Purpuromycin, an antibiotic produced by Actinoplanes ianthinogenes, had been reported previously to inhibit protein synthesis. In the present report, we demonstrate that the mechanism of action of this antibiotic is quite novel in that it binds with fairly high affinity to all tRNAs, inhibiting their acceptor capacity. Although more than one molecule of purpuromycin is bound to each tRNA molecule, the inhibitory activity of this antibiotic was found to be selective for the tRNA acceptor function; in fact, after the aminoacylation step, purpuromycin was found to affect none of the other tested functions of tRNA (interaction with the ribosomal P- and A-sites and interaction with translation factors). Accordingly, purpuromycin was found to inhibit protein synthesis only when translation depended on the aminoacylation of tRNA and not when the system was supplemented with pre-formed aminoacyl-tRNAs. Because purpuromycin did not interfere with the ATP-PPi exchange reaction of the synthetase or with the initial interaction of the enzyme with its tRNA substrate, the basis for the inhibition of aminoacylation is presumably the formation of a nonproductive synthetase-tRNA complex in the presence of purpuromycin in which the tRNA is unable to be charged with the corresponding amino acid.

Purpuromycin: a new inhibitor of tRNA aminoacylation

VITALI, Luca Agostino;RIPA, Sandro;PON, Cynthia;GUALERZI, Claudio
1997-01-01

Abstract

Purpuromycin, an antibiotic produced by Actinoplanes ianthinogenes, had been reported previously to inhibit protein synthesis. In the present report, we demonstrate that the mechanism of action of this antibiotic is quite novel in that it binds with fairly high affinity to all tRNAs, inhibiting their acceptor capacity. Although more than one molecule of purpuromycin is bound to each tRNA molecule, the inhibitory activity of this antibiotic was found to be selective for the tRNA acceptor function; in fact, after the aminoacylation step, purpuromycin was found to affect none of the other tested functions of tRNA (interaction with the ribosomal P- and A-sites and interaction with translation factors). Accordingly, purpuromycin was found to inhibit protein synthesis only when translation depended on the aminoacylation of tRNA and not when the system was supplemented with pre-formed aminoacyl-tRNAs. Because purpuromycin did not interfere with the ATP-PPi exchange reaction of the synthetase or with the initial interaction of the enzyme with its tRNA substrate, the basis for the inhibition of aminoacylation is presumably the formation of a nonproductive synthetase-tRNA complex in the presence of purpuromycin in which the tRNA is unable to be charged with the corresponding amino acid.
1997
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/116683
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 28
social impact