Alzheimer's disease (AD) commonly begins with loss of recent memory and is associated to pathological and histological hallmarks such as β amyloid plaques, neural tangles (NFT), cholinergic deficit, extensive neuronal loss and synaptic changes in the cerebral cortex and hippocampus. The amyloid cascade hypothesis implies the activity of β, γ secretases which mediate the cleavage of APP (Amyloid Precursor Protein), the formation of amyloidogenic Aβ fragment (1–42), which compacts into amyloid plaques, while the cleavage by α secretase of APP, within the Aβ segment (non-amyloidogenic processing) forms sAPP and prevents the formation of Aβ. Among the proteases which have Aβ-degrading activity, Metalloproteinase (MMP) 2, disclosing β secretase-like activity, is included, while MMP9 seems to contribute to neuronal death. In addition, since intracellular signaling protein kinase C (PKC) can control either directly α secretase or indirectly through regulation of ERK1/2, preventing the formation of β amyloid, created by β and γ secretase, and prolonging the life span of Alzheimer's disease mutant mice, here we show the effects exerted by new codrug 1 on PKCε-mediated MMP2 and MMP9 levels regulation in Aβ (1–40) infused rat cerebral cortex. Interestingly codrug 1, lowering metalloproteinases expression via PKC ε down-modulation, seems to control Alzheimer's disease induced cerebral amyloid deposits, neuronal death and, lastly, behavioral deterioration.

Ibuprofen and lipoic acid codrug 1 control Alzheimer's disease progression by down-regulating protein kinase C ε-mediated metalloproteinase 2 and 9 levels in β-amyloid infused Alzheimer's disease rat model.

NASUTI, Cinzia Carla;
2011-01-01

Abstract

Alzheimer's disease (AD) commonly begins with loss of recent memory and is associated to pathological and histological hallmarks such as β amyloid plaques, neural tangles (NFT), cholinergic deficit, extensive neuronal loss and synaptic changes in the cerebral cortex and hippocampus. The amyloid cascade hypothesis implies the activity of β, γ secretases which mediate the cleavage of APP (Amyloid Precursor Protein), the formation of amyloidogenic Aβ fragment (1–42), which compacts into amyloid plaques, while the cleavage by α secretase of APP, within the Aβ segment (non-amyloidogenic processing) forms sAPP and prevents the formation of Aβ. Among the proteases which have Aβ-degrading activity, Metalloproteinase (MMP) 2, disclosing β secretase-like activity, is included, while MMP9 seems to contribute to neuronal death. In addition, since intracellular signaling protein kinase C (PKC) can control either directly α secretase or indirectly through regulation of ERK1/2, preventing the formation of β amyloid, created by β and γ secretase, and prolonging the life span of Alzheimer's disease mutant mice, here we show the effects exerted by new codrug 1 on PKCε-mediated MMP2 and MMP9 levels regulation in Aβ (1–40) infused rat cerebral cortex. Interestingly codrug 1, lowering metalloproteinases expression via PKC ε down-modulation, seems to control Alzheimer's disease induced cerebral amyloid deposits, neuronal death and, lastly, behavioral deterioration.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/229866
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact