Carbopol is one of the most common thickening agent for water phases. It is used after neutralisation and its rheological properties in the aqueous medium are well known. The aim of this work was to investigate the gelation properties of Carbopol 971 e 974 polymeric systems in water-miscible cosolvents such as glycerine and PEG 400. Since in these cosolvents, carboxypolymethylene precipitates after neutralisation with a base, then the attention was pointed out of the gelation properties of the different systems at increasing temperature, in order to obtain Carbopols gels avoiding neutralisation and, at the same time, making possible the dissolution in these gels of insoluble or poorly soluble water drugs. Rheological properties of PEG 400 and glycerine samples were compared with similar systems in water by performing oscillatory analyses and measuring the main rheological parameters, G, G and δ. The results obtained showed that Carbopol 971 and 974 in PEG 400 gave rise after heating to gels that show a satisfactory rheological behaviour. The elastic modulus is greater than the viscous one showing a remarkable elastic character of these samples and the performed frequency sweeps show a typical spectrum of a “gel-like” structure. Being Carbopols well-known mucoadhesive polymers, gels adhesive properties were studied using the ex vivo method. Then, the possible cutaneous irritation were also tested using the in vivo method (Draize test). No signs of cutaneous irritation and good mucoadhesive properties were obtained for the PEG 400 and water gels of Carbopol 974 prepared by heating. After rheological and mucoadhesive properties were set, paracetamol as a model drug was then inserted in the composition of the gels and the release characteristics were defined. Dissolution tests pointed out the greater release control properties of PEG 400-Carbopol 971 samples. These studies showed PEG 400-Carbopol systems as a first-rate alternative to traditional water gels.

Rheological, mucoadhesive and release properties of carbopol gels in hydrophilic cosolvents

BONACUCINA, Giulia;PALMIERI, Giovanni Filippo
2004-01-01

Abstract

Carbopol is one of the most common thickening agent for water phases. It is used after neutralisation and its rheological properties in the aqueous medium are well known. The aim of this work was to investigate the gelation properties of Carbopol 971 e 974 polymeric systems in water-miscible cosolvents such as glycerine and PEG 400. Since in these cosolvents, carboxypolymethylene precipitates after neutralisation with a base, then the attention was pointed out of the gelation properties of the different systems at increasing temperature, in order to obtain Carbopols gels avoiding neutralisation and, at the same time, making possible the dissolution in these gels of insoluble or poorly soluble water drugs. Rheological properties of PEG 400 and glycerine samples were compared with similar systems in water by performing oscillatory analyses and measuring the main rheological parameters, G, G and δ. The results obtained showed that Carbopol 971 and 974 in PEG 400 gave rise after heating to gels that show a satisfactory rheological behaviour. The elastic modulus is greater than the viscous one showing a remarkable elastic character of these samples and the performed frequency sweeps show a typical spectrum of a “gel-like” structure. Being Carbopols well-known mucoadhesive polymers, gels adhesive properties were studied using the ex vivo method. Then, the possible cutaneous irritation were also tested using the in vivo method (Draize test). No signs of cutaneous irritation and good mucoadhesive properties were obtained for the PEG 400 and water gels of Carbopol 974 prepared by heating. After rheological and mucoadhesive properties were set, paracetamol as a model drug was then inserted in the composition of the gels and the release characteristics were defined. Dissolution tests pointed out the greater release control properties of PEG 400-Carbopol 971 samples. These studies showed PEG 400-Carbopol systems as a first-rate alternative to traditional water gels.
2004
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/202034
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 149
social impact