Electro-spray deposition (ESD) was applied to fabricate solution processed donor–acceptor bulk heterojunction organic photovoltaic devices with multi-layer structure. Solvent effect was observed when using different organic solvents. Power conversion efficiency (PCE) of the devices prepared from dichlorobenzene increased dramatically comparing to the ones from chloroform, owing to improved homogeneity of the films. ESD enabled us to fabricate solution processed multi-layer (donor/donor:acceptor/acceptor) devices with simple suc- cessive deposition steps. Energy Dispersive X-ray Reflectometry analysis confirmed distinct three layered structure of the active layers. Solar cell device parameters of the trilayer devices were compared to single layer devices and those of spin coated devices with the same donor:acceptor ratio and film thickness. Post-thermal treatment results showed that after annealing at 125 °C, trilayer devices exhibited best performance with the maximum PCE of 2.17%.

Realization of solution processed multi-layer bulk heterojunction organic solar cells by electro-spray deposition

GUNNELLA, Roberto
2012-01-01

Abstract

Electro-spray deposition (ESD) was applied to fabricate solution processed donor–acceptor bulk heterojunction organic photovoltaic devices with multi-layer structure. Solvent effect was observed when using different organic solvents. Power conversion efficiency (PCE) of the devices prepared from dichlorobenzene increased dramatically comparing to the ones from chloroform, owing to improved homogeneity of the films. ESD enabled us to fabricate solution processed multi-layer (donor/donor:acceptor/acceptor) devices with simple suc- cessive deposition steps. Energy Dispersive X-ray Reflectometry analysis confirmed distinct three layered structure of the active layers. Solar cell device parameters of the trilayer devices were compared to single layer devices and those of spin coated devices with the same donor:acceptor ratio and film thickness. Post-thermal treatment results showed that after annealing at 125 °C, trilayer devices exhibited best performance with the maximum PCE of 2.17%.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/250225
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 55
social impact