A number of ligands for the adenosine binding sites has been obtained by using nucleoside convergent and divergent synthesis. Most of our nucleosides have been synthesized by coupling 2,6-dichloropurine (1), 2,6-dichloro-1-deazapurine (2), 2,6-dichloro-3-deazapurine (3) with ribose, 2- and 3-deoxyribose and 2,3-dideoxyribose derivatives. The use of these versatile synthons allowed the introduction of various substituents in 2- and/or 6-positions. The glycosylation site and the anomeric configuration of the obtained nucleosides were assigned on the basis of spectroscopic studies and confirmed by molecular models. A series of potent adenosine receptor ligands has been obtained by using divergent approaches, mostly starting from guanosine. Substitutions in 2, 6, 8, and 5′ position of adenosine molecule led to ligands selective for the different adenosine receptor subtypes. Furthermore, we investigated the molecular bases of the different behavior of 2- and 8-alkynyl adenosines, by means of NMR experiments and molecular modeling studies. With docking experiments, we demonstrated that the two class of molecules should have different binding modes that explain their different degree of affinity and the shift of their activity from agonistic (2-substituted derivatives) to antagonistic (8-substituted derivatives).

Purine and deazapurine nucleosides: synthetic approaches, molecular modeling and biological activity

CRISTALLI, Gloria;LAMBERTUCCI, Catia;VITTORI, Sauro;VOLPINI, Rosaria
2003-01-01

Abstract

A number of ligands for the adenosine binding sites has been obtained by using nucleoside convergent and divergent synthesis. Most of our nucleosides have been synthesized by coupling 2,6-dichloropurine (1), 2,6-dichloro-1-deazapurine (2), 2,6-dichloro-3-deazapurine (3) with ribose, 2- and 3-deoxyribose and 2,3-dideoxyribose derivatives. The use of these versatile synthons allowed the introduction of various substituents in 2- and/or 6-positions. The glycosylation site and the anomeric configuration of the obtained nucleosides were assigned on the basis of spectroscopic studies and confirmed by molecular models. A series of potent adenosine receptor ligands has been obtained by using divergent approaches, mostly starting from guanosine. Substitutions in 2, 6, 8, and 5′ position of adenosine molecule led to ligands selective for the different adenosine receptor subtypes. Furthermore, we investigated the molecular bases of the different behavior of 2- and 8-alkynyl adenosines, by means of NMR experiments and molecular modeling studies. With docking experiments, we demonstrated that the two class of molecules should have different binding modes that explain their different degree of affinity and the shift of their activity from agonistic (2-substituted derivatives) to antagonistic (8-substituted derivatives).
2003
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/112689
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact