluated by an in vitro model based on organotypic cultures of DRG from E15 rat embryos. Since the ubiquitin-proteasome system is a cancer cell molecular target of copper and gold based-drugs, we evaluated, by fluorimetric assay, their ability to hinder the proteasome machinery in DRG neurons. At 48 hours, both copper compounds were not neurotoxic even at higher concentrations with respect to the IC50 calculated in cancer cells while [Au(PTA)4]PF6 was neurotoxic at lower concentration than IC50. [PtCl2(cis-1,4-DACH)] elicited a neurotoxicity slightly lower with respect to oxaliplatin. Conversely, [Pt(1,1’-CBDCA)(cis-1,4-DACH)] showed a reduced neurotoxicity compared with the reference drug. Both copper-based compounds, that are not neurotoxic, do not inhibit proteasome activity in DRG neurons. Contrarily, the neurotoxic complex [Au(PTA)4]PF6, induces a significant inhibition of proteasome activity. Our results, together with the low IC50 of the copper and platinum based complexes, suggest them as promising compounds providing support to further in vivo studies.
File in questo prodotto:
File Dimensione Formato  
Journal of Alzheimer’s Disease 53 (2016) S55-S56.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: DRM non definito
Dimensione 55.8 kB
Formato Adobe PDF
55.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/392825
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact