The susceptibility of Saccharomyces cerevisiae JG436 multidrug transporter deletion mutant, Deltapdr5, to several antifungal agents was compared to that of JG436-derived JGCDR1 and JGCaMDR1 transformants, harboring the CDR1 and CaMDR1 genes, encoding the main drug-extruding membrane proteins of Candida albicans. The JGCDR1 and JGCaMDR1 yeasts demonstrated markedly diminished susceptibility to the azole antifungals, terbinafine and cycloheximide, while that to amphotericin B was unchanged. Surprisingly, JGCDR1 but not JGCaMDR1 cells showed enhanced susceptibility to peptidic antifungals, rationally designed compounds containing inhibitors of glucosamine-6-phosphate synthase. It was found that these antifungal oligopeptides, as well as model oligopeptides built of proteinogenic amino acids, were not effluxed from JGCDR1 cells. Moreover, they were taken up by these cells at rates two to three times higher than by JG436. The tested oligopeptides were rapidly cleaved to constitutive amino acids by cytoplasmic peptidases. Studies on the mechanism of the observed phenomenon suggested that an additive proton motive force generated by Cdr1p stimulated uptake of oligopeptides into JGCDR1 cells, thus giving rise to the higher antifungal activity of FMDP [N(3)-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid]-peptides.

Unusual susceptibility of a multidrug-resistant yeast strain to peptidic antifungals

MIGNINI, Fiorenzo;
2001-01-01

Abstract

The susceptibility of Saccharomyces cerevisiae JG436 multidrug transporter deletion mutant, Deltapdr5, to several antifungal agents was compared to that of JG436-derived JGCDR1 and JGCaMDR1 transformants, harboring the CDR1 and CaMDR1 genes, encoding the main drug-extruding membrane proteins of Candida albicans. The JGCDR1 and JGCaMDR1 yeasts demonstrated markedly diminished susceptibility to the azole antifungals, terbinafine and cycloheximide, while that to amphotericin B was unchanged. Surprisingly, JGCDR1 but not JGCaMDR1 cells showed enhanced susceptibility to peptidic antifungals, rationally designed compounds containing inhibitors of glucosamine-6-phosphate synthase. It was found that these antifungal oligopeptides, as well as model oligopeptides built of proteinogenic amino acids, were not effluxed from JGCDR1 cells. Moreover, they were taken up by these cells at rates two to three times higher than by JG436. The tested oligopeptides were rapidly cleaved to constitutive amino acids by cytoplasmic peptidases. Studies on the mechanism of the observed phenomenon suggested that an additive proton motive force generated by Cdr1p stimulated uptake of oligopeptides into JGCDR1 cells, thus giving rise to the higher antifungal activity of FMDP [N(3)-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid]-peptides.
2001
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/116812
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact