Electronic transport and magnetic properties of Ge1–xMnx/Ge(100) films are investigated as a function of Mn dilution. Depending on x, characteristic temperatures separate different regimes in both properties. Resistivity exhibits an insulatorlike behavior in the whole temperature range and, below about 80 K, two distinct activation energies are observed. At a higher temperature value, TR, resistivity experiences a sudden reduction. The Hall coefficient shows a strong contribution from the anomalous Hall effect and, at TR, a sign inversion, from positive to negative, is recorded. The magnetic properties, inferred from magneto-optical Kerr effect, evidence a progressive decrease of the ferromagnetic long range order as the temperature is raised, with a Curie temperature TC not far from TR. The transport and magnetic results are qualitatively consistent with a perco- lation mechanism due to bound magnetic polarons in a GeMn diluted magnetic semiconductor, with localized holes [A. Kaminski and S. Das Sarma, Phys. Rev. B 68, 235210 (2003)].

Magnetic and electronic transport percolation in epitaxial Ge1–xMnx films

PINTO, Nicola;MURRI, Roberto Vittorio;
2005-01-01

Abstract

Electronic transport and magnetic properties of Ge1–xMnx/Ge(100) films are investigated as a function of Mn dilution. Depending on x, characteristic temperatures separate different regimes in both properties. Resistivity exhibits an insulatorlike behavior in the whole temperature range and, below about 80 K, two distinct activation energies are observed. At a higher temperature value, TR, resistivity experiences a sudden reduction. The Hall coefficient shows a strong contribution from the anomalous Hall effect and, at TR, a sign inversion, from positive to negative, is recorded. The magnetic properties, inferred from magneto-optical Kerr effect, evidence a progressive decrease of the ferromagnetic long range order as the temperature is raised, with a Curie temperature TC not far from TR. The transport and magnetic results are qualitatively consistent with a perco- lation mechanism due to bound magnetic polarons in a GeMn diluted magnetic semiconductor, with localized holes [A. Kaminski and S. Das Sarma, Phys. Rev. B 68, 235210 (2003)].
2005
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/236176
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 85
social impact