A chemical derivative of the thiopeptide GE2270A, designated NAI003, was found to possess a substantially reduced antibacterial spectrum in comparison to the parent compound, being active against just a few Gram-positive bacteria. In particular, NAI003 retained low MICs against all tested isolates of Propionibacterium acnes and, to a lesser extent, against Enterococcus faecalis. Furthermore, NAI003 showed a time- and dose-dependent killing of both a clindamycin-resistant and a clindamycinsensitive P. acnes isolate. Gel shift experiments indicated that, like the parent compound, NAI003 retained the ability to bind to elongation factors Tu (EF-Tus) derived from Escherichia coli, E. faecalis, or P. acnes, albeit with reduced efficiency. In contrast, EF-Tus derived from the NAI003-insensitive Staphylococcus aureus or Streptococcus pyogenes did not bind this compound. These results were confirmed by in vitro studies using a hybrid translation system, which indicated that NAI003 can inhibit most efficiently protein synthesis driven by the P. acnes EF-Tu. P. acnes mutants resistant to NAI003 were isolated by direct plating. With one exception, all analyzed strains carried mutations in the tuf gene, encoding EF-Tu. Because of its selective effect on P. acnes in comparison to resident skin flora, NAI003 represents a promising candidate for the topical treatment of acne, which has already completed a phase 1 clinical study.

A Derivative of the Thiopeptide GE2270A Highly Selective against Propionibacterium acnes

FABBRETTI, Attilio;BRANDI, LETIZIA;SPURIO, Roberto;
2015-01-01

Abstract

A chemical derivative of the thiopeptide GE2270A, designated NAI003, was found to possess a substantially reduced antibacterial spectrum in comparison to the parent compound, being active against just a few Gram-positive bacteria. In particular, NAI003 retained low MICs against all tested isolates of Propionibacterium acnes and, to a lesser extent, against Enterococcus faecalis. Furthermore, NAI003 showed a time- and dose-dependent killing of both a clindamycin-resistant and a clindamycinsensitive P. acnes isolate. Gel shift experiments indicated that, like the parent compound, NAI003 retained the ability to bind to elongation factors Tu (EF-Tus) derived from Escherichia coli, E. faecalis, or P. acnes, albeit with reduced efficiency. In contrast, EF-Tus derived from the NAI003-insensitive Staphylococcus aureus or Streptococcus pyogenes did not bind this compound. These results were confirmed by in vitro studies using a hybrid translation system, which indicated that NAI003 can inhibit most efficiently protein synthesis driven by the P. acnes EF-Tu. P. acnes mutants resistant to NAI003 were isolated by direct plating. With one exception, all analyzed strains carried mutations in the tuf gene, encoding EF-Tu. Because of its selective effect on P. acnes in comparison to resident skin flora, NAI003 represents a promising candidate for the topical treatment of acne, which has already completed a phase 1 clinical study.
2015
File in questo prodotto:
File Dimensione Formato  
2015-NAIACNE-Antim-Ag-Chemoth.pdf

accesso aperto

Descrizione: Articolo prinicipale
Tipologia: Versione Editoriale
Licenza: DRM non definito
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/387743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact