Escherichia coli nucleoids were compacted by the inert polymer polyethylene glycol (PEG) in the presence of the H-NS protein. The protein by itself appears to have little impact on the size of the nucleoids as determined by fluorescent microscopy. However, it has a significant impact on the nucleoidal collapse by PEG. This is quantitatively explained by assuming the H-NS protein enhances the effective diameter of the DNA helix leading to an increase in the depletion forces induced by the PEG. Ultimately, however, the free energy of the nucleoid itself turns out to be independent of the H-NS concentration. This is because the enhancement of the supercoil excluded volume is negligible. The experiments on the nucleoids are corroborated by dynamic light scattering and EMSA analyses performed on DNA plasmids in the presence of PEG and H-NS.

Compaction of isolated Escherichia coli nucleoids: Polymer and H-NS protein synergetics

SPURIO, Roberto;
2016-01-01

Abstract

Escherichia coli nucleoids were compacted by the inert polymer polyethylene glycol (PEG) in the presence of the H-NS protein. The protein by itself appears to have little impact on the size of the nucleoids as determined by fluorescent microscopy. However, it has a significant impact on the nucleoidal collapse by PEG. This is quantitatively explained by assuming the H-NS protein enhances the effective diameter of the DNA helix leading to an increase in the depletion forces induced by the PEG. Ultimately, however, the free energy of the nucleoid itself turns out to be independent of the H-NS concentration. This is because the enhancement of the supercoil excluded volume is negligible. The experiments on the nucleoids are corroborated by dynamic light scattering and EMSA analyses performed on DNA plasmids in the presence of PEG and H-NS.
2016
File in questo prodotto:
File Dimensione Formato  
2016-J-Structural-Biology-HNS.pdf

solo gestori di archivio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/390632
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact