This study was performed to evaluate the effects, if any, of aromatic nitroxides, namely, indolinic nitroxides, on membrane fluidity of rat epithelial cells using steady-state fluorescence. These nitroxides are being increasingly considered as new and versatile compounds to reduce oxidative stress in biological systems. Hence, the results obtained in this study will give more insights on the interaction of these compounds with biological structures which at present is lacking, especially in view of their possible application as antioxidant therapeutic agents. The probes DPH and Laurdan which give information on the hydrophobic and hydrophilic-hydrophobic regions of the membrane bilayer, respectively, showed that nitroxide 1 (1,2-dihydro-2-methyl-3H-indole-3-one-1-oxyl) significantly increases membrane fluidity, whereas the corresponding phenylimino nitroxide derivative 2 (1,2-dihydro-2-methyl-3H-indole-3-phenylimino-1-oxyl) leads to membrane rigidification. The aliphatic nitroxide TEMPO included in this study for comparison produced no modifications. Consequently, it appears that the structure of the heterocyclic rings (aromatic or aliphatic) and the substituents may affect membrane fluidity differently. (C) 2004 Elsevier Inc. All rights reserved.

Fluorescence study on rat epithelial cells and liposomes exposed to aromatic nitroxides

GABBIANELLI, Rosita;FALCIONI, Giancarlo;LUPIDI, Giulio;
2004-01-01

Abstract

This study was performed to evaluate the effects, if any, of aromatic nitroxides, namely, indolinic nitroxides, on membrane fluidity of rat epithelial cells using steady-state fluorescence. These nitroxides are being increasingly considered as new and versatile compounds to reduce oxidative stress in biological systems. Hence, the results obtained in this study will give more insights on the interaction of these compounds with biological structures which at present is lacking, especially in view of their possible application as antioxidant therapeutic agents. The probes DPH and Laurdan which give information on the hydrophobic and hydrophilic-hydrophobic regions of the membrane bilayer, respectively, showed that nitroxide 1 (1,2-dihydro-2-methyl-3H-indole-3-one-1-oxyl) significantly increases membrane fluidity, whereas the corresponding phenylimino nitroxide derivative 2 (1,2-dihydro-2-methyl-3H-indole-3-phenylimino-1-oxyl) leads to membrane rigidification. The aliphatic nitroxide TEMPO included in this study for comparison produced no modifications. Consequently, it appears that the structure of the heterocyclic rings (aromatic or aliphatic) and the substituents may affect membrane fluidity differently. (C) 2004 Elsevier Inc. All rights reserved.
2004
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/115239
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact